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Avant-propos

Introduction
Je vais évoquer ici brièvement les travaux de cette thèse et leur genèse. Une présentation plus

détaillée est donnée dans l’introduction en anglais dans la section suivante.

Dans cette thèse d’habilitation, je présente certains des résultats que j’ai obtenus depuis ma thèse
de doctorat en 2007. Depuis lors, j’ai travaillé sur une variété de sujets en combinatoire énumérative
et algébrique. Je me focalise dans ce manuscrit exclusivement sur des résultats obtenus après 2018,
qui sont nés de l’étude d’un problème particulier en géométrie énumérative.

Commençons par expliquer la genèse de ce travail. Tout a commencé au premier semestre de
2018, alors que j’étais en mission longue à l’Université de Washington (UW) à Seattle dans le groupe
dirigé par la professeure Sara Billey. Alex Woo, de l’Université de l’Idaho, était également là pour le
semestre dans le cadre d’un congé sabbatique. À leur initiative, un groupe de travail sur les variétés
de Hessenberg a démarré dès janvier 2018, auquel participaient régulièrement Sean Griffin, Jake
Levinson, Josh Swanson et Vasu Tewari, tous doctorants ou postdoctorants à l’époque.

Alex Woo a commencé par quelques exposés sur les aspects géométriques et combinatoires de ces
variétés, puis le séminaire s’est concentré sur le calcul de certains coefficients aw. Plus précisément,
w est ici une permutation dans Sn, et aw compte le nombre de points d’intersection de la variété
permutaédrale Permn avec une variété de Schubert Xw générique. Le but était de donner une
formule manifestement positive pour ces nombres.

Initialement le groupe était impliqué au complet, puis Vasu Tewari et moi-même avons finale-
ment collaboré plus spécifiquement après quelques semaines. Nous avons obtenu quelques résultats
préliminaires en avril-mai 2018.

Après avoir quitté Seattle cet été-là, j’ai poursuivi la collaboration avec Vasu – menant in fine
aux travaux de cette habilitation. Nous avons en particulier résolu le problème initial de manière
satisfaisante, en donnant une interprétation combinatoire des nombres aw publiée en 2024. En
travaillant sur le problème pendant ces années, nous sommes tombés sur de nombreuses questions
de combinatoire algébrique qui ont été utiles pour résoudre le problème initial et/ou intéressantes en
elles-mêmes. Plus récemment, avec Hunter Spink, une reformulation d’une partie de notre travail a
conduit à un point de vue nouveau dans l’étude des polynômes quasisymétriques, tout en apportant
un nouvel éclairage sur le problème initial.

Je vais raconter cette histoire dans ce document, qui est structuré en quatre chapitres. Le chapitre
1 rassemble diverses notations et définitions notamment autour des permutations. Nous décrivons
également brièvement la théorie des (P, ω)-partitions de Stanley et des fonctions quasisymétriques;
donnons quelques détails sur comment la cohomologie permet une approche algébrique de certains
problèmes d’intersection; et listons enfin plusieurs propriétés des polynômes de Schubert. Le chapitre
2 est consacré au problème original de géométrie énumérative, et présente deux formules pour aw,
conduisant à plusieurs propriétés de ces nombres ainsi qu’à l’interprétation combinatoire déjà évoquée.
Le chapitre 3 énumère les différentes contributions qui ont émergé lors de la résolution du problème
original: la théorie des P -partitions avec bornes, celle des procédures de stationnement bilatérales,
et enfin une q-déformation de l’approche algébrique originale, menant notamment à l’étude des
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polynômes eulériens mixtes. Enfin, je présente au chapitre 4 une nouvelle approche de la théorie des
polynômes quasisymétriques, soulignant le rôle particulier des polynômes “forêt”.

L’exposition dans ce manuscrit est intentionnellement informelle : les preuves seront au mieux
esquissées, et je me référerai aux publications originales pour les détails.

Remerciements

Je souhaite remercier l’ensemble des membres du jury, en particulier Philippe Biane, Ilse Fischer
et Vic Reiner qui ont accepté de consacrer du temps à la lecture de ce manuscrit.

Je voudrais également remercier toutes les personnes avec qui j’ai eu l’occasion de travailler au
cours des très nombreuses années depuis ma thèse: mes co-auteur.ices (au premier rang desquels
se trouve Vasu Tewari), les collègues mathématicien.ne.s et le personnel administratif d’abord de
l’Université de Vienne, puis de l’Institut Camille Jordan.
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Introduction

I present in this habilitation thesis a part of the results I obtained since my PhD thesis in 2007. I have
worked on a variety of topics in enumerative and algebraic combinatorics since then, but I will focus
in this manuscript exclusively on a series of works obtained post 2018 that stemmed from studying
a particular problem in enumerative geometry.

Let me start by explaining the genesis of this work. In the first semester of 2018, I was hosted at
the University of Washington (UW) in Seattle in the group headed by Prof. Sara Billey. Alex Woo
from the University of Idaho was also there for the semester, on sabbatical, so a working seminar
about Hessenberg varieties was started in January 2018 with –in addition to the three of us– Sean
Griffin, Jake Levinson, Josh Swanson, and Vasu Tewari, all of whom were PhD or postdoctoral
students at the time.

Alex Woo first gave a few lectures on geometric and combinatorial aspects of these varieties, but
the seminar quickly focused on the computation of certain intersection coefficients aw. Explicitly
w is here a permutation in Sn, and aw counts the number of points in the intersection of the
permutahedral variety Permn with a generic Schubert variety Xw; the goal was to find a manifestly
positive rule for these coefficients. While the whole group was involved in the first few weeks, Vasu
Tewari and I focused more specifically in the end, and we obtained some preliminary results around
April-May 2018.

After I left Seattle that summer, the collaboration with Vasu continued, all the way to the time
of writing this very habilitation thesis. We ended up solving satisfyingly the original problem by
giving a combinatorial interpretation for the numbers aw, published in 2024. While working on the
problem, we came up with several contributions to the algebraic combinatorics literature that were
both helpful in solving the problem and interesting on their own, leading to several other articles.
Finally, together with Hunter Spink –who moved to Toronto in 2023, as did Vasu–, a reinterpretation
of some of the earlier work led to a nice breakthrough in the study of quasisymmetric polynomials,
while shedding new light on the original problem.

I will detail many of these results in this document, which is structured in four chapters. Chap-
ter 1 gathers various notations and definitions in particular around permutations. We briefly sketch
Stanley’s theory of (P, ω)-partitions and quasisymmetric functions, give some details about how coho-
mology theory provides an algebraic approach to certain intersection problems, and finally list several
properties of Schubert polynomials. Chapter 2 is devoted to the original problem in enumerative
geometry, presents two formulas for aw as well, leading to several properties of these numbers as well
as the mentioned combinatorial interpretation. Chapter 3 lists various contributions that emerged
while solving the original problem: the theory of flagged P -partitions, bilateral parking procedures,
and a q-deformation of the original algebraic approach, leading to remixed Eulerian numbers. Lastly,
I present in Chapter 4 a new approach to the theory of quasisymmetric polynomials, highlighting the
special role of forest polynomials parallel to the case of Schubert polynomials

The exposition in this manuscript is intentionally informal. I will either sketch proofs or refer to the
original publications, namely [1],[2],[3],[5],[6],[9],[10],[11],[12],[15],[16] in my list of publications.
I will stress how various ideas and structures can be found in several places, and how we understand
their interconnections.
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Our plan is not to tell all of the results in the above papers either, as we try to keep a certain focus
in this manuscript. We have thus prioritized the results that connect to the original problem regarding
the coefficients aw. Also, as we want to deal mostly with enumerative and algebraic combinatorics,
we will make almost no mention of our results of a more geometric nature: this concerns most of
[1], as well as some sections of [10] and [12] for instance.

We now present the main results from each chapter. Many of the definitions of the various
notions and structures are found in the main body of this manuscript.

Chapter 2: Schubert coefficients for the permutahedral variety
The results presented here come from the works [5],[10] and [15], in collaboration with Vasu Tewari.

Let us give some motivation for the original problem. Hessenberg varieties1 are a relatively recent
family of subvarieties of the flag variety Fln with inspiration from numerical analysis [DMPS92].
Recall that Fln is the space of complete flags

V• = (V0 = {0} ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = Cn),

where each Vi is a linear subspace of Cn of dimension i; Hessenberg varieties will be defined in
Section 2.1 Their study has also revealed a rich interplay between geometry, representation theory
and combinatorics [AT10, HT17, Tym07], and the last decade has witnessed increasing interest
with impetus coming from the study of chromatic quasisymmetric functions and its ramifications for
the Stanley-Stembridge conjecture [HP19, SW12, SW16] (recently proved by Hikita [Hik24]). The
study of the cohomology rings of Hessenberg varieties has been linked to the study of hyperplane
arrangements and representations of the symmetric group [AHM19, AHM+, BC18, HHMP19]. We
refer the reader to Abe and Horiguchi’s e survey article [AH20] and references therein for more details
on mathematics surrounding Hessenberg varieties.

The permutahedral variety Permn plays a special role in the theory. It is the lowest dimensional
of the (regular, semisimple, irreducible) Hessenberg varieties, and is in fact naturally contained in all
of them. The permutahedral variety is a smooth projective complex toric variety of dimension n− 1:
it is determined by the braid fan, the normal fan of the usual permutahedron of dimension n− 1.

As it is a subvariety of Fln, its cohomology class [Permn] ∈ H∗(Fln) expands in terms of Schubert
classes [Xw] as follows:

[Permn] =
∑

w∈S′
n

aw[Xw],

where S′
n denotes the symmetric group on n letters with length n− 1.

The coefficients aw are nonnegative integers as they are intersection numbers. We use two
different formulas to study them, each one based on results in algebraic geometry.

The first formula is (2.2.1) which follows from work of Klyachko [Kly85]:

aw =
∑

i∈Red(w)

Ac(i)
(n− 1)! .

Here the numbers Ac are mixed Eulerian numbers, and these are known to be positive integers.
It follows immediately from this formula that the aw are positive – but not that they are integers
because of the division by (n− 1)!.

However, this formula allows us to derive several properties of aw:
• The symmetry aw = aw−1 , cf. Corollary 2.2.2.
1These have been defined in all Lie types, we focus here only on type A.
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• Summation properties, see Propositions 2.2.3 and 2.2.4.
• A combinatorial interpretation for “vexillary” permutations (Proposition 2.2.5).

To obtain a general combinatorial interpretation, we use a second formula (2.1.5) which follows
from work of Anderson and Tymoczko [AT10]:

aw =
〈
Sw(x1, . . . , xn)

〉
n
.

Here Sw is a Schubert polynomial, while
〈
·
〉

n
is a certain linear form called divided symmetrization,

see (2.1.4). From this formula we will be able to obtain the following result. There is a certain
parking procedure Ω for words over Z defined in Section 2.3.2, which selects certain words to be
Ω-parking, and for which we have:
Theorem A (Theorem 2.3.4)

Let w ∈ S′
n. Then aw is the number of reduced words of w−1 that are also Ω-parking words.

This is the solution to the original problem from the working seminar in Seattle. There are a
number of ingredients in the proof, which is sketched in Section 2.3.

A key one is the definition of a family of forest polynomials PF . Here F is an indexed forest
(a certain forest of plane binary trees) and PF counts certain labelings of the nodes of F ; see Sec-
tion 2.3.3 for details. The PF form a basis of Q[x1, x2, · · · ], as do Schubert polynomials themselves,
as well as the slide polynomials Fc defined in Chapter 1. Say that a polynomial expands positively
in a basis if all coefficients in the expansion are nonnegative. In the course of the proof, we will
establish the following.
Theorem B

Schubert polynomials expand positively in forest polynomials, and forest polynomials expand
positively into slide polynomials.

Another ingredient in the proof is the ideal QSym+
n ⊂ Q[x1, . . . , xn] generated by quasisymmetric

polynomials with zero constant term, as they interact nicely with the PF and divided symmetrization.
We will come back to these objects in Chapter 4 with a very different point of view.

Chapter 3: Miscellany of combinatorics
The results presented here come from the works [6],[9],[12],[16] written with Vasu Tewari, and [11]
by myself. They are all inspired by the methods and results from Chapter 2.

The first contribution in this chapter, Section 3.1 is somewhat technical, and deals with an
extension of Stanley’s theory of (P, ω)-partitions presented in Chapter 1. Its motivation is to explain,
inside a satisfying framework, the expansion of forest polynomials into slide polynomials used in the
proof of the combinatorial interpretation of aw.

It deals with flagged P -partitions, as studied by Assaf and Bergeron [AB20], but gives a more
streamlined version of the theory. In particular the slide decomposition (3.1.4) will be automatic
following Stanley’s steps.

The second contribution is about a theory of bilateral parking procedures: we give a precise
mathematical definition in Section 3.2. The idea is that we have a word a1a2 · · · ar, representing
cars 1, 2, · · · , r arriving successively, and car i wants to park in the spot ai ∈ Z. In the classical
parking procedure, a car whose desired spot is taken parks in the nearest available spot on the right.

Bilateral parking procedures P allow rules where one can also park in the nearest available spot
on the left. One says a word a1a2 · · · ar is P-parking if cars are parked in spots {1, 2, · · · , r}. We
define a notion of local procedure for which the following result holds:
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Theorem C (Theorem 3.2.3)
Let P be a bilateral, local parking procedure. Then the number of P-parking functions of length
r is given by (r + 1)r−1.

This can be seen as a universal enumeration result: we do not need to know the details of the
procedure to determine the number of parking functions. The procedure Ω mentioned above is such
a procedure, and we give other examples.

The section comprises in addition:
• A natural lift P 7→ P̂ of parking procedures to parking correspondences. There is a map

Ω 7→ Ω• used in the proof of Theorem A which has this form.
• A probabilistic version of bilateral procedures. In particular we consider the procedure where

cars perform a biased random walk until they find an empty spot. The corresponding probability
of a word to be parking under this procedure leads to the definition of the remixed Eulerian
numbers Ac(q), a q-deformation of the Ac.

The third and last contribution is about a q-analogue of the algebraic notions encountered in
Chapter 2, which lead to the two formulas for aw stated above: behind the first formula is a certain
Klyachko algebra that we deform into a new q-Klyachko algebra; and the divided symmetrization of
the second formula is replaced by a q-divided symmetrization.

