
ENERGY MOMENT BOUNDS

M. SIMON

1. Harmonic system perturbed with the flip noise

In these notes we are giving a few elements to fill the gap in the proof of the
ernegy moment bounds in Hydrodynamic limits for the velocity-flip model (SPA
123, 2013 [3]). Unfortunately the problem is harder than expected and remains
open, as we will see in the next paragraphs.

1.1. Towars the control of energy moments. We introduce the one dimen-
sional harmonic chain of n oscillators, all of mass 1, and with periodic boundary
conditions (meaning that configurations are indexed by the discrete torus Tn),
and we follow the notations of [3].

The configurations are sequences (r,p) := {ri, pi}i∈Tn , where pi stands for the
momentum of the oscillator at site i, and ri represents the distance between
oscillator i and oscillator i+1. The equations of the determistic motion are given
by 

dpi
dt

= ri − ri−1,

dri
dt

= pi+1 − pi,
(1.1)

so that the dynamics conserves the total energy

E :=
∑
i∈Tn

{
p2i
2

+
r2i
2

}
.

At independently distributed random Poissonian times, the momentum pi is
flipped into −pi. This noise still conserves the total energy E . The generator
of this diffusion is given by

Ln := n2An + n2γSn.
Here the Liouville operator An is given by

An =
∑
i∈Tn

(
pi − pi−1

) ∂
∂ri

+
∑
i∈Tn

(ri+1 − ri)
∂

∂pi
,

while, for f : (R× R)n → R,

Snf(r,p) =
∑
i∈Tn

(
f(r,pi)− f(r,p)

)
Date: October 2015.
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where (pi)j = pj if j 6= i and (pi)i = −pi. The system has a family of stationary
measures given by the canonical Gibbs distributions

dµnλ,β(r,p) =
∏
i∈Tn

e−βEi−λri

Z(λ, β)
dri dpi, β > 0, (1.2)

where we denote

Ei =
p2i
2

+
r2i
2
,

the energy that we attribute to the particle i, and

Z(λ, β) =
2π

β
exp

(λ2
2β

)
. (1.3)

We assume the initial condition to be distributed according to a local Gibbs
equilibrium µnλ0,β0 associated to continuous profiles λ0, β0 : T→ (0,+∞), written
as

dµnλ0,β0(r,p) :=
1

Z(λ0(·), β0(·))
∏
i∈Tn

exp
(
− β0

( i
n

)
Ei − λ0

( i
n

)
ri

)
dri dpi.

The configuration at time t is denoted by ηnt := {ri(t), pi(t)}i∈Tn , and the law of
the Markov process (ηnt )t>0 is denoted by µnt .

The statement of [3] whose proof has to be corrected is the following:

Theorem 1.1. For any t > 0, n ∈ N, and any positive integer k > 1, there exists
a positive constant C > 0, such that

µnt

[∑
i∈Tn

Eki
]
6 (Ck)k × n. (1.4)

To keep the notation simple, we let C denote constants (that do not depend
on n, k, t) that may change from line to line.

We first recall the sketch of the proof followed in [3]. Since the chain is har-
monic, Gibbs states are Gaussian. Remarkably, all Gaussian moments can be
expressed in terms of variances and covariances. We start with a graphical rep-
resentation of the dynamics of the process given by the generator Ln/n2. Notice
that time is not accelerated in the diffusive scale. To avoid any confusion, the
law of this new process is denoted by νnt . Then, we recover the diffusive time
accelerated process by:

µnt = νntn2 .

In the following, we always respect the decomposition of the space Rn×Rn, where
the first n components stand for r and the last n components stand for p. All
vectors and matrices are written according to this decomposition.

Let ν be a measure on Rn×Rn. We denote by m ∈ R2n its mean vector and by
C ∈ M2n(R) its covariance matrix. We also denote by tZ the real transpose of
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the matrix Z. There exist ρ := ν[r] ∈ Rn , π := ν[p] ∈ Rn and U, V, Z ∈Mn(R)
such that

m = (ρ, π) ∈ R2n and C =

(
U tZ
Z V

)
∈ S2n(R). (1.5)

Thanks to the trivial convexity inequality (a+ b)k 6 2k−1(ak + bk) (for a, b > 0),
instead of proving (1.4) we can show

νnt

[∑
i∈Tn

p2ki

]
6 (Ck)k × n and νnt

[∑
i∈Tn

r2ki

]
6 (Ck)k × n. (1.6)

Start of the proof of Theorem 1.1. (i) Poisson Process and Gaussian Measures –
We start by giving a graphical representation of the process, based on the Harris
description. Let us define the antisymmetric (2n, 2n)-matrix, written by blocks
as

A :=

 0n An

−tAn 0n

 where An :=


1 −1

−1
. . .
. . . . . .
−1 1

 ∈Mn(R).

Above 0n is the null (n, n)-matrix, and empty spaces in An are filled with 0. Let
{Ni}i∈Tn be a sequence of independent standard Poisson processes of intensity γ.
At time 0 the process has an initial state (r,p)(0). Let

T1 = inf
t>0

{
there exists i ∈ {1, . . . , n} such that Ni(t) = 1

}
and i1 the site where the infimum is achieved. During the interval [0, T1), the
process (not accelerated in time) follows the deterministic evolution given by the
generator An. More precisely, during the time interval [0, T1), (r,p)(t) follows
the evolution given by the system:

y′(t) = A · y(t). (1.7)

At time T1, the momentum pi1 is flipped, and gives a new configuration. Then,
the system starts again with the deterministic evolution up to the time of the
next flip, and so on. Let ξ := (i1, T1), . . . , (iq, Tq), . . . be the sequence of sites
and ordered times for which we have a flip, and let us denote its law by P.
Conditionally to ξ, the evolution is deterministic, and the state of the process
(r,p)ξ(t) is given for all t ∈ [Tq, Tq+1) by

(r,p)ξ(t) = e(t−Tq)A ◦ Fiq ◦ e(Tq−Tq−1)A ◦ Fiq−1 ◦ · · · ◦ eT1A(r,p)(0) (1.8)

where Fi is the map (r,p) 7→ (r,pi). If initially the process starts from (r,p)(0)
which is distributed according to a Gaussian measure νn0 , then (r,p)ξ(t) is dis-

tributed according to a Gaussian measure νξt . Finally, the density νnt is given by
the convex combination

νnt (·) =

∫
νξt (·) dP(ξ). (1.9)
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Moreover, we are able to write the evolution of the mean vector mξ
t and the co-

variance matrix Cξ
t of νξt . During the interval [0, T1), mt follows the evolution

given by system (1.7). At time T1, the component mi1+n = πi1 (which corre-
sponds to the mean of pi1) is flipped, and gives a new mean vector. Then, the
deterministic evolution goes on up to the time of the next flip, and so on.

In the same way, during the interval [0, T1), Ct follows the evolution given by
the (matrix) system:

M ′(t) = AM(t)−M(t)A. (1.10)

At time T1, all the components Ci1+n,j and Ci,i1+n when i, j 6= i1 + n are flipped
and the matrix CT1 becomes Σi1 ·CT1 · tΣi1 , where Σi is defined as

Σi :=

(
In 0n
0n In − 2Ei,i

)
,

and so on up to the next flip. Above, In is the (n, n)-identity matrix, and Ei,i
is the (n, n)-matrix composed by the elements (δi,kδi,`)16k,`6n where δi,k is the
Kronecker delta function. More precisely,

Cξ
t = e(t−Tq)A · Σiq · · ·Σi1 · eT1A ·C0 · e−T1A · tΣi1 · · · tΣiqe

−(t−Tq)A. (1.11)