We then show that the connection between these two notions for q = 1 (illustrated by the
existence of the two formulas for aw) has a q-analogue, which we state in Theorem 3.3.2.

This connection is proved by finding several alternative definitions for the remixed Eulerian num-
bers Ac(q). These turn out to be polynomials with pleasing properties:
Theorem D (Theorem 3.3.5)

The remixed Eulerian numbers Ac(q) are polynomials in N[q], whose coefficients form a symmetric
unimodal sequence.

We emphasize also several aspects of the classical q-hit numbers, which turn out to be a natural
subfamily of Ac(q).

Chapter 4: A new approach to quasisymmetric polynomials
The results presented here come from the works [1],[2],[3] in collaboration with Hunter Spink and
Vasu Tewari.

We begin by defining operators Ri and Ti on Q[x1, x2, . . .]: Ri is the substitution Rif =
f(x1, . . . , xi−1, 0, xi, xi+1, . . .) while Tif = Ri+1f−Rif

xi
, that is,

Tif(x1, x2, . . .) = f(x1, . . . , xi−1, xi, 0, xi+1, . . .) − f(x1, . . . , xi−1, 0, xi, xi+1, . . .)
xi

.

These are the quasisymmetric divided differences, from which we will build, in the main Sec-
tion 4.1, a theory that parallels the classical one for divided differences recalled in Chapter 1.4.

We show first that f ∈ QSymn if and only if Tif = 0 for i = 1, . . . , n − 1. We then consider
composites of the Ti, and show that they have the form TF for F an indexed forest as in Chapter 2.
It is associated with a monoid structure on Forest, from which one is led to define a set LTer(F )
and certain trimmed forests F/i for i ∈ LTer(F ). The forest polynomials come up naturally:
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Theorem E (Theorem 4.1.6)
The family (PF )F with F ∈ Forest is the unique family of homogeneous polynomials satisfying
P∅ = 1 and, for any i > 0 and F ∈ Forest,

TiPF =
{

PF/i if i ∈ LTer(F );
0 otherwise.

(0.0.1)

This is an analogue of Theorem 1.4.1 for Schubert polynomials. We have then the following com-
plementary theorem, in which Forestn ⊂ Forest are certain subsets with bounded support.
Theorem F (Theorem 4.1.7)

Let B ⊂ Forest. The forest polynomials (PF )F ∈B form a basis of
a) Q[x1, x2, . . .] when B = Forest.
b) Q[x1, . . . , xn] when B consists of forests F with LTer(F ) ⊂ {1, . . . , n}.
c) QSym+

n when B consists of forests F with LTer(F ) ⊂ {1, . . . , n} and F /∈ Forestn.
d) The quotient space QSCoinvn := Poln /QSym+

n when B = Forestn.

This is an analogue of Theorems 1.4.2 for Schubert polynomials.

We give three applications of this theory in Section 4.2: a method to extract coefficients in the
basis of fundamental quasisymmetric polynomials; a proof of positivity for several expansions in the
forest basis (related to Theorem B); and finally we come back to aw, and explain a connection with
divided symmetrization that allows one to give a combinatorial proof of aw > 0.

In Section 4.3, the last one of this manuscript, we want to understand the parallel between
Theorem E and F, and their Schubert polynomial analogues. The setup is quite involved and we will
be brief here.

We introduce the notion of a divided difference pair (X,M), which describes a sequence of
operators Xi and a monoid of relations that they satisfy under compositions. We then want to have
conditions to ensure the existence of a basis of polynomials dual to this setting.

A key idea is the notion of creation operators Yi that give some pseudo-inverse to the Xi, and
allow one to construct explicitly such a dual basis, see Theorem 4.3.3. Applied to the classical
case of Schubert polynomials, we obtain in particular a new manifestly positive formula for these
polynomials; we also sketch how this is related to the classical pipe dream expansion.
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Chapter 1

Preliminaries

Let us fix some notations and classical combinatorial structures.
We let N = {0, 1, 2, . . .} denote the set of nonnegative integers, and Z>0 = {1, 2, . . .} the set of

positive integers. We often write [a, b] for {a, a+ 1, . . . , b} and [k] = [1, k]. Let x+ denote the set
of variables {xi | i ∈ Z>0}. We let Pol = Q[x+] be the space of polynomials in these variables, and
Poln = Q[x1, . . . , xn] its subspace of polynomials in n variables.

Let Codes denote the set of sequences c = (c1, c2, . . . ) of nonnegative integers where only
finitely many entries are nonzero; these are sometimes known as weak compositions, or N-vectors.
Let Codesn be the subset where ci = 0 for i > n. We will write |c| = c1 + c2 + · · · ∈ N. A
composition α = (α1, . . . , αk) is a sequence in Z>0. We write α � N if

∑
i αi = N and say that α

is a composition of N . A partition λ = (λ1, . . . , λk) is a weakly decreasing sequence in Z>0. We
write λ ` N if

∑
i λi = N and say that λ is partition of N .

1.1 Permutations
We denote by Sn the group of permutations of {1, . . . , n}. We usually write an element w of Sn

in one line notation, that is, as the word w(1)w(2) · · ·w(n). The permutation wn
o is the element

n(n− 1) · · · 21. We write simply wo if n is clear from the context.
Descents: An index 1 ≤ i < n is a descent of w ∈ Sn if w(i) > w(i+ 1). The set of such indices is
the descent set Des(w) ⊆ [n− 1] of w. Given a subset S ⊆ [n− 1], define βn(S) to be the number
of permutations w ∈ Sn such that Des(w) = S.
Example 1.1.1

If n = 4 and S = {1, 3}, one has β4(S) = |{2143, 3142, 4132, 3241, 4231}| = 5.

A permutation is m-Grassmannian if it is the identity or has a unique descent m. Equivalently,
w is m-Grassmannian if Des(w) ⊆ {m}.
Code and length: The (Lehmer) code lcode(w) of a permutation w ∈ Sn is the sequence
(c1, c2, . . . , cn) given by ci = |{j > i | w(j) > w(i)}|. The map w 7→ lcode(w) is a bijection
from Sn to the set Cn := {(c1, c2, . . . , cn) | 0 ≤ ci ≤ n− i, 1 ≤ i ≤ n}. The shape λ(w) is the par-
tition obtained by rearranging the nonzero elements of the code in nonincreasing order. The length
`(w) of a permutation w ∈ Sn is the number of inversions, i.e. pairs i < j such that w(i) > w(j).
It is therefore equal to c1 + c2 + . . .+ cn if (c1, . . . , cn) is the code of w.

For example, the permutation w = 3165274 ∈ S7 has code c(w) = (2, 0, 3, 2, 0, 1, 0), shape
λ(w) = (3, 2, 2, 1) and length 8.

We also let S′
n be the set of permutations of Sn of length n − 1, which plays a special role in

our story.
Pattern avoidance: Let u ∈ Sk and w ∈ Sn where k ≤ n. An occurrence of the pattern u in w
is a sequence 1 ≤ i1 < · · · < ik ≤ n such that ur < us if and only if wir < wis . We say that w
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avoids the pattern u if it has no occurrence of this pattern and we refer to w as u-avoiding . For
example, 35124 has two occurrences of the pattern 213 at positions 1 < 3 < 5 and 1 < 4 < 5. It is
321-avoiding.
Reduced words: The symmetric group Sn is generated by the elementary transpositions si = (i, i+1)
for i = 1, . . . , n− 1. Given w ∈ Sn, the minimum length of a word si1 · · · sil

in the si’s representing
w is the length `(w) defined above, and such a word is called a reduced expression for w. We denote
by Red(w) the set of all reduced words, where i1 · · · il is a reduced word for w if si1 · · · sil

is a
reduced expression of w. For w = 3241, we have `(w) = 4 and Red(w) = {1231, 1213, 2123}.

With these generators, Sn has a well-known Coxeter presentation given by the relations

s2
i = 1 for i = 1, . . . , n− 1; (1.1.1)

sisj = sjsi if |j − i| > 1 for i, j ≤ n− 1; (1.1.2)
sisi+1si = si+1sisi+1 for i < n− 1. (1.1.3)

The relations (1.1.2) and (1.1.3) are called the commutation relations and braid relations re-
spectively. Note that 321-avoiding permutations can be characterized as fully commutative, i.e. any
two of their reduced expressions can be linked by a series of commutation relations [BJS93].
The limit S∞: One has natural monomorphisms ιn : Sn → Sn+1 given by letting n+ 1 be a fixed
point. One can then consider the direct limit of the groups Sn, denoted by S∞: it is naturally
realized as the set of permutations w of {1, 2, 3, . . .} such that {i | w(i) 6= i} is finite. Any group
Sn thus injects naturally into S∞ by restricting to permutations for which all i > n are fixed points.

Most of the notions we defined above for w ∈ Sn are well defined for S∞. The code can be
naturally extended to w ∈ S∞ by defining ci = |{j > i | w(j) > w(i)}| for all i ≥ 1. It is then a
bijection between S∞ and the set Codes of infinite sequences (ci)i≥1 such that {i | ci > 0} is finite.
The length `(w) is thus also well defined. Occurrences of a pattern u ∈ Sk are well defined in S∞ if
u(k) 6= k. Reduced words extend naturally.

1.2 (P, ω)-partitions and quasisymmetric polynomials

1.2.1 (P, ω)-partitions

In this section (P,≤P ) is a finite poset (partially ordered set). We denote the cover relation by ≺P :
we have x ≺P y if x <P y and no z satisfies x <P z <P y. The Hasse diagram is the graph whose
edges represent cover relations.
Definition 1.2.1

A P -partition is a function f : P → Z>0 such that f(u) ≥ f(v) whenever u ≺P v.

An important example is P = Pλ, a Ferrers poset: here λ ` n is a partition, and Pλ has as
elements the n cells of the Ferrers diagram of λ, where a cell is larger than another one if it is weakly
to its northeast. A Pλ-partition is then a filling of the cells that is weakly increasing from left to
right and top to bottom: this is usually called a reverse plane partition.

More generally, fix in addition a bijective labeling ω : P → {1, . . . ,#P}. The pair (P, ω) then
forms a labeled poset. A (P, ω)-partition is a P -partition f such that f(u) > f(v) whenever u ≺P v
and ω(u) > ω(v). Let Part(P, ω) denote the set of (P, ω)-partitions.
Example 1.2.2

The (P0, ω0)-partitions for the example illustrated in Figure 1.1 are the functions f : P0 → Z>0
that satisfy f(a) ≥ f(b) and f(c) > f(b).

For the poset Pλ, let us pick ωλ by labeling rows from top to bottom, and from left to right in
each row. Then (Pλ, ωλ)-partitions are reverse plane partitions that are strictly increasing down
rows. This is precisely the definition of a semistandard Young tableau of shape λ.
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Figure 1.1. A labeled poset and its two linear extensions.

Now for any (P, ω) one can consider the generating function

K(P,ω) =
∑

f

∏
u∈P

xf(u) (1.2.1)

where the sum is over the set of all (P, ω)-partitions. The generating function K(Pλ,ωλ) is the
generating function of SSYTs of shape λ: one recognizes the Schur function sλ.

Gessel [Ges84] realized that these series have a particular “quasisymmetric” property.
Definition 1.2.3

Let f be a series with bounded degree in the variables xi for i ∈ I where I is an interval in Z. Then
f is quasisymmetric if for any composition α = (α1, . . . , αk) and any subsets {i1 < · · · < ik}
and {j1 < · · · < jk} of I, the coefficients of xα1

i1
· · ·xαk

ik
and xα1

j1
· · ·xαk

jk
in f are the same.

If I = Z>0, we obtain the space QSym of quasisymmetric functions. When I = [n], one obtains
the space of quasisymmetric polynomials QSymn ⊂ Poln. It is then immediate that any series K(P,ω)
is in QSym.

We now come to Stanley’s fundamental decomposition [Sta72, Theorem 6.2]. A linear extension
L of P is a linear ordering of P extending ≤P . Thus a linear extension is in particular a totally
ordered set with P as its underlying set. Let Lin(P ) be the set of linear extensions of P . Then
Stanley showed

Part(P, ω) =
⊔

L∈Lin(P )
Part(L, ω). (1.2.2)

The proof can be done directly, by showing that any (P, ω)-partition is “compatible” with a
unique linear extension. One can also use an induction argument by adding relations to P between
incomparable elements.
Example 1.2.4

For P0 in Figure 1.1, the two linear extensions are shown together with their induced labeling
on the right. Then (1.2.2) says that (P0, ω0)-partitions are the functions f satisfying either
f(a) ≥ f(c) > f(b) or f(c) > f(a) ≥ f(b), as can be directly checked.

Linear extensions for Pλ are equivalent to standard Young tableaux (SYTs).
Stanley’s decomposition (1.2.2) gives the following expansion as an immediate corollary:

K(P,ω) =
∑

L∈Lin(P )
K(L,ω). (1.2.3)

The series K(L,ω) are the fundamental quasisymmetric functions introduced by Gessel [Ges84], as
we now detail. Given r ≥ 0 a subset S of {1, . . . , r − 1}, the fundamental quasisymmetric function
Fr,S ∈ QSym is defined by

Fr,S =
∑

i1≥···≥ir≥1
ij>ij+1 if j∈S

xi1 · · ·xir . (1.2.4)
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Note that we have weakly decreasing indices; while this is not the most usual convention, it will
fit more naturally with some later developments. For instance F3,{1} =

∑
i1>i2≥i3≥1 xi1xi2xi3 and

F3,{2} =
∑

i1≥i2>i3≥1 xi1xi2xi3 .
The Fr,S for r ≥ 0 and S a subset of {1, . . . , r − 1} form a basis of the space QSym.
Let α = (α1, . . . , α`) � r be the composition corresponding to S ⊆ {1, . . . , r − 1} under the

folklore correspondence given by S = {α1, α1 + α2, . . . , α1 + α2 + · · · + α`−1}. We will then use
freely the notation Fα to denote Fr,S . For instance F(1,2) = F3,{1} and F(2,1) = F3,{2}.