Finally, the density νnt is equal to

νnt (·) =

∫
νξt (·) dP(ξ) =

∫
Gm,C(·) dθtm0,C0

(m,C), (1.12)

where Gm,C(·) denotes the Gaussian measure on (R × R)n with mean m and
covariance matrix C, and θtm0,C0

(·, ·) is the law of the random variable (mt,Ct),
knowing that the Markov process (mt,Ct)t>0 described by the graphical repre-
sentation above starts from (m0,C0). We denote by Pm0,C0 the law of the Markov
process (mt,Ct)t>0, and by Em0,C0 the corresponding expectation. Observe that
we have, from (1.12),

νnt [pi] =

∫
Gm,C(pi) dθ

t
m0,C0

(m,C) =

∫
πi dθ

t
m0,C0

(m,C), (1.13)

νnt [ri] =

∫
Gm,C(ri) dθ

t
m0,C0

(m,C) =

∫
ρi dθ

t
m0,C0

(m,C). (1.14)

Notice that we conveniently denote by Gm,C(f) the mean of the function f with
respect to the Gaussian measure Gm,C. Therefore, we rewrite (1.6) as

νnt

[∑
i∈Tn

{
p2ki + r2ki

}]
=

∫ ∑
i∈Tn

Gm,C

(
p2ki + r2ki

)
dθtm0,C0

(m,C).

(ii) Control of the diagonal of the covariance matrix – First, let us recenter
and use the previous convexity inequality: notice that

Gm,C

(
r2ki
)

= Gm,C

(
[ri − ρi + ρi]

2k
)
6 22k−1 {Gm,C

(
[ri − ρi]2k

)
+Gm,C

(
ρ2ki
)}
.
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Remarkably, we can express all the centered moments of a Gaussian random
variable as functions of the variance only:

Gm,C

(
[ri − ρi]2k

)
=

(2k)!

k!2k
Gm,C

(
[ri − ρi]2

)k
6 (Ck)k

(
Ci,i
)k

(t),

where C > 0 is a positive constant. Therefore, after repeating the same argument
for Gm,C

(
p2ki
)

we are reduced to control, for any sequence ξ,∑
i

(Cξ
i,i)

k(t) (1.15)

and besides ∑
i∈Tn

Gm,C

(
π2k
i

)
(t),

∑
i∈Tn

Gm,C

(
ρ2ki
)
(t). (1.16)

In the following we treat separately (1.15) and (1.16). In [3] only (1.15) has been
treated.

(iii) Control of (1.15) using the trace – Let us fix once for all a sequence
ξ a sequence of sites and ordered times for which we have a flip. The matrix
Ct := Cξ

t is symmetric, hence diagonalizable, and after denoting its eigenvalues
by λ1, ..., λ2n, we can write

Tr([Ct]
k) =

∑
i

λki .

We have now to compare
∑

i λ
k
i with

∑
i[Ci,i]

k(t). If we denote by Pt the orthogo-
nal matrix of the eigenvectors of Ct, then we get Ct = (Pt)

∗ ·D ·Pt, where D is the
diagonal matrix with entries λ1, ..., λ2n. Let us denote by (Pi,j) the components
of Pt. Then,

[Ci,i]
k(t) =

(∑
j,`

P ∗i,jDj,`P`,i

)k
=

(∑
j

P ∗i,jλjPj,i

)k
=

(∑
j

P ∗i,jPj,i · λj
)k
.

Since P is an orthogonal matrix,
∑

j P
∗
i,jPj,i = 1. Consequently, from the standard

convexity inequality we obtain∑
i

[Ci,i]
k(t) 6

∑
i

∑
j

P ∗i,jPj,iλ
k
j 6

∑
j

λkj = Tr([Ct]
k).

Since C0 and Ct are similar (see (1.11)), we have:

Tr([Ct]
k) = Tr(Ck

0 ) =
∑
i∈Tn

1

βk0 (i/n)
+

{
1

β0(i/n)
+
(λ0
β0

)2
(i/n)

}k
6 Cn,

for some constant C > 0. Therefore, the same inequality holds for
∑

i[Ci,i]
k(t).

(iv) Control of (1.16) in the diffusive time scale – In the following it will be
convenient to recenter both quantities∑

i∈Tn

Gm,C

(
π2k
i

)
(tn2) and

∑
i∈Tn

Gm,C

(
ρ2ki
)
(tn2).
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Therefore, we denote

pi(t) := νnt (pi),

ri(t) := νnt (ri).

By adding and substracting these two terms, and using the same convexity in-
equality as before, it is sufficient to control∑

i∈Tn

Gm,C

(
(πi − pi)

2k
)
(tn2) and

∑
i∈Tn

Gm,C

(
(ρi − ri)

2k
)
(tn2), (1.17)

and besides ∑
i∈Tn

p2ki (tn2) and
∑
i∈Tn

r2ki (tn2). (1.18)

From (1.13) and (1.14), the variables πi − pi and ρi − ri are centered under the
law Gm,C. We start with (1.18): the sequences {pi} and {ri} are completely
deterministic and satisfy the following system of differential equations: for i ∈ Tn
and t > 0, {

p′i = ri+1 − ri − 2γ pi,

r′i = pi − pi−1,

Denote by P the column vector t(p1, . . . , pn, p
′
1, . . . , p

′
n). It is not difficult to see

that P(t) follows a first order ordinary differential equation written as

y′(t) = M · y(t), (1.19)

where M is the following constant block matrix:

M :=

0n In

D −2γIn

 where D :=


−2 1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 1 −2

 .

Above In is the (n, n)-identity matrix. One can easily check that the column
vector R :=t (r1, . . . , rn, r

′
1, . . . , r

′
n) follows the same first order ordinary differen-

tial equation. The matrix D represents the discrete Laplacian operator with
mixed periodic boundary conditions. The characteristic polynomial of M is
χ(X) := det(XI2n−M) = det(D−X(X+2γ)In). In other words, the eigenvalues
of M are exactly equal to the solutions of

x(x+ 2γ) = −λ,

where −λ takes any eigenvalue of D. It is well-known that the eigenvalues of D
are all negatives. Precisely,

(i) if γ2 > λ, then the two solutions are real negative numbers written as

x± = −γ ±
√
γ2 − λ < 0,
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(ii) if γ2 < λ, then the two solutions are complex numbers written as

x± = −γ ± i
√
−γ2 + λ,

(iii) if γ2 = λ, then −γ is the unique solution.

As a consequence, every eigenvalue of M has a negative real part, and the system
(1.19) is hyperbolic. The proof would be done if one could show that there exists
a constant C > 0 (that does not depend on n) such that, for any t > 0,∥∥ exp(tn2M) P(0)

∥∥ 6 C
∥∥P(0)

∥∥, (1.20)

where ‖·‖ is the standard 2k-norm. Even if the system is exponentially stable, this
is not enough to conclude, because we need to control the behavior of this stability
when the dimension n of the system becomes very large. This is explained in more
details in Subsection 1.2.

However, the result may be obtained in a different way: the system is com-
pletely solvable with Fourier transforms. See Subsection 1.3.

Assume that we are able to prove (1.20). We are interested in the quantity∑
i p

2k
i (tn2), which is less or equal than the following norm

∥∥P(tn2)
∥∥
2k

:=

(∑
i∈Tn

{
|pi(tn2)|2k + |p′i(tn2)|2k

}) 1
2k

.

Observe that the initial condition writes∥∥P(0)
∥∥2k
2k

=
∑
j∈Tn

∣∣∣λ0
β0

(j + 1

n

)
− λ0
β0

( j
n

)∣∣∣2k.
Since the initial profiles are smooth, it is clear that ‖P(0)‖2k2k is of order n1−2k.
Therefore, we proved that there exists a constant C > 0 such that∑

i∈Tn

|pi(tn2)|2k 6
∥∥P(tn2)

∥∥2k
2k
6 Cn.