Now if L is a chain v1 ≺L · · · ≺L vr with a labeling ω, define Des(ω) = {i ∈ [r − 1] | ω(vi) >
ω(vi+1)}. If we denote the composition of r corresponding to Des(ω) by αω, then it is easily verified
that

K(L,ω) = Fαω .

This shows that the expansion (1.2.3) expresses any K(P,ω) positively in the basis of fundamental
quasisymmetric functions.
Example 1.2.5

For the poset in Figure 1.1, we get the expansion K(P0,ω0) = F(2,1) + F(1,2).
For (Pλ, ωλ), say that i ∈ {1, . . . , n − 1} is a descent in a tableau T ∈ SYT(λ) if i + 1 is in a
higher row than i in T , and let Des(T ) be their set. Then we have the following decomposition

sλ =
∑

T ∈SYT(λ)
Fn,Des(T ). (1.2.5)

Let us finish by two remarks:
• We will extend the notion of (P, ω)-partitions in Section 3.1, with the notion of flags which

are upper bounds on the values given by a P -partition at a vertex.
• Quasisymmetric polynomials will be used to get our second formula in Chapter 2, and revisited

greatly in Chapter 4.

1.3 The flag variety and its cohomology
Here we review standard material that can be found for instance in [Ful97, Man01, Bri05] and the
references therein. Our goal is to give some minimal background to the interested reader on how to
go from the geometric problem at heart of our manuscript to an algebraic and combinatorial one.

For E a C-vector space of dimension n, the flag variety Fl(E) is defined as the set of complete
flags

V• = (V0 = {0} ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = E).

Here each Vi is a linear subspace of E of dimension i. We write simply Fln = Fl(Cn). It admits a
transitive action of GLn(C) via g · V• = ({0} ⊂ g(V1) ⊂ g(V2) ⊂ · · · ⊂ Cn), and inherits a natural
structure of a smooth projective variety of dimension

(n
2
)
.

Fix any reference flag V ref
• in Fln. For instance, one may pick V std

• or V opp
• the standard flag

given by V std
i = span(e1, . . . , ei) or opposite flag V opp

i = span(en−i+1, . . . , en) respectively. Then
Fln has a natural affine paving given by Schubert cells Ωw(V ref

• ) indexed by permutations w ∈ Sn.
As algebraic varieties one has Ωw(V ref

• ) ' C`(w) where `(w) is the length of w. By taking closures
of these cells, one gets the family of Schubert varieties Xw(V ref

• ).
Cohomology: The cohomology ring H∗(Fln) with rational coefficients is a well-studied graded
commutative ring that we now go on to describe. First of all, to any irreducible subvariety Y ⊂ Fln
of dimension d can be associated a fundamental class [Y ] ∈ Hn(n−1)−2d(Fln). In particular there
are classes [Xw(V ref

• )] ∈ Hn(n−1)−2`(w). These classes do not in fact depend on V ref
• , and we write
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σw := [Xwow(V ref
• )] ∈ H2`(w)(Fln). The affine paving by Schubert cells implies that these Schubert

classes σw form a linear basis of H∗(Fln),

H∗(Fln) =
⊕

w∈Sn

Qσw. (1.3.1)

Now given Y irreducible subvariety of dimension d, we have an expansion of its fundamental class

[Y ] =
∑
w

bw(Y )σw, (1.3.2)

where the sum is over permutations of length `(wo) − d.
Fact 1.3.1

The numbers bw(Y ) are nonnegative integers.

The reason is that bw(Y ) can be interpreted as the number of points in the intersection of Y with
Xwow(V•), where V• is a generic flag.

This leads to the following major problem: give a manifestly positive formula for these coeffi-
cients when Y = Xu(V std

• ) ∩ Xwov(V opp
• ) with u, v ∈ Sn. In that case Y is a Richardson variety

(if nonempty). Indeed the coefficients bw(Y ) in this case are exactly the generalized Littlewood-
Richardson coefficients cw

uv encoding the cup product in cohomology:

σu ∪ σv =
∑

w∈Sn

cw
uvσw. (1.3.3)

This is only known in some particular cases: the classical case is when u, v are m-Grassmannian
permutations. In this case cw

uv is zero unless w is also m-Grassmannian, and the coefficients are the
classical Littlewood-Richardson coefficients, which possess a nice combinatorial interpretation [Ful97,
Man01]. Recent work involves the case of “separated descents” between u and v [Hua23, KZJ23].
Remark 1.3.2

Fln is part of the family of generalized flag varieties G/B, with G a connected reductive group
and B a Borel subgroup. In this context, Fln corresponds to the type A case, with G = GLn

and B = Bn the group of upper triangular matrices. The partial flag varieties in type A are of
the form GLn/P for P a space of block-triangular matrices with block sizes k1, . . . , km. For
instance, the Grassmannian of k-planes in Cn is obtained by picking k1 = k, k2 = n− k.

Borel presentation and Schubert polynomials. In this paragraph and the next one we explain
how one can compute concretely in H∗(Fln). We denote the space of homogeneous polynomials
of degree k ≥ 0 in Poln by Q(k). Let Symn ⊆ Poln be the subring of symmetric polynomials in
x1, . . . , xn.

Let Sym+
n be the ideal of Poln generated by the elements f ∈ Symn such that f(0) = 0.

Equivalently, Sym+
n is generated as an ideal by the elementary symmetric polynomials e1, . . . , en in

n variables. The quotient ring Rn = Poln /Sym+
n is the coinvariant ring .

Let ∂i be the divided difference operator on Poln, given by

∂i(f) = f − si · f
xi − xi+1

. (1.3.4)

Define the Schubert polynomials for w ∈ Sn as follows:

Swo = xn−1
1 xn−2

2 · · ·xn−1, (1.3.5)
Sw = ∂iSwsi if `(wsi) > `(wi). (1.3.6)

These are well defined since the ∂i satisfy the relations (1.1.2),(1.1.3). For w ∈ Sn, the Schubert
polynomial Sw is a homogeneous polynomial of degree `(w) in Poln.
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Remark 1.3.3
In fact Schubert polynomials are well defined for w ∈ S∞, as can be shown by a direct compu-
tation. Moreover, when w ∈ S∞ runs through all permutations whose largest descent is at most
n, the Schubert polynomials Sw form a basis of Poln. We will revisit this in Section 1.4.

Now consider the ring homomorphism

jn : Q[x1, . . . , xn] → H∗(Fln) (1.3.7)

given by jn(xi) = σsi − σsi−1 for i > 1 and jn(x1) = σs1 (this is equivalent to the usual definition
in terms of “Chern classes”). Then we have the following theorem, grouping famous results of Borel
[Bor53] and Lascoux and Schützenberger [LS82] (see [Man01, Section 3.6]).
Theorem 1.3.4

The map jn is surjective and its kernel is Sym+
n . Therefore H∗(Fln) is isomorphic as an algebra

to Rn. Furthermore,

jn(Sw) =
{
σw if w ∈ Sn,

0 if w ∈ S∞ − Sn has largest descent at most n.

It follows immediately that the product of Schubert polynomials is given by the structure coeffi-
cients in (1.3.3): If u, v ∈ Sn, then

SuSv =
∑

w∈Sn

cw
uvSw mod Sym+

n . (1.3.8)

It is also possible to work directly with polynomials and not the quotient Rn: the coefficients cw
uv are

well defined for u, v, w ∈ S∞, and one has

SuSv =
∑

w∈S∞

cw
uvSw. (1.3.9)

As mentioned above, no manifestly positive formula for these coefficients is known in general.

Expansion in Schubert classes. The goal of this section is to explain a method to extract coeffi-
cients in Schubert classes. The reader may want to go directly to Formula (1.3.13), which is what
we will use in this work.

Given β ∈ H∗(Fln), let
∫
β be the coefficient of σwo in the Schubert class expansion. This can

be computed explicitly by ∫
β = ∂wo(B)(0, . . . , 0), (1.3.10)

where B is any polynomial such that jn(B) = β. The natural Poincaré duality pairing on H∗(Fln)
is given algebraically by

(α, β) 7→
∫

(α ∪ β).

The Schubert classes are known to satisfy
∫
σu ∪σv = 1 if u = wov and 0 otherwise, illustrating the

fact that the pairing is nondegenerate. If A,B ∈ Poln are such that jn(A) = α, jn(B) = β, then
one can compute the pairing explicitly by:∫

(α ∪ β) = ∂wo(AB)(0, . . . , 0). (1.3.11)

Let us fix α ∈ Hn(n−1)−2p(Fln). Our main interest is to consider α = [Y ] where Y is an
irreducible closed subvariety of Fln of dimension p. Associated to α is the linear form ψα : β 7→∫

(α ∪ β) defined on H∗(Fln). It vanishes if β is homogeneous of degree 6= 2p, which leads to the
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following definition: Define the linear form φα : Q(p)[xn] → Q by φα(P ) = ψα(jn(P )) where jn
is the Borel morphism defined earlier. By definition, φα vanishes on Q(p)[xn] ∩ Sym+

n . For any
polynomial A,P ∈ Poln such that jn(A) = α, we have by (1.3.11) the expression

φα(P ) = ∂wo(AP )(0). (1.3.12)

Since jn(Swow) = σwow by Theorem 1.3.4, and we use the duality of Schubert classes
∫
σu∪σv =

0 unless v = wou where it is 1.The coefficient bw(α) in the expansion α =
∑

w bw(α)σw is given by

bw(α) = ∂wo(SwowA)(0, . . . , 0). (1.3.13)

1.4 More on Schubert polynomials
The nil-Coxeter monoid is the partial monoid1 whose elements are permutations in S∞, equipped
with the partial monoid structure

u ◦ v =
{
uv if `(u) + `(v) = `(uv)
undefined otherwise.

(1.4.1)

It is presented by the relations didi+1di = di+1didi+1, didj = djdi and d2
i is undefined (or equal

to 0 if seen as a monoid with zero). Divided difference operators ∂i defined2 in (1.3.4) satisfy these
relations, and thus the operators ∂w are well-defined.

There is a permutation w/i such that w = (w/i) ◦ si if and only if i is in Desw, in which case
it is unique and given by the formula w/i = wsi. We have then the following characterization of
Schubert polynomials.
Theorem 1.4.1

The Schubert polynomials (Sw)w for w ∈ S∞ are the unique family of homogeneous polynomials
indexed by permutations w in S∞ with Sid = 1 that satisfy

∂iSw =
{
Sw/i if i ∈ Desw
0 otherwise.

Let us give a sketch of the proof. If a second family (Rw) satisfies this, then consider the family
Dw = Sw −Rw. We have Did = 0. Now consider w 6= id. By induction, we can assume Dv = 0 for
all v such that `(v) < `(w). We get ∂iDw = 0 for all i, so that Dw is symmetric in all xi > 0. This
is only possible if Dw = 0, which proves uniqueness. As for existence we have the Definition 1.3.5,
which is easily seen to satisfy the characterization. This requires checking that Sw = Sιn(w) for
w ∈ Sn, so that Sw is well defined for w ∈ S∞.

Schubert polynomials form nice bases of subspaces of Pol when indices are restricted to various
subsets of S∞:
Theorem 1.4.2

The Schubert polynomials (Sw)w∈B form a basis of
1. Pol when B = S∞.
2. Poln when B is the set of permutations with all descents ≤ n.
3. The coinvariant ideal Sym+

n when B is the set of permutations with all descents ≤ n but
not in Sn.

4. The space spanned by monomials xa where ai ≤ n− i when B = Sn; for the same B, the
images modulo Sym+

n form a basis of the coinvariant space Poln / Sym+
n .

1this is equivalent to a “monoid with zero”, where the zero element 0 satisfies 0m = m0 = 0 for any m in the
monoid.

2In this section we consider them as operators on Pol, not on Poln.
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Moreover we have the following well known special case:
Theorem 1.4.3

If w is an m-Grassmannian permutation, Sw coincides with the Schur polynomial sλ(x1, . . . , xm)
where λ is the shape of w. These form a basis of the space Symm of symmetric polynomials in
x1, . . . , xm.

Schubert polynomials are known to have positive coefficients, and many combinatorial formu-
las for Schubert polynomials exist: the algorithmic method of Kohnert [Ass22, Koh91], the bal-
anced tableaux of Fomin–Greene–Reiner–Shimozono [FGRS97], the bumpless pipe dreams of Lam–
Lee–Shimozono [LLS21], and the prism tableau model of Weigandt–Yong [WY18].

The most classical one is the pipe dreams of Bergeron–Billey [BB93] and Fomin–Kirillov [FK96],
and the related slide expansions of Billey–Jockusch–Stanley [BJS93] and Assaf–Searles [AS17], on
which we now focus.
BJS formula. Given a word a = a1a2 · · · ak with ai ∈ Z>0, let C(a) be the set of words b1b2 · · · bk

such that b1 ≥ · · · ≥ bk such that 1 ≤ bj ≤ aj , and bj > bj+1 whenever aj > aj+1.

F(a) =
∑

b∈C(a)
xb (1.4.2)

We will see this family occur at several points in this work. Let us note that they comprise all
fundamental quasisymmetric polynomials, as can be seen from the respective definitions:
Proposition 1.4.4

Let QSeqn be the set of sequences (a1, . . . , ak) satisfying n = a1 and ai − ai+1 ∈ {0, 1} for
1 ≤ i ≤ k − 1. If (a1, . . . , ak) ∈ QSeqn then

F(a) = Fk,S(x1, . . . , xn),

the fundamental quasisymmetric polynomial where S is the set of i such that ai = ai+1 + 1.

We have the BJS formula of Billey, Jockusch and Stanley [BJS93]:

Sw =
∑

i∈Red(w−1)
F(i). (1.4.3)

As noticed by Assaf and Searles [AS17], this can be seen as an expansion in a certain basis.
Indeed, let c ∈ Codes, and define the word wc as the unique weakly decreasing word that has ci

occurrences of i for all i. For instance c = (0, 2, 0, 1, 3, 0, . . .) corresponds to the word wc = 555422.
Definition 1.4.5

The slide polynomial Fc is defined as F(wc).