The same argument is valid for R(tn2), since the initial condition reads∥∥R(0)
∥∥2k
2k

=
∑
j∈Tn

∣∣∣λ0
β0

( j
n

)∣∣∣2k,
and ‖R(0)

∥∥2k
2k

is of order n (instead of n1−2k). This is enough to conclude.

(v) Control of (1.17) – The last bounds would be obtained in the same way,
as we quickly explain here. Let us introduce a new notation, which consists in
rewriting the configurations in a different order: let

ω2i := πi − pi,

ω2i+1 := ρi − ri,
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for i ∈ {0, ..., n − 1}. Notice that ωi+2n = ωi. With this notation, the quantity
(1.17) that we need to control becomes∑

i∈T2n

Gm,C

(
ω2k
i

)
(tn2).

The idea is to write the time evolution dynamics of Gm,C

(
ω2k
i

)
in a convenient

way such that a dissipative system arises. We now write in detail what happens
for small values of k.

a) – Case k = 2. For this case, we will have to consider all terms on the form

Gm,C

(
ωjωkω`ωm

)
. (1.21)

Let us define the function c : {j 6 k 6 ` 6 m} → N as

(1) c(j, k, `,m) = 0 if one of the following conditions is satisfied:

(i) j = k and ` = m,

(ii) j = k and `,m are odd,

(iii) k = ` and j,m are odd,

(iv) k = m and j, k are odd,

(2) otherwise, c(j, k, `,m) is the number of distinct even integers in {j, k, `,m}
(it can takes any value among {0, 1, 2, 3, 4}).

Notice the property:

c(j, k, `,m) = c(j + 2p, k + 2p, `+ 2p,m+ 2p), p ∈ N.
Let (j, k, `,m) ∈ T2n and define the operator T as follows:

T
(
Gm,C

(
ωjωkω`ωm

))
=Gm,C

(
(ωj+1 − ωj−1)ωkω`ωm

)
+Gm,C

(
ωj(ωk+1 − ωk−1)ω`ωm

)
+Gm,C

(
ωjωk(ω`+1 − ω`−1)ωm

)
+Gm,C

(
ωjωkω`(ωm+1 − ωm−1)

)
.

Without loss of generality we can assume j 6 k 6 ` 6 m, and write the time
derivative of (1.21) as

d

dt

(
Gm,C

(
ωjωkω`ωm

))
=
(
T− 2γc(j, k, `,m)Id

)(
Gm,C

(
ωjωkω`ωm

))
.

Let us denote, for k, `,m ∈ T2n,

SO(k, `,m) :=
n−1∑
j=0

Gm,C

(
ω2j+1ω2j+1+kω2j+1+`ω2j+1+m

)
,

SE(k, `,m) :=
n−1∑
j=0

Gm,C

(
ω2jω2j+kω2j+`ω2j+m

)
.

At initial time, we can verify that: for all k, `,m ∈ T2n,

SO(k, `,m)(0) 6 Cn, SE(k, `,m)(0) 6 Cn.
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Then, without loss of generality we can assume k 6 ` 6 m, and from above we
have

d

dt
SO(k, `,m) = SE(k − 1, `− 1,m− 1)− SE(k + 1, `+ 1,m+ 1)

+ SO(k + 1, `,m)− SO(k − 1, `,m)

+ SO(k, `+ 1,m)− SO(k − 1, `,m)

+ SO(k, `,m+ 1)− SO(k, `,m− 1)

− 2γc(1, k + 1, `+ 1,m+ 1)SO(k, `,m),

d

dt
SE(k, `,m) = SO(k − 1, `− 1,m− 1)− SO(k + 1, `+ 1,m+ 1)

+ SE(k + 1, `,m)− SE(k − 1, `,m)

+ SE(k, `+ 1,m)− SE(k − 1, `,m)

+ SE(k, `,m+ 1)− SE(k, `,m− 1)

− 2γc(0, k, `,m)SE(k, `,m).