It is clear xc is the leading monomial in reverse lexicographic order, from which it follows that slide
polynomials form a basis of Pol. In fact, any F(a) is either equal to Fc for a certain c ∈ Codes, or is
0 if the set C(a) is empty, see [RS95, Section 4] for instance.
Pipe dreams. The expansion (1.4.3) has a nice combinatorial version with pipe dreams (also known
as rc-graphs), which we now describe. Let Z>0 × Z>0 be the semi-infinite grid, starting from the
northwest corner. Let (i, j) indicate the position at the ith row from the top and the jth column
from the left. A pipe dream is a tiling of this grid with +’s (pluses) and ’s (elbows) with a finite
number of +’s. The size |γ| of a pipe dream γ is the number of +’s.

Any pipe dream can be viewed as composed of strands, which cross at the +’s. Strands naturally
connect bijectively rows on the left edge of the grid and columns along the top; let wγ(i) = j if the
ith row is connected to the jth column, which defines a permutation wγ ∈ S∞.
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Figure 1.2. Two reduced pipe dreams with permutation wγ = 2417365.

Say that γ is reduced if |γ| = `(wγ); equivalently, any two strands of γ cross at most once. We
let PD(w) be the set of reduced pipe dreams γ such that wγ = w. Notice that if w ∈ Sn then the
+’s in any γ ∈ PD(w) can only occur in positions (i, j) with i+ j < n, so we can restrict the grid
to such positions.

Given γ ∈ PD(w), define c(γ) := (c1, c2, . . .) where ci is the number of +’s on the ith row of γ.
Then the BJS expansion (1.4.3) can be rewritten as follows [BJS93, Man01]:

Sw =
∑

γ∈PD(w)
xc(γ). (1.4.4)

MacDonald reduced word formulas. These are beautiful formulas for principal specializations of
Schubert polynomials. The first formula was proved in [Mac91]:

Sw(1, 1, . . . ) = 1
`

∑
a∈Red(w)

a1a2 · · · a`. (1.4.5)

Note that the left hand side counts pipe dreams Sw(1, 1, . . . ) = #PD(w), and thus is a positive
integer, while the right hand side is a sum of positive rational numbers. Macdonald also conjectured
the following q-analogue, that his proof method for q = 1 was unable to settle, and which was proved
shortly after by Fomin and Stanley [FS94].

Sw(1, q, q2, . . . ) = 1
(`)q!

∑
a∈Red(w)

qcomaj(a)(a1)q(a2)q · · · (a`)q. (1.4.6)

Here comaj(a) is the sum of all i ∈ {1, . . . , ` − 1} such that ai < ai+1. Note that with some
effort, both formulas can be proved bijectively, see [BHY19].
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Chapter 2

Schubert coefficients for the
permutahedral variety

In this section we will state and prove the result whose research is at the origin of most of this
manuscript. The main works addressing this original question are [10] and [5].

2.1 The permutahedral variety and the Schubert coefficients aw

2.1.1 Statement of the problem

To define a Hessenberg variety H(X,h) in Fln, one needs an n × n matrix X and a Hessenberg
function h : [n] → [n]. Then V• ∈ H(X,h) if XVi ⊆ Vh(i) for all i.

The permutahedral variety Permn is the regular semisimple Hessenberg variety corresponding to
the choice of h = (2, 3, . . . , n, n), with X being a diagonal matrix with distinct entries along the
diagonal.
Fact 2.1.1

The permutahedral variety is the smooth, toric variety whose associated fan is the braid fan,
given by the type A root system arrangement.

It appears in many areas in mathematics [DMS88, Kly85, Pro90], and notably is a key player in
the Huh-Katz resolution of the Rota-Welsh conjecture in the representable case [HK12].

We let τn = [Permn]. Since Permn is an irreducible subvariety of Fln of complex dimension
n − 1, the class τn lives in cohomological degree (n − 1)(n − 2). We consider its Schubert class
expansion

τn =
∑

w∈S′
n

awσwow, (2.1.1)

where S′
n denotes the set of permutations in Sn of length n− 1. We refer to Table 2.1 for a list of

these coefficients for n = 2, 3, 4, 5, 6.
The coefficients aw are thus the coefficients bw(Permn) from (1.3.2). Given the geometric

interpretation for the aw as intersection numbers, it follows that aw ∈ N.

The goal of this section is to develop a concrete understanding of the coefficients aw.

As we mentioned in the introduction, this goal has been a driving force behind many of the
results presented in this thesis.
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Table 2.1. The Schubert class expansions τn =
∑

w∈S′
n

awσwow for 2 ≤ n ≤ 6.

n Schubert expansions for τn

2 S1
3 S132 + S21
4 S1432 + S2341 + 2S2413 + 2S3142 + S321 + S4123
5 S15432 +S24531 +2S25341 +3S25413 +S32541 +S34251 +4S34512 +5S35142 +3S35214 +

3S41532 +2S42351 +5S42513 +3S43152 +S4321 +4S45123 +2S51342 +S51423 +S52143 +
2S52314 + S53124

6 S165432 +S256431 + 2S264531 + 3S265341 + 4S265413 +S346521 +S354621 + 3S356241 +
5S356412+3S362541+3S364251+10S364512+9S365142+6S365214+2S426531+S435621+
2S436251+5S436512+3S452631+S453261+5S453612+10S456132+10S456213+9S461532+
8S462351 + 16S462513 + 11S463152 + 4S463215 + 10S465123 + 4S516432 + 3S524631 +
8S526341 + 11S526413 + 3S532641 + 2S534261 + 10S534612 + 16S536142 + 9S536214 +
6S541632+3S542361+9S542613+4S543162+S54321+10S546123+10S561342+5S561423+
5S562143+10S562314+5S563124+3S614532+2S615342+S615423+3S623541+4S624351+
8S624513+2S625143+3S625314+3S631542+3S632451+3S632514+8S634152+3S634215+
3S635124 +3S641352 +3S641523 +2S642153 +2S642315 +S643125 +S651243 +S651324 +
S652134

Remark 2.1.2
The Peterson variety is the regular nilpotent Hessenberg variety defined with the same h, and with
X chosen to be the nilpotent matrix that has ones on the upper diagonal and zeros elsewhere.
This variety has also garnered plenty of attention; see [B1̆7, Dre15, HT11, Ins15, IT16, IY12,
Rie03]. It is known that for a given h, all regular Hessenberg varieties have the same class in the
rational cohomology H∗(Fln), see [ADGH18]. It follows that the class of the Peterson variety is
also given by τn.

Anderson and Tymoczko [AT10] give an expansion for [H(X,h)] for arbitrary h which involves
multiplication of Schubert polynomials depending on length-additive factorizations of a permutation
wh attached to h. In general, transforming this expression into one in the basis of Schubert polyno-
mials in a combinatorially explicit manner would require understanding generalized LR coefficients
1.3.8. In fact, the special cases in which Anderson and Tymoczko provide explicit expansions in terms
of Schubert polynomials are those for which combinatorial rules are indeed known [AT10, Sections
5 and 6].

The case of τn appears again in work of Harada et al [HHMP19, Section 6], as well as Kim
[Kim20]. In the former, τn is expressed as a sum of classes of Richardson varieties [HHMP19, Theorem
6.4]. Translating this into an explicit Schubert expansion once again amounts to understanding
certain generalized LR coefficients.

2.1.2 Coefficients aw via Klyachko’s approach

We extract our first expression from the results of [Kly85]. Given w ∈ S∞ of length `, consider the
polynomial in Q[x1, x2, . . .]:

Mw(x1, x2, . . .) :=
∑

i=i1i2···i`∈Red(w)
xi1xi2 · · ·xi`

=
∑

i∈Red(w)
xc(i), (2.1.2)

where c(i) = (c1, c2, . . .) and cj is the number of occurrences of j in i. If w ∈ Sn, then Mw is a
polynomial in x1, . . . , xn−1. Notice that Macdonald’s formula (1.4.5) states that

Mw(1, 2, . . .) = `! · Sw(1, 1, . . .).
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For n ≥ 3, let the Klyachko algebra Kn be the commutative Q-algebra with generators
u1, . . . , un−1 and defining relations

2u2
i = uiui−1 + uiui+1 for 1 < i < n− 1;

2u2
1 = u1u2;

2u2
n−1 = un−1un−2.

Given I = {i1 < · · · < ij} ⊂ [n− 1], define uI := ui1 · · ·uij .
Klyachko showed that these 2n−1 elements form a basis of Kn. Given U =

∑
I cIuI ∈ Kn, let∫

Kn
U be the top coefficient c[n−1].

Theorem 2.1.3 (First formula)
For any w ∈ S′

n, we have

aw =
∫

Kn

Mw(u1, u2, . . . , un−1) =
∫

Kn

∑
i1i2···i`∈Red(w)

ui1ui2 · · ·ui`
.

As shown in [10], this is a reformulation of Klyachko’s work [Kly85], specialized to type A. We
sketch the details: first, the cohomology ring H∗(Permn) is computed by Klyachko. Sn acts on
this ring, and the corresponding subring of invariants is shown to be the algebra Kn above. In this
presentation, the fundamental class of Permn is represented by the top element u[n−1]/(n−1)!. Now
the embedding Permn → Fln gives a pullback morphism H∗(Fln) → Kn, under which the image of
the Schubert class σw is Mw(u1, u2, . . . , un−1)/`(w)!. Explicitly, this means the following in Kn:

Sw(u1, u2 − u1, u3 − u2, . . .) = 1
`(w)!Mw(u1, u2, . . . , un−1). (2.1.3)

If w ∈ S′
n, we have by definition aw =

∫
σw ∪ τn =

∫
σw ∪ [Permn] where

∫
is as in (1.3.10).

Pulling back the computation to Kn gets us the result.
We note that Klyachko was particularly interested in the case where w is Grassmannian, for which

he gives a formula [Kly85, Theorem 6] that is not manifestly positive, and gives a combinatorial
interpretation in subsequent work [Kly95]. We will retrieve this case as Corollary 2.3.2.

2.1.3 Coefficients aw via Anderson–Tymoczko’s approach

We introduce the operator of divided symmetrization
〈
·
〉

n
. This is a linear operator on Poln defined

as follows:

〈
f(x1, . . . , xn)

〉
n

:=
∑

w∈Sn

w ·
(

f(x1, . . . , xn)∏
1≤i≤n−1(xi − xi+1)

)
. (2.1.4)

In general, if f is homogeneous of degree d,
〈
f(x1, . . . , xn)

〉
n

is a symmetric polynomial of degree
d− (n− 1) when d ≥ n− 1, and zero otherwise. In particular, if f has degree n− 1, the result is a
scalar. We will only use it in this case.
Theorem 2.1.4 (Second formula)

For any w ∈ S′
n,

aw =
〈
Sw(x1, . . . , xn)

〉
n
. (2.1.5)

Let us briefly explain how this follows from the results of Anderson and Tymoczko [AT10]. The
main result from that work is a polynomial representative for the class of H(X,h) in the semisimple
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case. This class Σh does not depend on h and is given as follows:

Σh =
∏

1≤i<j≤n

j>h(i)

(xi − xj) mod In. (2.1.6)

Now in the case of h = (2, 3, . . . , n, n), we have that Σh = τn by definition and thus

τn =
∏

1≤i<j≤n

j>i+1

(xi − xj) mod In.

By the coefficient formula (1.3.13), Theorem 2.1.4 follows from the next proposition.
Proposition 2.1.5

For any P ∈ Poln of degree n− 1,

∂wo(P
∏

1≤i<j≤n

j>i+1

(xi − xj)) =
〈
P
〉

n
.

This is a simple computation, see Proposition 3.3 in [10]. It uses the fact that ∂wo = 1
∆n

Antin
where Antin is the antisymmetrizing operator

∑
σ∈Sn

ε(σ)σ [Man01, Proposition 2.3.2].
Note that divided symmetrization was introduced by Postnikov when he showed that the volume of

a permutahedron with vertices given by permutations of (λ1, . . . , λn) is
〈
(λ1x1 + · · · + λnxn)n−1〉

n
,

cf. [Pos09, Theorem 3.2]. The connection with Proposition 2.1.5 is explained in Remark 3.4 of [10]
via the notion of degree polynomial of a class in H∗(Fln).

2.2 First approach and special properties
Here we use Theorem 2.1.3 to compute aw. As a first step, we need to rewrite the formula slightly.

Postnikov [Pos09, Section 16] introduced the family of mixed Eulerian numbers Ac for any r > 0
and c = (c1, . . . , cr) a weak composition with |c| = r. They are defined as mixed volumes of
hypersimplices, from which one knows Ac ∈ Z>0.

Petrov shows [Pet18] (see also Lemma 4.1 in [10]) that for any fixed r, the mixed Eulerian
numbers Ac are uniquely determined by the conditions A(1r) = (r)! and

2A(c1,...,cr) = A(c1,...,ci−1+1,ci−1,...,cr) +A(c1,...,ci−1,ci+1+1,...,cr)

for any i ≤ r and ci ≥ 2. In fact he has a probabilistic interpretation for these numbers from which
it also follows that Ac > 0 – we will generalize it in Section 3.2.4.

It is clear that (n − 1)!
∫

Kn
uc = Ac as the characterization above follow precisely from the

properties of Kn given in Section 2.1.2. For any word a over Z>0, define its content c(a) =
(c1, c2, . . .) ∈ Codes by letting ci be the number of occurrences of j in a.

It follows from Theorem 2.1.3 that, for any w ∈ S′
n,

aw =
∑

i∈Red(w)

Ac(i)
(n− 1)! (2.2.1)

where c(i) is truncated to have length n− 1 (note that all remaining entries are zero since w ∈ Sn,
and |c(i)| = n− 1 as it is equal to `(w)).
Example 2.2.1

Consider w = 32415 ∈ S′
5. It has three reduced words 2123, 1213 and 1231. Given that

A2,1,1,0 = 6 and A1,2,1,0 = 12, we obtain aw = 1
24(12 + 6 + 6) = 1.
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As this example illustrates, the integer numbers aw are decomposed via this formula as a sum of
rational numbers. It is unclear how to see integrality for the formula; we will use a different method
in Section 2.3 to obtain a combinatorial interpretation for the numbers. There are however several
properties that can be deduced.

First, we have the following direct consequence of (2.2.1); the positivity statement answers a
question asked in [HHMP19, Problem 6.6].
Corollary 2.2.2

For any w ∈ S′
n, aw > 0 and aw = aw−1 .

Indeed all Ac are positive as recalled above, which proves the first part. Also, i ∈ Red(w) if and
only if rev(i) ∈ Red(w−1), and obviously c(rev(i)) = c(i) which proves the second part.

In the rest of this section, we give special properties of the numbers aw.

Indecomposable permutations Let w1, w2 ∈ Sm × Sp with m, p > 0. The concatenation w =
w1 × w2 ∈ Sm+p is defined by w(i) = w1(i) for 1 ≤ i ≤ m and w(m + i) = m + w2(i) for
1 ≤ i ≤ p. A permutation w ∈ Sn is called indecomposable if it cannot be written as w = w1 × w2
for any w1, w2 ∈ Sm × Sp with n = m + p. The indecomposable permutations for n ≤ 3 are
1, 21, 231, 312, 321, and their counting sequence is A003319 in [Slo].

Given w in Sn, one has a unique factorization

w = w1 × w2 × · · · × wk, (2.2.2)

where each wi is an indecomposable permutation in Smi for certain mi > 0. Its cyclic shifts
w(1), . . . , w(k) are

w(i) = (wi × wi+1 · · · × wk) × (w1 × · · · × wi−1). (2.2.3)

For instance w = 53124768 ∈ S8 factors as w = 53124 × 21 × 1, and its cyclic shifts are
w(1) = w = 53124768, w(2) = 21386457 and w(3) = 16423587.
Proposition 2.2.3 (Cyclic Sum Rule)

Let w ∈ S′
n, and consider its cyclic shifts w(1), . . . , w(k) as above. Then

k∑
i=1

aw(i) = | Red(w)|. (2.2.4)

The proof follows from (2.2.1) and a cyclic property satisfied by mixed Eulerian numbers them-
selves; see Theorem 5.6 in [10]. Let w = 53124768 ∈ S′

8 as above. Then one can check that
| Red(w)| = 63 and aw(1) + aw(2) + aw(3) = 6 + 21 + 36 = 63.

We can refine this result for permutations having a unique nontrivial factor in (2.2.2). Given a
permutation u of length ` and m ≥ 0, consider νu(m) := ν1m×u = S1m×u(1, 1, . . .).

By Macdonald’s identity (1.4.5) we have

νu(m) = 1
`!

∑
i∈Red(u)

(i1 +m)(i2 +m) · · · (i` +m). (2.2.5)

It is a polynomial in m of degree ` with integer values on N. Therefore (see [Sta97] for instance)
there exist integers hu

m ∈ Z for m = 0, . . . , ` such that

∑
j≥0

νu(j)tj =
∑`

m=0 h
u
mt

m

(1 − t)`+1 . (2.2.6)
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Proposition 2.2.4

Let u ∈ Sp+1 be indecomposable of length n − 1. Define n − p permutations u[m] ∈ S′
n for

m = 0, . . . , n− p− 1 by u[m] := 1m × u× 1n−p−1−m. Then

hu
m =

{
au[m] if m < n− p;
0 if m ≥ n− p

Equivalently, ∑
j≥0

νu(j)tj =
∑n−p−1

m=0 au[m]tm

(1 − t)n
. (2.2.7)

Moreover, the numbers hu
m are known to sum to `! times the leading term of νu(m), which is

| Red(u)| by (2.2.5). Thus the previous proposition is a refinement of Proposition 2.2.3 when only
one indecomposable factor is nontrivial.

We can use this theorem to get an explicit combinatorial rule in a particular case: for vexillary
permutations, which are the permutations avoiding the pattern 2143. Any vexillary permutation can
be written as u[m] for u indecomposable and m ≥ 0 as in Proposition 2.2.4. Now to u one can
associate its shape λ(u), cd. Section 1.1. Seen as a Ferrers poset Pλ as in 1.2.1, one can construct
a certain bijective labeling ωu on Pλ, as well as an integer Nu: the details are fairly technical, we
refer to Section 7 of [10].

Our result is then an explicit combinatorial interpretation:
Proposition 2.2.5

For any vexillary permutation w = u[m], aw is the number of tableaux T ∈ SYT(λ) with m+Nu

ωu-descents.

2.3 Second approach and combinatorial interpretation
We obtain a combinatorial interpretation for any w ∈ S′

n in this section: the main result is stated
as Theorem 2.3.4. The proof will have several steps, starting with the formula aw =

〈
Sw

〉
n

from
Theorem 2.1.4.

2.3.1 Computing with divided symmetrization

In this section we present the main results from [15]: Propositions 2.3.1 and 2.3.3.
First, we have the following result that gives us a first glimpse of the connection of our problem

to the quasisymmetric world.
Proposition 2.3.1

If f ∈ QSym has degree n− 1, then we have the identity

∑
j≥1

f(1j)tj =
∑n

m=1
〈
f(x1, . . . , xm)

〉
n
tm

(1 − t)n
. (2.3.1)

The proof in [15] goes by showing that (2.3.1) holds for the basis elements Mα, the monomial
quasisymmetric functions. It relies ultimately on the following monomial evaluation

〈
xc
〉

n
for c =

(c1, . . . , cn−1) with |c| = n − 1, due to Postnikov [Pos09, Section 3] (see also [Pet18] and [15] for
a different proof).

Let S(c) be the set of indices k ∈ [n− 1] such that c1 + · · · + ck < k. Then〈
xc〉

n
= (−1)#S(c)βn(Sc) (2.3.2)
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where βn(S) is the number of permutations of Sn with descent set S.
Grassmannian case1. When w ∈ S′

n is m-Grassmannian, the Schubert polynomial Sw is a Schur
polynomial sλ(x1, · · · , xm), cf. Theorem 1.4.3, where λ is the shape of w. It is symmetric, thus
quasisymmetric, and so aw =

〈
sλ(x1, . . . , xm)

〉
n

occurs in the numerator in (2.3.1). The right-hand
side can be computed via the theory of P -partitions, essentially by specializing (1.2.5); see Example
4.6 in [15]. The following evaluation recovers a result of Klyachko [Kly95]:
Corollary 2.3.2

If w ∈ S′
n is m-Grassmannian with shape λ, aw is equal to the number of T ∈ SYT(λ) with

m− 1 descents.

As an example, consider the permutations w1 = 351246 and w2 = 146235, which are the two
Grassmannian permutations in S′

6 with shape (3, 2). Note that w1 has descent 2 while w2 has
descent 3. So aw1 = 2 and aw2 = 3.

To finish this section, we have the following second key result from [15], which will be crucial
in the proof of Theorem 2.3.4. Let QSym+

n be the ideal of Poln generated by quasisymmetric
polynomials f with f(0) = 0.
Proposition 2.3.3

If P ∈ QSym+
n has degree n− 1, then

〈
P
〉

n
= 0.

2.3.2 Combinatorial interpretation for aw

Parking procedure Ω: Consider parking spots indexed by Z, initially all empty. Cars 1, 2, . . . arrive
successively, with car i preferring spot vi, and want to park at (empty) spots. Assume inductively
that i− 1 cars have already parked. If spot vi is empty, then car i parks there. Otherwise, vi belongs
to an interval [a, b] := {a, a + 1, . . . , b − 1, b} of occupied spots with spots a − 1 and b + 1 being
free2. Let j < i be maximal such that vj ∈ [a, b]: in words, vj is the preferred spot of the car that
parked last in [a, b]. The parking rule is then that car i parks in b + 1 if vi ≥ vj , while it parks in
a− 1 if vi < vj .

After k cars have parked according to this special rule, they occupy a k-subset denoted
Ω(v1 · · · vk) ⊂ Z. A preference word v1 · · · vk is called a Ω-parking word if Ω(v1 · · · vk) = {1, . . . , k}.
We can then state the main result of [5], giving a combinatorial interpretation for the intersection
numbers aw

Theorem 2.3.4
Let w ∈ S′

n. Then aw is the number of reduced words of w−1 that are also Ω-parking words.

Consider w = 21543 ∈ S5 with `(w) = 4. To compute aw, we need to compute Ω-parking words
in Red(w−1) = Red(w). Here are all reduced words for 21543.

Red(w) = {1343, 3143, 3413, 3431, 1434, 4134, 4314, 4341}.

Only the first four are Ω-parking words, and therefore a21543 = 4.

While the statement of Theorem 2.3.4 is succinct, we need some new theory to arrive at it. We
start from the formula aw =

〈
Sw

〉
n

and want to extract a positive rule from it.
• The rule to compute divided symmetrization on monomials 2.3.2 is signed and complicated.

So using it on the pipe dream expansion (1.4.4) is in general unwieldy.
1This is only to illustrate the previous result. This case is covered by the vexillary case above, and is also a

consequence of the general combinatorial interpretation below.
2Note that the classical “one-way street” parking rule is to then have the ith car park in b + 1 at this point.
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• One can use the more compact version given by the BJS expansion 1.4.3 into slide polynomials.
But computer experimentation shows that

〈
F(a)

〉
n

can be also negative, and we could not find
any pattern.

• We also thought of coarsening even more, by applying
〈
·
〉

n
on the sum of F(i) where the

reduced words run over a commutation class. Computer experimentation this time seemed to
show nonnegativity in all examples, but the values seemed hard to conjecture.

What will turn out to work in the end is a decomposition ((2.3.5) below) that sits between the
last two, by grouping reduced words according to an equivalence relation that refines commutation
classes. The resulting sums of slide polynomials will be easy to evaluate under

〈
·
〉

n
, and turn out to

be an interesting class of polynomials that we now define.

2.3.3 Forest polynomials

Let S ⊂ Z>0 be a finite set of integers. It decomposes uniquely as S = I1 t . . . t Ik, where each Ij

is a maximal subset of consecutive integers in S. An indexed forest F on S is the data of a rooted
binary tree Tj with |Ij | internal nodes for any j ∈ [k]. Its size |F | is the cardinality of S, and we
represent the latter by unit intervals of the integer line.

Figure 3.2 shows an indexed forest (ignoring the labels in red for now) with |F | = 6. It comprises
three trees supported on the intervals [2, 4], [7], and [11, 12] from left to right. Note how elements
of S are naturally in bijection with internal nodes of F , and we name the label in S corresponding
to a node its canonical label .

1 2 3 4 5 6 7 8 9 10 11 12 13 14

2

2

4 7 11

11

φF

15

Figure 2.1. An indexed forest with its flag values.

Given an indexed forest, label leaves by the unit interval to its right. For each internal node,
let its flag value φF (v) be the label of the leaf at the end of its left branch, see Figure 2.1 for an
illustration. Let the code c(F ) be the vector (c1, c2, . . .) where ci is the number of flag values equal
to i. It is thus equal to (0, 2, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, . . .) in the example. Let IN(F ) be the set of
internal nodes.
Definition 2.3.5 (Forest polynomials PF )

Let F ∈ Forest. The forest polynomials PF is defined as

PF =
∑

f :IN(F )→Z>0

∏
v∈IN(F )

xf(v)

where the sum is over all f whose values are weakly increasing down left edges, strictly increasing
down right edges, and such that f(v) ≤ φF (v) for all v.

For example, given the indexed forest F in Figure 2.2 one has

PF =
∑

2≥a≥b
4≥c>b

xaxbxc = x2
2x4 + x1x2x4 + x2

1x4 + x2
2x3 + x1x2x3 + x2

1x3 + x2
1x2 + x1x

2
2.

More examples are listed in Table A.1. Forest polynomials expand positively in the basis of slide
polynomials. Explicitly, consider F as a poset by seeing it as a Hasse diagram on IN(F ). Linear
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1 2 3 4 5 6

a

b

c

Figure 2.2. An indexed forest F with c(F ) = (0, 2, 0, 1)

extensions, which can be seen as decreasing forests, are associated to words over Z>0 by reading the
φF -labels. If Lin(F ) is the set of these words, then one has

PF =
∑

W ∈Lin(F )
F(W ). (2.3.3)

This expansion follows from a natural extension of the theory of (P, ω)-partitions from Section 1.2,
which we describe in Section 3.1.

2.3.4 Correspondence Ω•

We can construct a correspondence Ω•, of which the Ω-parking procedure is but a shadow. We skip
the exact description and most details here, and refer to Section 5 of [5] for the interested reader;
see also Section 3.2.1 for an explanation in the more general context of bilateral parking procedures.
Briefly put, this correspondence associates with any word a in the alphabet Z an ordered pair of
labeled indexed forests (P(a),Q(a)) by a certain insertion procedure

Ω• : a 7→ (P(a),Q(a)),

see Figure 2.3 for an illustration.

1 2 3 4 5 6 7 8 9 10 11 12 13

2

2

4 7 11

12

1 2 3 4 5 6 7 8 9 10 11 12 13

4

6

1 3 2

5

P(a)

Q(a)

Figure 2.3. The tableaux Ω•(a) = (P(a),Q(a)) for the word a = 4.11.7.11.12.2.

The insertion procedure is such that P(a) is a local binary search forest whereas Q(a) is a
decreasing forest. Both are labelings of the same underlying indexed forest3.
Fact 2.3.6 (Ω• lifts Ω)

Let a be a word over Z. The indexed forest F underlying Ω•(a) has support Ω(a). In particular,
a = a1 · · · ak is Ω-parking if and only if F consists of a single tree with support [k].

3We allow supports of indexed forests to be in Z instead of Z>0 in this section; if the support of F is not in Z>0,
we set PF = 0.
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The Ω•-correspondence allows us to define the equivalence ≡
Ω

on words: a ≡
Ω

b if P(a) = P(b).
To each class C we attach the polynomial

P(C) :=
∑
i∈C

F(i). (2.3.4)

Each class C corresponds to a labeled forest of the form P(a), and thus to its underlying forest: we
will simply write it as F (C). Then one can show that

P(C) = PF (C).

That is, (2.3.4) always gives a forest polynomial (or zero). For any permutation w, the set
Red(w) is closed4 under ≡

Ω
. Therefore it decomposes into ≡

Ω
-equivalence classes. Let Gw denote the

set of ≡
Ω

-equivalence classes of Red(w−1). Then (1.4.3) can be rewritten

Sw =
∑

C∈Gw

PF (C). (2.3.5)

This is the decomposition hinted at at the end of Section 2.3.2.