With our notations, (1.17) becomes∑
i∈Tn

Gm,C

(
(πi − pi)

4
)
(t) = SE(0, 0, 0)(t)∑

i∈Tn

Gm,C

(
(ρi − ri)

4
)
(t) = SO(0, 0, 0)(t).

A simple computation shows that

d

dt

[∑
k,`,m

S2
E(k, `,m) + S2

0(k, `,m)

]
(1.22)

= −2γ
∑
k,`,m

{
c(1, k + 1, `+ 1,m+ 1)S2

O(k, `,m) + c(0, k, `,m)S2
E(k, `,m)

}
< 0,

so that we have found a Lyapunov function which ensures that the equilibrium
value 0 is asymptotically stable. This is not enough to conclude: this implies
that, for all t > 0, all k, `,m ∈ T2n,∣∣SE(k, `,m)(t)

∣∣ 6 Cn3/2,
∣∣SO(k, `,m)(t)

∣∣ 6 Cn3/2.

We have to go into further investigation: let us denote by S ∈ (RT3
2n ×RT3

2n) the
vector with components {SE(k, `,m), SO(k, `,m) ; (k, `,m) ∈ T3

2n}. Then, notice
that one can rewrite

dS

dt
= (A− 2γD) · S,

where D is the diagonal matrix with diagonal elements

{c(0, k, `,m), c(1, k + 1, `+ 1,m+ 1) ; (k, `,m) ∈ T3
2n}
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which are all non-negative, and can be zero. Straightforward computations similar
to (1.22) show that A is skew-symmetric. Therefore, the eigenvalues of A are
pure imaginary.

More precisely, let us consider the standard complexification of RT3
2n , endowed

with the Hermitian structure: we denote the inner product by 〈·〉 and its asso-

ciated norm by ‖ · ‖2. Let v ∈ CT3
2n be a complex eigenvector associated to the

complex eigenvalue λ ∈ C such that ‖v‖ = 1. We have

(A− 2γD)v = λv, (1.23)

and therefore, after multiplying by v we get

〈Av,v〉 = λ+ 2γ〈Dv,v〉.

In the same way, we have

〈v,Av〉 = λ+ 2γ〈v,Dv〉.

Since A is skew-symmetric and then 〈Av,v〉 = −〈v,Av〉, we deduce that

Re(λ) = −2γ Re
(
〈Dv,v〉

)
.

Since D is diagonal with non-negative values, 〈Dv,v〉 is real and non-negative.
It remains to show that this can not be zero. Assume that

〈Dv,v〉 =
∑
i

di,i|vi|2 = 0.

This implies that vi = 0 for all indexes i such that di,i > 0, namely v ∈ Ker(D).
In (1.23) this gives Av = λv, hence Av ∈ Ker(D). This is not possible, and
follows from an easy observation: by definition, Ker(D) is generated by

SE(0, 2`, 2`), SE(2`, 0, `), SE(2`, 2`, 0)

SE(0, 2`+ 1, 2m+ 1), SE(2`+ 1, 0, 2m+ 1), SE(2`+ 1, 2m+ 1, 0)

SO(2k, 2`+ 1, 2`+ 1), SO(2`+ 1, 2k, 2`+ 1), SO(2`+ 1, 2`+ 1, 2k)

SO(2k, 2`, 2m), k, `,m ∈ T2n.

Applying operator A to each of these elements gives extra elements which are
not in Ker(D). As a consequence,

Re(λ) = −2γ Re
(
〈Dv,v〉

)
> −2γmin

i
{di,i ; di,i > 0} = −2γ.

In particular, the real parts of the eigenvalues are bounded from below by a
constant which does not depend on n. We are reduced to the same question as
in the previous case. The key point is to control the behavior with respect to n
of a sequence of n-dimensional hyperbolic systems. The next subsection gives a
few elements in this direction.