2.3.5 The Aval–Bergeron–Bergeron decomposition

The work of Aval–Bergeron–Bergeron [ABB04] is concerned with the quotient Poln /QSym+
n . They

compute a basis of this quotient, showing that its dimension is the nth Catalan number. Explicitly,
let ABBn denote the set of c ∈ Codesn such that

j∑
i=1

cn+1−i ≤ j − 1 for j = 1, . . . , n.

They show

Poln = Q{xc | c ∈ ABBn} ⊕ QSym+
n . (2.3.6)

For f ∈ Poln, let us write π(f) ∈ Q{xc | c ∈ ABBn} for the projection parallel to QSym+
n

according to the above decomposition, that is, f − π(f) ∈ QSym+
n .

Proposition 2.3.7
Let F ∈ Forest such that c(F ) ∈ Codesn. Then the following holds:

π(PF ) =
{

PF c(F ) ∈ ABBn

0 c(F ) /∈ ABBn.

For the first case, it is in fact easy to show from Definition 2.3.5 that all monomials occurring
in xc in PF satisfy c ∈ ABBn. The second case means that PF ∈ QSym+

n ; the proof in [5] is by
induction, using a special recurrence relation for forest polynomials.

Proof of Theorem 2.3.4. We have now all the ingredients to sketch the proof. Let w ∈ S′
n, and we

want to compute aw =
〈
Sw

〉
n
. We apply this to the decomposition (2.3.5). By Proposition 2.3.3,

we have

aw =
∑

C∈G′
w

〈
PF (C)

〉
n

(2.3.7)

4There is a characterization of ≡
Ω

as generated by certain local moves · · · ij · · · 7→ · · · ji · · · for |j − i| ≥ 2 under a
certain constraint, from which this closure property follows immediately.
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where G′
w ⊂ Gw consists of the classes C with c(F (C)) ∈ ABBn. Since F (C) has size n − 1, this is

easily seen to be equivalent to the support of F (C) be [n− 1]. For such a class,〈
PF (C)

〉
n

= PF (C)(1, 1, . . .) = #C.

Indeed, the first equality follows from
〈
xc
〉

n
= 1 for all c ∈ ABBn with

∑
i ci = n − 1, as can be

deduced easily from Postnikov’s rule (2.3.2). The second one follows from the combinatorics of
forest polynomials and is skipped here. Replacing in (2.3.7), we get

aw =
∑

C∈G′
w

#C. (2.3.8)

Using Fact 2.3.6, C ∈ G′
w if all words in C are Ω-parking (equivalently, C contains a Ω-parking word).

Thus the formula above is precisely the content of Theorem 2.3.4.
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Chapter 3

Miscellany of combinatorics

3.1 Flagged P -partitions
We briefly recalled the theory of (P, ω)-partitions in Section 1.2. An extension was given to allow
for upper bounds on values (“flags”) by Assaf and Bergeron [AB20]. The generating functions will
become polynomials (no more quasisymmetry) and the building blocks are now the slide polynomials
introduced in(3.1.5) instead of fundamental quasisymmetric functions. We present here some results
from the article [6] which revisits their approach.

3.1.1 Flags

Let Z>0 be the ordered alphabet with letters i[j] where i ∈ Z>0 and j ∈ Z>0. We have a linear
order on Z>0 t Z>0 given by i < i[1] < i[2] < i[3] < · · · < i+ 1 for all i. We define the value of i[j]

by val(i[j]) = i.
The order is the lexicographic order on Z×Z>0: as we will see the values will encode the upper

bounds for P -partitions, while the exponents will replace the labeling ω from (P, ω)-partitions.
Let Inj(Z>0) be the set of injective words, which are words with distinct letters over the alphabet

Z>0. There is a natural way to go from a word w on Z>0 to Inj(Z>0). Namely, one associates a word
W = stan(w) by labeling the occurrences of a given letter i in w from left to right by i[1], i[2], . . . .
For instance w = 1221625 gets mapped to W = 1[1]2[1]2[2]1[2]6[1]2[3]5[1]. This process is injective,
and will be used as our natural embedding

stan : Z∗ ↪→ Inj(Z). (3.1.1)

3.1.2 (P, Φ)-partitions

We now define our notion of (P,Φ)-partitions with restrictions.
Definition 3.1.1

Let P be a poset. A labeled flag on P is an injective function Φ : P → Z>0.

Let us note that if P = (p1 < p2 < . . . < pk) is a chain, then a labeled flag Φ can be identified
with the injective word Φ(p1)Φ(p2) . . .Φ(pk).
Definition 3.1.2 ((P, Φ)-partitions)

Let (P,Φ) be a poset with a labeled flag. A (P,Φ)-partition is a function f : P → Z>0 such
that for any u, v ∈ P :

• f(u) ≥ f(v) if u ≺P v;
• f(u) > f(v) if u ≺P v and Φ(u) > Φ(v);
• f(u) ≤ val(Φ(u)).
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The first two conditions define (P, ω)-partitions for ω ordering elements as Φ does. Now the last
condition forces upper bounds, in a way that is “compatible” with the ordering.

1[1]

3[1]

3[2]

3[3]
Φ

3

1 2

3

1 1

11

2

1 2

2

1 1

11

3

3

1

1

v2

v1
v3

v4

e1e2

e3 e4

f1 f2 f3

f5f4

Figure 3.1. A poset with labeled flag (P,Φ) and its five (P,Φ)-partitions

We denote the set of all (P,Φ)-partitions by Part(P,Φ). An example is given in Figure 3.1: on
the left is the Hasse diagram of the diamond poset with the labeled flag in blue, while on the right
are the five (P,Φ)-partitions.

3.1.3 Slide decompositions

Let (P,Φ) be a poset with a labeled flag. The proof of the partition (1.2.2) goes through to show

Part(P,Φ) =
⊔

L∈Lin(P )
Part(L,Φ). (3.1.2)

Introducing the generating polynomials

K(P,Φ) =
∑

f∈Part(P,Φ)

∏
u∈P

xf(u). (3.1.3)

which gets us then immediately
K(P,Φ) =

∑
L∈Lin(P)

K(L,Φ). (3.1.4)

Recall that (L,Φ) can be encoded as an injective word W = a1 . . . ar ∈ Inj(Z>0) where #P = r.
Then any (L,Φ)-partition f can be encoded in a sequence (i1, . . . , ir) with ij = f(vj), and we get
K(L,Φ) is thus given by the explicit series

K(L,Φ) = F(W ) :=
∑

i1≥i2≥···≥ir>0
ij>ij+1 if aj>aj+1

ij≤val(aj)

xi1xi2 · · ·xir . (3.1.5)

Note that we had defined F(w) when w is a word on Z>0; it is directly checked that F(w) =
F(stan(w)), which makes the two definitions compatible. We have moreover
Proposition 3.1.3

For any W ∈ Inj(Z>0), the polynomial F(W ) is either zero or is equal to Fc for a unique c.

This extends the case where W has the form W = stan(w), and the proof is essentially the
same: see Section 3.2 of [6].
Application to Forest polynomials. We can now explain (2.3.3) which gives the expansion

of forest polynomials into slide polynomials. Indeed, one can identify forest polynomials as the
generating K(F,ΦF ), where F is an indexed forest and ΦF has values φF from Section 2.3.3, with
exponents increasing going up left edges; see Figure 3.2.
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4[1] 7[1] 11[1]
11[2]
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Figure 3.2. An indexed forest with its flag.

3.2 Bilateral parking procedures
Part of the work [6] presented above was motivated by giving a nice framework for the expansion
of forest polynomials into slide polynomials. The work presented in this section taken from [11]
was aimed at understanding the parking procedure Ω and correspondence Ω• in a larger context, cf.
Section 3.2.2. It turns out to also connect to mixed Eulerian numbers, cf. Section 3.2.4, and to give
rise to a surprising “universal” enumeration result (Theorem 3.2.3).

3.2.1 Bilateral parking

Abstractly, a parking procedure on Z will be encoded as a function that takes as entry a word a1 · · · ar

(where ai represents the desired spot of the ith car) and outputs the finite set of spots in Z where
cars are parked. We focus here on a particular class; we let Fin(Z) be the set of all finite subsets of
Z, and given S ∈ Fin(Z), we call block of S a maximal interval in S.

A function P : Z∗ → Fin(Z) is a bilateral parking procedure if P(ε) = ∅ and if, for any r ≥ 1
and any word a1 · · · ar, it satisfies the following conditions:

1. If ar /∈ P(a1 · · · ar−1), then P(a1 · · · ar) = P(a1 · · · ar−1) t {ar};
2. If ar /∈ P(a1 · · · ar−1), let I = {t, t + 1, . . . , u} be the block of P(a1 · · · ar−1) containing a.

Then P(a1 · · · ar) = P(a1 · · · ar−1) t {a} where a ∈ {t− 1, u+ 1}.
The first condition expresses that one parks at their favorite spot if it is available, while the

second says that otherwise, one needs to park in the next available spot on the left or on the right. In
particular, everyone manages to park: the subset P(a1 · · · ar) has cardinality r and P(a1 · · · ar−1) ⊂
P(a1 · · · ar). A bilateral procedure is determined by the choice of t− 1 or u+ 1 in the second case.
We will say simply “park to the left” or “park to the right” when describing procedures.
Definition 3.2.1

Let P be a bilateral parking procedure. A word a1 · · · ar is P-parking if P(a1 · · · ar) = [r].

Let us give some more examples:
• The classical parking procedure Pright consists simply of always parking to the right. It is clear

that Pright-parking words are the usual parking functions.
• The procedure Ω from Section 2.3.4 also fits this definition: When the desired spot is unavail-

able, let j ∈ {1, . . . , r− 1} be maximal such that aj ∈ I. Then Ω(War) is defined by parking
to the left if a < aj , and to the right of if a ≥ aj .

• Pprime: If the size of the interval I from condition 2. is a prime number, park to the right,
otherwise park to the left.

3.2.2 Labeled Indexed forests

The following explains the connection between Ω and Ω• in a wider context.
To any bilateral parking procedure P one can attach a correspondence P̂ that associates to a

word a a pair of labeled indexed forests (P(a),Q(a)) with the same underlying forest F (a) whose
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support is P(a). Here Q(a) is a decreasing forest, while P(a) are certain labelings by the letters in
a.

The definition is inductive, let us sketch it; we refer to Section 5 of [11] for more details. Suppose
that P and Q are the trees obtained after reading a word a = a1 · · · ak, and F ∈ Forest be their
common shape with support P(b). Let b ∈ Z, we want to determine the trees P′ = P(ab) and
Q′ = Q(ab). We know that P(ab) contains one more element than P(b). There is then a unique
way to add a root to F so that the new forest F ′ has support P(ab). The labelings P′ and Q′ are
obtaining by labeling the new root in F ′ by b in P′, and by k + 1 in Q′; all other labels remain the
same.

This mapping a 7→ P̂(a) is injective: one can get back the original by reading labels in P(a).
It is harder to describe its image in general. Note finally that the decreasing forest Q(a) encodes
precisely the order in which the spots were occupied during the procedure, that is the flag of sets

∅ ⊂ P(a1) ⊂ P(a1a2) ⊂ · · · ⊂ P(a).

3.2.3 Local procedures and universal enumeration

Let τ : i 7→ i+ 1 be the shift on Z. It extends to subsets of Z or words in Z∗ naturally: for instance
τ({2, 3, 5}) = {3, 4, 6} and τ(523) = 634. If I is a block of S = P(W ), let WI be the subword of
W given by the letters ai such that the ith car parked in S (this depends on the procedure P).
Definition 3.2.2

A bilateral parking procedure P is said to be shift invariant if P(τ(W )) = τ(P(W )) for any W .
A parking procedure is called locally decided if for any W , I a block of P(W ) and a ∈ I, then
the decision to park left or right is the same when reading a after W or WI .

A procedure is called local if it is both shift invariant and locally decided.

The notion of shift invariance is fairly clear; the notion of local decision can be understood as
encoding the fact that the decision to park left or right of a block does not depend on the other
blocks. The procedures Pright,Pprime,Ω are all shift invariant. A procedure that is not shift invariant
is the following procedure Pevenodd: if the desired spot ai is occupied, park right if ai is even, and
left if ai is odd.

The following may appear as a fairly surprising result at first sight, especially thinking of the
procedure Pprime for instance.
Theorem 3.2.3

Let P be a bilateral, local parking procedure. Then the number of P-parking functions of length
r is given by (r + 1)r−1.

The proof is based on Pollak’s cyclic lemma argument for the classical case, as given in [FR74].
Very briefly, one uses the "locally decided" property of P to show that there is a well defined notion
of P-parking on a cycle Z/(r+ 1)Z for words of length r with letters in [r+ 1]. The shift-invariance
then entails that a fraction 1/(r + 1) of these are P−parking, leading to the desired enumeration.

3.2.4 Probabilistic parking

There is a natural way to insert randomness in our bilateral parking procedures: replace the deter-
ministic rule to decide to park to the right or to the left by a probabilistic one. A simple example is
already given at the end of [KW66], the seminal article introducing the usual parking functions. Fix
p a real in [0, 1]. Then in case one’s spot is occupied, park to the right with probability p and to the
left with probability 1 − p. Of course p = 1 correspond to the procedure Pright.

We still keep the notation P for such procedures; for a given word a, we get a random finite set
P(a) of parking spots, which is supported only on a finite number of sets in Fin(Z). It is natural to
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define the P-parking probability of a = a1 · · · ak as the probability that P(a) is equal to [k]. Let us
give an example that we will revisit in Section 3.3.

Fix q ∈ R+. Recall the q-integers (n)q = 1 + q + . . . + qn−1 and q-factorials (n)q! = (n)q(n −
1)q · · · (1)q. The procedure Pq is defined as follows: if one wants to park at a spot i ∈ [a, b] where
[a, b] is a block of occupied spots, then one parks to the right with probability (i+1−a)q/(b−a+2)q,
and to the left with probability qi+1−a(b− i+ 1)q/(b− a+ 1)q. These are the probabilities to exit
right and left of the block [a, b] respectively, when doing a biased random walk starting from i with
jump probabilities 1/(1 + q) and q/(1 + q).