�
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1.2. Exponential stability and Jordan normal form. We state a property
which would be the key point in the previous argument, but is absolutely not
obvious. Our focus is on the stability of n-dimensional linear systems, when n
is very large. It is already well-known that internal stability of linear systems
depends on the structural properties of the state matrix A ∈ Rn×n that governs
the dynamics via ẋ = Ax. For instance, exponential stability ensures that the
state x(t) remains within an arbitrarily small neighborhood of the initial state
whenever the time span is sufficiently large: there exists c, λ > 0 such that

‖x(t)‖ 6 ce−λt‖x(0)‖, (1.24)

where ‖ · ‖ denotes the usual euclidean norm in Rn. This property is satisfied if
and only if all eigenvalues of A have negative real parts (see for example [2]).

Let us consider a sequence of n-dimensional linear systems, given by {An}n∈N,
which are all exponentially stable. Both constants c, λ in (1.24) depend a priori
on n. What we need is a bound that does not depend on n, even if we have to
pay the price of the exponential decay. With the diffusion of energy in mind, we
focus our analysis on the diffusive time scale tn2.

Lemma 1.2 (not proved!). Let {An}n∈N be a sequence of matrices in Rn×n. We

denote by
{
a
(n)
i,j

}
the coefficients of An, and we assume that:

(i) there exists asup > 0 such that, for any n ∈ N, i, j ∈ {1, . . . , n},

|a(n)i,j | 6 asup,

(ii) all eigenvalues of An have negative real parts, and there exists γ0 > 0 such
that, for any n ∈ N, and any eigenvalue λ of An

Re(λ) 6 −γ0.

Let xn ∈ Rn be the solution to the linear differential equation

ẋn(t) = Anxn(t). (1.25)

There exists C > 0 such that, for all n ∈ N,∥∥xn(tn2)
∥∥ 6 C

∥∥xn(0)
∥∥,

where ‖ · ‖ is the norm for which we have a good control at initial time, namely:

‖xn(0)‖ 6 Cn.

Remark 1.3. As we have seen in the previous sections, for (1.17) it should be
the supremum norm ‖ · ‖∞.

Try of proof. Step 1: Jordan canonical form.
We first recall some well-known facts coming from Linear Algebra: there exists

an invertible matrix Pn ∈ Cn×n such that P−1n AnPn = Jn ∈ Cn×n has the form

Jn =

J1 . . .
Jk


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where each block Jk has the form

Jk =


λk 1

λk
. . .
. . . 1

λk

 .

In our case, every λk has negative real part, and for any n ∈ N and any k,
Re(λk) 6 −γ0. The solution to (1.25) writes

xn(tn2) = Pn exp(tn2Jn)P−1n · xn(0).

Therefore, ∥∥xn(tn2)
∥∥ 6 ∥∥Pn

∥∥∥∥P−1n ∥∥∥∥ exp(tn2Jn)
∥∥ · ∥∥xn(0)

∥∥.
The number κ(P) := ‖P‖‖P−1‖ is the condition number and can be arbitrarily
large, if P is “almost” singular. Some remarks:

(1) If ‖ · ‖ is the usual euclidean norm, then κ(P) = σmax(P)/σmin(P), where
σmax(P) and σmin(P) are maximal and minimal singular values of P, re-
spectively. It is known for example (see [1]) that

κ(P) 6
2

| det(P)|

(
‖P‖F√

n

)n/2
,

where ‖·‖F is the Frobenius norm, whose squared is the sum of the squared
coefficients.

The problem is that det(P) can be arbitrarily small.
(2) The norm

∥∥ exp(TJn)
∥∥ is not hard to compute, for example in the case of

the supremum norm:∥∥ exp(TJn)
∥∥
∞ =

n−1∑
k=0

T k

k!
× exp(−Tγ0) 6 exp

(
T (1 + γ0)

)
.

Therefore, for T = tn2 it can be made exponentially small (of order
exp(−cn2)) if γ0 > 1 (this can be ensured by increased the value of the
flip intensity γ).

We need ‖P‖∞‖P−1‖∞ to be of order less than exp(cn2).
(3) Since

∥∥ exp(tn2Jn)
∥∥
∞ can be made of order exp(−cn2) with c > 0 (thanks

to the fact that the eigenvalues have negative real parts which are bounded
from above by a constant independent on n), we are not afraid of using
other norms than ‖ · ‖∞, since the standard p-norms are equivalent with
constants that are polynomial in n:

‖ · ‖∞ 6 ‖ · ‖p 6 n1/p‖ · ‖∞.

Conclusion: We need more precise information on the matrix Pn which rep-
resents the generalized eigenvectors of the matrix An.

�
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1.3. Fourier transforms. The control of (1.18) may be obtained through Fourier
transforms. Let us come back to the dynamical system written in terms of po-
sitions qx and velocities px. Let us introduce ω2(k) = 4 sin2(πk) the dispersion
relation.

Let us denote by q̂(k) (resp. p̂(k)) the Fourier transforms of the averages
defined for k ∈ T as

q̂(t, k) =
∑
x∈Tn

µnt [qx] exp(−2iπkx), p̂(t, k) =
∑
x∈Tn

µnt [px] exp(−2iπkx).

The time-evolution of the latter is given by

dp̂

dt
(t, k) = −2γn2 p̂(t, k)− n2ω2(k) q̂(t, k),

dq̂

dt
(t, k) = n2 p̂(t, k),

with the initial condition, for k ∈ T, which reads as

p̂(0, k) = 0, ω(k)q̂(0, k) = −ieiπk sgn(k)
∑
x∈Tn

r0

(x
n

)
e−2iπxk,

where sgn(k) = 1 if k > 0 and −1 otherwise. This system can be explicitly solved
for γ > 2 as (denoting ω2 = ω2(k) for the sake of clarity)

p̂(t, k) = − ω2 q̂(0, k)

2
√
γ2 − ω2

e−γn
2t
(
en

2t
√
γ2−ω2 − e−n2t

√
γ2−ω2

)
q̂(t, k) =

q̂(0, k)

2
√
γ2 − ω2

e−γn
2t
((
γ +

√
γ2 − ω2

)
en

2t
√
γ2−ω2

−
(
γ −

√
γ2 − ω2

)
e−n

2t
√
γ2−ω2

)
.

Notice that, when γ � 1,

q̂(t, k) ' q̂(0, k) exp
(
− n2 ω2(k) t

2γ

)
. (1.26)

And we have, for m ∈ N,

∑
x∈Tn

∣∣µnt [qx]
∣∣2m(tn2) =

∑
x∈Tn

∣∣∣∣ ∫
T
q̂(t, k)e2iπkxdk

∣∣∣∣2m.
13



Using the approximate above (1.26) and inequality sin2(πk) > Ck2, we have∑
x∈Tn

∣∣∣∣ ∫
T
q̂(t, k)e2iπkxdk

∣∣∣∣2m =
∑
x∈Tn

∣∣∣∣ ∑
y∈Tn

r0

(y
n

)∫
T
e2iπk(x−y)e−2n

2 t sin2(πk)/γ dk

∣∣∣∣2m
6
∑
x∈Tn

(∑
y∈Tn

r0

(y
n

)∫
T
e−2n

2 t sin2(πk)/γ dk

)2m

6
∑
x∈Tn

(∑
y∈Tn

r0

(y
n

)∫
T
e−Ck

2n2

dk

)2m

6
∑
x∈Tn

(∑
y∈Tn

r0

(y
n

) 1

n

∫
R
e−Cu

2

du

)2m

= O(n).

Notice that this estimate holds only for t > 0, and in the diffusive scale. To
get (1.18) precisely, we need to use carefully the exact expressions above, taking
advantage of the exponential decreasing.
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