This has a natural abelian property: the probability distribution Pq(a) (and in particular the Pq-
parking probability) is invariant under permuting letters in a. It thus only depends on the content
c(a) = (c1, c2, . . .) ∈ Codes where ci counts occurrences of i in a for all i.
Definition 3.2.4 ( Remixed Eulerian Numbers)

Given c = (c1, . . . , cr) with sum r, we define the remixed Eulerian number

Ac(q) := (r)q!pc(q)

where pc(q) is the Pq-parking probability of a word with content c.

When q = 1 –which corresponds to an unbiased random walk above– we will see in Section 3.3.2
that Ac(1) is exactly the mixed Eulerian number introduced in Section 2.2, and that Ac(q) is a
natural q-deformation.

There is a notion of a memoryless (deterministic or probabilistic) procedure: it means that P(ab)
depends only on b and the occupied spots P(a). While Pright,Pprime are memoryless, the procedure
Ω from Section 2.3.2 is not: it requires information about previous drivers’ choices. We have the
following result (Proposition 4.7 in [11])
Proposition 3.2.5

The procedures Pq are the only local, memoryless, abelian procedures.

To finish, the following notions generalize to the random setting:
• There is a natural notion of probabilistic local procedures. The proof of Theorem 3.2.3 can be

adapted to show the following: the sum of P-parking probabilities of all words of length r is
given by (r + 1)r−1.

• The correspondence with labeled indexed forests can also be extended, by associating to a
word a a probability measure on pairs of bilabeled trees.

3.2.5 Generalization

Instead of starting with preference words over Z, one can define procedures for words over Z × A:
here A is any set adding some information for the parking rules, while Z is still used to encode the
desired spot.

The augmented alphabet Z ' Z × Z>0 is such an example. The parking procedure Ω from
Section 2.3.2 is naturally defined over injective words Inj(Z) over this alphabet, as follows.The
parking rules are the same as in the original procedure using only values, except when vi = vj in the
case where one cannot park at their desired spot (we use the indices as in Section 2.3.2). In that
case, the corresponding letters are v[ei]

i and v
[ej ]
j , and one parks to the right if ei > ej and to the

left if ei < ej . The original parking procedure Ω is obtained by “standardization”: we can inject Z
into Z by having all occurrences of the same letter i replaced by i[1], i[2], . . . from left to right.
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3.3 q-analogues
While working on [10], we had the idea of deforming some of our notions and introduce a parameter
q. The resulting work [16] shows how fruitful that idea is, and we present some of its results here.
It led also to the definition of remixed Eulerian numbers, an interesting family of polynomials whose
combinatorics were studied in the separate work [12].

3.3.1 The Klyachko algebra and Macdonald’s reduced word identity

Let k be a field of characteristic zero, and q ∈ k not equal to a nontrivial root of unity. We introduce
the Klyachko algebra Kq, by considering a natural q-deformation of Klyachko’s presentation [Kly85]
given in Section 2.1.2. More precisely Kq is the commutative algebra over k on the generators
{ui | i ∈ Z} subject to the following relations for i ∈ Z:

(q + 1)u2
i = quiui−1 + uiui+1. (3.3.1)

We let Kq
+ be the algebra obtained by setting ui = 0 for i < 0, and Kq

n if we set ui = 0 for i ≥ n
in addition. We recognize that K1

n = Kn as introduced in Section 2.1.2.
For an N-vector c, let uc =

∏
i∈Z u

ci
i . For any finite subset I ⊂ Z, define the squarefree monomials

uI by uI :=
∏

i∈I ui ∈ Kq. The following generalizes Klyachko’s basis in the case of K1
n:

Proposition 3.3.1
The family of squarefree monomials (uI)I for I finite subset of Z (resp. Z>0, resp. [n− 1]) is

a k-basis of the algebra Kq (resp. Kq
+, res. Kq

n).

The proof is given in Section 3.3 of [16].
q-divided symmetrization Recall that Klyachko’s algebra Kn = K1

n is used in the first formula,
Theorem 2.1.3, for the numbers aw. Now the second formula, Theorem 2.1.4, is in terms of divided
symmetrization. Up to the evaluation (2.1.3), the fact that these two formulas coincide is equivalent
to the following algebraic fact: for any polynomial f ∈ Poln of degree n− 1, one has〈

f
〉

n
= (n− 1)!

∫
Kn

f(u1, u2 − u1, . . . , un−1 − un−2,−un−1).

(Proof sketch: The fact that this holds for all Sw with w ∈ S′
n is precisely the formula coincidence

for aw. Now in degree n− 1, these polynomials span a subspace of Poln in direct sum with Sym+
n ,

as seen in Section 1.4. It is then easy to show that both sides of the above equality vanish on the
degree n− 1 component of Sym+

n .)
We can define a notion of q−divided symmetrization that will extend this identity to Kq

n. It will
have the added advantage of giving a direct proof of the identity for q = 1 without using geometry
arguments.

The Demazure-Lusztig operators Ti = (q − 1)∂ixi + si act on Pol. They satisfy braid and
commutation relations, and thus the operators Tw for w ∈ S∞ are well-defined.

The q-divided symmetrization of f ∈ Poln is defined as

〈
f
〉q

n
:=

∑
w∈Sn

Tw

(
f∏

1≤i≤n−1(qxi − xi+1)

)
,

which clearly specializes to divided symmetrization for q = 1. Now we have
Theorem 3.3.2

For any polynomial f ∈ Poln of degree n− 1, one has

〈
f
〉q

n
= (n− 1)q!

∫
Kq

n

f(u1, u2 − u1, . . . , un−1 − un−2,−un−1).
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Here
∫

Kq
n
P (u1, . . . , un−1) is the coefficient of P (u1, . . . , un−1) ∈ Kq

n on the basis element u[n−1].
The idea of the proof is to use the polynomials f = yc defined by

yc = xc1
1 (x1 + x2)c2 . . . (x1 + · · · + xn)cn ,

for N-vectors c = (c1, . . . , cn) with |c| = n − 1. One must show that both sides in Theorem 3.3.2
coincide on such polynomials. In fact, both sides vanish if cn > 0, and one is left to show that for
c = (c1, . . . , cn−1), :

〈
yc
〉q

n
= (n− 1)q!

∫
Kq

n

uc1
1 u

c2
2 · · ·ucn−1

n−1 . (3.3.2)

The proof in Section 4 of [16] then shows that both sides are equal to the remixed Eulerian num-
bers Ac1,...,cn−1(q), by giving the following characterization of these numbers: the remixed Eulerian
numbers Ac(q) are uniquely determined for any r by the conditions A(1r) = (r)q! and

(1 + q)A(c1,...,cr) = qA(c1,...,ci−1+1,ci−1,...,cr) +A(c1,...,ci−1,ci+1+1,...,cr)

for any i ≤ r and ci ≥ 2.

q-Klyachko–Macdonald identity. We give a q-analogue of Klyachko’s specialization (2.1.3).
Theorem 3.3.3

Let w ∈ S∞ of length `. The following equality holds in Kq
+.

Sw(u1, u2 − u1, . . . ) = 1
(`)q!

∑
a∈Red(w)

qcomaj(a)ua1ua2 · · ·ua`
.

We skip the proof: it is given in Section 7.1 of [16]. It differs from Klyachko’s proof of (2.1.3), as
presented in Section 8 of [10]. In fact the latter proof does not seem to adapt so as to incorporate
the parameter q. Instead we adapt the argument in [FS94] using the NilCoxeter algebra, via a
“Yang–Baxter relation” that works particularly well with the relations in Kq

+.
Notice that sp : Kq

+ → k, ui 7→ (i)q is clearly a morphism of algebra, and we retrieve in particular
q-Macdonald identity (1.4.6).

3.3.2 Remixed Eulerian numbers

In this section we consider q as an indeterminate. We introduced the family Ac(q) first in Def-
inition 3.2.4 with a probabilistic interpretation (and q ≥ 0 a real number). We then stated two
alternative definitions, given by both sides of (3.3.2). Note that none of these definitions immedi-
ately implies the following result, whose proof consists in a recurrence for these numbers:
Proposition 3.3.4 (Proposition 5.4 of [16])

For any c = (c1, . . . , cr) such that |c| = r, we have Ac(q) ∈ N[q].

Combinatorics. This family has nice combinatorial properties. Already for q = 1 many were noticed
by Postnikov in [Pos09]; all of these naturally have q-analogues as we show in [12].

Subfamilies of Ac(q) recover several classical numbers: (shifted) q-binomial coefficients for c =
(k, 0, . . . , r − k); q-analogues of Eulerian numbers if ci = r and cj = 0 otherwise; more generally,
q-hit numbers for c connected, that is if the support {i | ci 6= 0} is an interval.

Let us focus on q-hit numbers. This family was first introduced by Garsia and Remmel [GR86]
as a transformation of the more classical q-rook numbers. They can be studied fruitfully via the
probabilistic definition of Ac(q), as can various extensions of these numbers: this is the PhD topic
of Solal Gaudin, a current student of Sylvie Corteel and myself, see in particular [Gau24].
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Recently (q-)hit numbers have resurfaced in algebraic contexts, related to matroids [BST23,
KK24] as well as certain chromatic symmetric functions [AN21, CMP23]. This last connection was
intriguing, as a key role in this context is played by certain modular relations

(1 + q)ene = qeen + nee
(1 + q)nen = qenn + nne.

which are reminiscent of the relation (3.3.1).
We explained this connection satisfyingly in Section 3.1 of [9], by defining a morphism from the

algebra1 given by the modular relations to the q-Klyachko algebra Kq.
Polynomial properties. Let c = (c1, . . . , cr) ∈ Codesr with |c| = r. Let Dc denote the degree of
Ac(q), and dc its valuation, i.e. the smallest exponent of q with a nonzero coefficient in Ac(q).

For t ∈ R, we use t+ := max(0, t). Let hi(c) =
∑

1≤j≤i(cj − 1), so that hr(c) = 0 in particular.

H(c) :=
∑

1≤i≤r−1
hi(c) and H−(c) :=

∑
1≤i≤r−1

(−hi(c))+. (3.3.3)

Then we have the following formulas

dc = H−(c), (3.3.4)

Dc =
(
r

2

)
−

∑
1≤i≤r−1

(hi(c))+. (3.3.5)

The following pictorial perspective for c is useful. Attach a Łukasiewicz path Pc to c by starting
at the origin and translating by (1, ci − 1) as c is read from left to right; see Figure 3.3. For i ∈ [r],
hi(c) is then the ordinate on Pc after the ith step.

Figure 3.3. Pc when c = (0, 3, 0, 0, 0, 1, 3)

Finally, let us say that a polynomial P (q) =
∑

i piq
i ∈ Z[q] is psu(N) if it has positive coefficients;

is symmetric with respect to N/2, by which we mean that the coefficients satisfy pi = pN−i; and is
unimodal, which means coefficients weakly increase then weakly decrease. Then
Theorem 3.3.5

For any c, Ac(q) is psu
((r

2
)

−H(c)
)
.

The proof is based on the same recurrence as the one used to prove Proposition 3.3.4.
Let us illustrate these results on c = (0, 3, 0, 0, 0, 1, 3). the formulas give dc = 1 + 1 + 2 + 2 = 6

and Dc =
(7

2
)

− 1 = 20. As a matter of fact, the full polynomial Ac(q) is given by

2q20+6q19+11q18+18q17+27q16+35q15+40q14+42q13+40q12+35q11+27q10+18q9+11q8+6q7+2q6.

which also illustrates Theorem 3.3.5 since Ac(q) is psu(26).

1More accurately, from the subalgebra spanned by monomials with equal numbers of n and e.
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Chapter 4

A new approach to quasisymmetric
polynomials

We know that quasisymmetric polynomials play a role in the proof of the combinatorial interpre-
tation of aw from Theorem 2.3.4. The key is that the space QSym+

n interacts well with divided
symmetrization, cf. Proposition 2.3.3, and with the forest polynomials, cf. Theorem 2.3.7.

In this section we will develop an operator approach to quasisymmetric polynomials, which leads
to a simple derivation of several properties, as well as highlight the special role played by forest
polynomials. It is parallel to the one for symmetric polynomials and Schubert polynomials. We will
in fact give a general framework explaining the existence of these special families. The works [2]
and [3] are the sources for this chapter, as well as a result from [1] connecting to the numbers aw.

4.1 Quasisymmetric polynomials revisited
The starting point is the special role of Schubert polynomials with respect to divided differences, as
stated in Theorem 1.4.1. Note that a polynomial is symmetric in x1, . . . , xn if and only if it is fixed
by si for all i < n, if and only if it is in the common kernel of the operators ∂i for all i < n.

We define similar operators Ti for the space of quasisymmetric polynomials, and develop a theory
from the combinatorics of these operators. The results from this section are from1 [3].

4.1.1 Operators Ti, Ri and quasisymmetric polynomials

Bergeron and Sottile [BS98] were the first to introduce the following operator in the context of
Schubert calculus (see also [BS02, LRS06]). For f ∈ Pol we define the ith Bergeron-Sottile map

Ri(f) = f(x1, . . . , xi−1, 0, xi, xi+1, . . .). (4.1.1)

In other words, Ri(f) sends xi to 0 and shifts xj 7→ xj−1 for all j ≥ i + 1. It is an algebra
endomomorphism of QSym.
Theorem 4.1.1

f ∈ Poln has f ∈ QSymn if and only if R1f = · · · = Rnf .

The proof is a simple verification that Rif = Ri+1f holds precisely when f is quasisymmet-
ric in xi, xi+1, seeing other indeterminates as scalars. Let us mention that Hivert’s fundamental
work [Hiv00] uses a similar characterization, but in terms of a certain symmetric group action.

1A parameter m is present throughout [3] to deal with “colored” m-quasisymmetric polynomials; we will only deal
with m = 1 corresponding to the classical quasisymmetric case.
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Corollary 4.1.2
QSymn is a subring of Poln.

The proof is immediate from Theorem 4.1.1: the space of f ∈ Poln such that Rif = Ri+1f is
a subring since Ri,Ri+1 are algebra morphisms, and the intersection of subrings is a subring. All
other proofs of this fact (that I’m aware of) involve identifying an explicit basis (monomial,funda-
mental) whose multiplication can be explicitly computed, while here we have a more illuminating
and streamlined explanation.

We now define the operator Ti : Pol → Pol by the following

Tif := Ri+1f − Rif

xi
, which expands to (4.1.2)

Tif(x+) := f(x1, . . . , xi−1, xi, 0, xi+1, . . .) − f(x1, . . . , xi−1, 0, xi, xi+1, . . .)
xi

. (4.1.3)

We call Ti the quasisymmetric divided difference; later we will see it also as a “trimming operator”.
Let us note already the following easy factorizations:

Tif = Ri∂if = Ri+1∂if. (4.1.4)

The following corollary is a direct rephrasing of Theorem 4.1.1.
Corollary 4.1.3

f ∈ Poln is quasisymmetric if and only if T1f = · · · = Tn−1f = 0.

So the operators Ti detect quasisymmetry in the same way that the operators ∂i detect symmetry.
Recall that the operators ∂i satisfy the relations of the nilCoxeter monoid. The operators Ti satisfy
the following:

TiTj = TjTi+1 for all i > j. (4.1.5)

These relations define a monoid structure on some familiar objects, as we now explain.

4.1.2 Forests and the Thompson monoid

Recall the indexed forests of Section 2.3.3. The following is a slightly different definition of these
objects that is better suited for this chapter:
Definition 4.1.4

An indexed forest F is an infinite sequence T1, T2, . . . of binary trees where all but finitely many
of the trees are trivial.

Given a forest2 F , its tree Ti above will be represented with a root labeled i. Also, the union of
all leaves of these trees can be naturally labeled “from left to right”, leading to a bijection3 between
leaves and Z>0: see Figure 4.1.

The equivalence of this definition of indexed forests with the original one is also clear: in particular,
nontrivial binary trees correspond to maximal intervals of the support in the original definition.

Monoid structure We define a monoid structure on Forest by taking for F,G ∈ Forest the compo-
sition F · G ∈ Forest to be obtained by identifying the ith leaf of F with the ith root node of G.
The empty forest ∅ ∈ Forest is the identity element. This is illustrated in Figure 4.1.

2We will often say simply forest instead of indexed forest.
3This is the same leaf labeling used in the Definition 2.3.5 of forest polynomials.

42



24 4

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 99

F G

F ·G G · F

1

2

3
4

5 6
2

1

1

1

2

3

3

3

4
5

Figure 4.1. The products F ·G and G ·F for F,G ∈ Forest, with both roots and leaves labeled

Definition 4.1.5
The Thompson monoid is defined by the presentation

ThMon := 〈1, 2, . . . | i · j = j · (i+ 1) for all i > j〉.

The group of fractions of this monoid is the famous Thompson group F , although we do not
know any connection between the work in this section and the vast literature on this famous group.
We show4 in [3] that we have an isomorphism of monoids

ThMon ∼= Forest (4.1.6)

under the map sending j to the indexed forest j, whose only nontrivial tree is Tj of size 1. Because
of the relation (4.1.5), we can then define composite operators

TF := Ti1 · · · Tik
for any factorization F = i1 · · · ik. (4.1.7)

We now give a few definitions. First, we have the left terminal set LTer(F ) which is the analogue
of the descent set of a permutation. We say that i ∈ LTer(F ) if there is a terminal node with left
child i. This happens if and only if we can write F = (F/i) · i for a (necessarily unique) forest F/i,
and so

LTer(F ) = {i | F/i exists}.

The set of trimming sequences for F is defined as

Trim(F ) := {(i1, . . . , i|F |) | F = i1 · · · i|F |}.

Recall the code map F 7→ c(F ) = (a1, a2, . . .) where aj is the number of internal nodes whose
leftmost leaf descendant is j. Via this map, i ∈ LTer(F ) is equivalent to ai > 0 and ai+1 = 0, and
in this case c(F/i) = (a1, . . . , ai−1, ai − 1, 0, ai+1, . . .)

4.1.3 Forest polynomials revisited

We have defined and used forest polynomials in Section 2.3.3 mainly as an ad hoc tool to prove our
combinatorial interpretation for aw. The following fundamental result shows that they have a very
different raison d’être:

4This isomorphism seems to be a folklore fact in the theory of Thompson groups, cf. [BB05] for instance, although
the language is slightly different.
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Theorem 4.1.6
The family (PF )F with F ∈ Forest is the unique family of homogeneous polynomials satisfying

P∅ = 1 and, for any i > 0 and F ∈ Forest,

TiPF =
{

PF/i if i ∈ LTer(F );
0 otherwise.

. (4.1.8)

The relations in the theorem are not hard to show, following the combinatorial Definition 2.3.5.
Uniqueness proceeds in the same way as for Schubert polynomials in Theorem 1.4.1.

From this theorem we can get several very nice properties of forest polynomials, mimicking the
one from Theorem 1.4.2. Let Forestn be the set5 of forests in Forest such that all leaves of nontrivial
trees are ≤ n. This plays the role that Sn plays for Schubert polynomials. Also, recall that the set
ABBn was defined in Section 2.3.5.
Theorem 4.1.7

Let B ⊂ Forest. The forest polynomials (PF )F ∈B form a basis of
a) Pol when B = Forest.
b) Poln when B consists of forests F with LTer(F ) ⊂ {1, . . . , n}.
c) QSym+

n when B consists of forests F with LTer(F ) ⊂ {1, . . . , n} and F /∈ Forestn.
d) The space spanned by monomials xc with c ∈ ABBn when B = Forestn, as well as

QSCoinvn := Poln /QSym+
n .

We omit the proof and refer to [3]; let us simply note that only c) requires some nontrivial work.
We also invite the reader to compare this result with Theorem 1.4.2. We refer to Table A.2 for a
side-by-side comparison.

4.2 Applications

4.2.1 Extracting coefficients

As a corollary of Theorem 4.1.6, by iteration, one has that every f ∈ Pol can be uniquely written as

f =
∑

F ∈Forest
aF PF where aF = TF (f)(0, 0, . . .). (4.2.1)

In other words, the linear forms f → TF (f)(0, 0, . . .) are “dual” to forest polynomials. This
is interesting in particular in the quasisymmetric case below, as no formula for such coefficient
extractions seems to have been known.

The set ZigZagn of forests F with LTer(F ) ⊂ {n} play an analogous role to the n-Grassmannian
permutations. Recall the set QSeqn of slowly decreasing integer sequences from Section 1.4, where
we showed that F(a) for a ∈ QSeqn are the fundamental quasisymmetric polynomials in QSymn.

The mapping (a1, . . . , ak) 7→ F = ak · · · a1 is easily seen to be a bijection QSeqn → ZigZagn,
and we have:
Theorem 4.2.1

The forest polynomials with F ∈ ZigZagn are a basis for QSymn. They coincide with funda-
mental quasisymmetric polynomials: under the bijection above, we have PF = F(a).

Suppose we want to decompose the quasisymmetric polynomial f(x1, x2, x3) = 2x2
1x2 + 2x2

1x3 +
2x2

2x3 + x1x
2
2 + x1x

2
3 + x2x

2
3 ∈ QSym3 into fundamental quasisymmetric polynomials. We track in

Figure 4.2 the nonzero applications Ti3Ti2Ti1f where (i1, i2, i3) ∈ QSeq3, and read off

f = F(332) + 2F(322) − 3F(321) = F3,{2} + 2F3,{1} − 3F3,{1,2}

5In terms of the earlier definition, this means simply that the support of F is included in {1, . . . , n − 1}.
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using (4.2.1).

f 2x2
1 + 2x2

2 + x1x3 + x2x3

x1 + x2

−x1 + 2x2

1

2

−3

T3

T3

T2

T2

T2

T1

Figure 4.2. Trimming f ∈ QSym3

4.2.2 Positive forest decompositions

Recall that for Schubert polynomials, it is wide open to establish the nonnegativity of the generalized
Littlewood-Richard coefficients arising in the expansion

SuSw =
∑

v∈Sn

cv
u,wSv

in a combinatorial manner. A major hurdle is that the Leibniz rule

∂i(fg) = ∂i(f)g + (si · f)∂i(g)

involves the non-Schubert positive operator f 7→ si · f .
For forest polynomials, things are much nicer. The main tool is the following immediate lemma:

Lemma 4.2.2 (Twisted Leibniz rule)
For f, g ∈ Pol we have

Ti(fg) = Ti(f)Ri+1(g) + Ri(f)Ti(g).

There also simple straightening rules for products and Ti’s and Rj ’s, from which one can obtain
for instance that in the expansions

RiPF =
∑

bG
i,F PG,

the coefficients bG
i,F are in N.

From these one can obtain for instance the positivity of structure coefficients of forest polynomials
in an algorithmic manner.
Theorem 4.2.3

For any F,G we have

PF PG =
∑

cH
F,GPH with cH

F,G ≥ 0.

The proof goes by applying TH to the left hand side, using the twisted Leibniz rule above, and
proceed by induction using the aforementioned straightening rules. With the same technique one
can prove

Sw =
∑

F ∈Forest
aF PF with aF ≥ 0.

The reader may have noticed that we know this last fact already from the combinatorics of the
forest correspondence Ω•, see (2.3.5). In fact Theorem 4.2.3 can also be proved with this approach,
see Theorem 6.3 in [3]. The proofs sketched in this section are arguably more straightforward.
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4.2.3 Connection with the main problem

Results from this section can be found in Section 9 of [1]. We start with the following factorization:
for any f ∈ Poln of degree n− 1.〈

f
〉

n
= T1(T1 + T2) · · · (T1 + · · · + Tn−1)f. (4.2.2)

The proof is by induction. We can rewrite it as〈
f
〉

n
=

∑
(i1,...,in−1)

1≤ij≤j

Ti1 · · · Tin−1f. (4.2.3)

The subset of sequences (i1, . . . , in−1) subject to ij ≤ j is precisely the set of trimming sequences
for indexed forests F with |F | = n−1 all of whose nontrivial leaves are in {1, . . . , n}. It then follows
that for any f ∈ Poln of degree n− 1〈

f
〉

n
=

∑
F ∈Forestn
|F |=n−1

| Trim(F )| TF f. (4.2.4)

From Theorem 4.1.7, we know that all TF occurring here vanish on QSym+
n . This gives therefore a

new proof of Proposition 2.3.3.
Let us now pick w ∈ S′

n. Applying (4.2.3) to Sw, we get:

aw =
∑

(i1,...,in−1)
1≤ij≤j

Ti1 · · · Tin−1Sw. (4.2.5)

Now we know aw > 0 from Corollary 2.2.2 as aw is a sum of positive rational numbers, and we
have also a combinatorial interpretation of aw showing that aw ∈ N. Unfortunately strict positivity
seems hard to extract from this interpretation.

Theorem 9.5 of [1] gives a combinatorial proof of this positivity:
Theorem 4.2.4

Let w ∈ S′
n. All terms on the right-hand side of (4.2.5) are in N, and one can construct an

explicit sequence (i1, . . . , in−1) for which it is in Z>0. It follows that aw ∈ Z>0.

To conclude, let us remark for historical purposes that the factorization (4.2.2) above is in fact
at the origin of the introduction of the operators Ti, and thus of all the work from this chapter.

4.3 Schubert and forest polynomials under the same roof
As we saw, Schubert and forest polynomials are obtained in a common way, and the parallel is
highlighted in Table A.2. Briefly speaking, we have in each case operators (Xi)i>0 on Pol which,
under composition, give a representation of a certain (partial) monoid M . Then in each case we
had the existence and uniqueness of a family of polynomials indexed by M that satisfy a “duality”
statement, namely Theorems 1.4.1 and 4.1.6. In each case, we have also nice “basis” properties of
the corresponding polynomials, cf. Theorem 1.4.2 and 4.1.7.

Let us give another elementary example, with the usual partial derivative operators d
dxi

. They
commute, and thus generate a monoid of operators isomorphic to Codes under componentwise
addition. In this case the family of normalized monomials

{Sc = xc

c!
:= xc1

1 x
c2
2 · · ·

c1!c2! · · ·
| c = (c1, c2, . . .) ∈ Codes}
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is “dual”, in the sense that it satisfies S∅ = 1 and

d

dxi
Sc =

{
Sc−ei if ci ≥ 1
0 otherwise.

(4.3.1)

Here c− ei = (c1, . . . , ci−1, ci − 1, ci+1, . . .).
We want to understand this phenomenon more generally. This is what motivates the following

setting, which is taken from [2].

General Setting. We fix a linear operator X: Pol → Pol of degree −1, i.e. X takes degree d
homogeneous polynomials to degree d − 1 homogeneous polynomials for all d. For any i ≥ 1, we
define the shifted operator Xi : Pol → Pol by the composition

Xi : Pol ∼= Poli−1 ⊗ Pol → Poli−1 ⊗ Pol ∼= Pol

where the first and last isomorphisms are given by the isomorphism

Poli−1 ⊗ Pol = Q[x1, . . . , xi−1] ⊗ Q[xi, xi+1, . . .] ∼= Pol,

and the middle map is given by id ⊗X. Thus in particular X = X1, and f ∈ Poln implies that
Xn+1f = Xn+2f = · · · = 0. All three examples ∂i,Ti,

d
dxi

fit in this setting.
Let M be a partial monoid. We assume that M is a graded partial monoid, generated in degree

1 by {ai}i≥1, so that the length function `(w) = k when w = ai1 · · · aik
is well-defined. We let

Fac(w) be the set of factorizations w = ai1 · · · aik
and Last(w) be the set of letters that can occur

as the last letter in a factorization. We also assume that M is right-cancellative: if wa = w′a in M
for any w,w′, a then w = w′. Thus if a ∈ Last(w) the element u = w/a is well-defined as w = ua.
Definition 4.3.1

We define a divided difference pair (or a dd-pair) to be the data of (X,M) as above, such that
the map ai 7→ Xi is a representation of M in the monoid of linear endomorphisms of Pol.

For w ∈ M we write Xw for the associated endomorphism of Pol, and in particular we have
Xi = Xai . One can now state then the notion of dual family of polynomials:
Definition 4.3.2

A family (Sw)w∈M of homogeneous polynomials in Pol is dual to a dd-pair (X,M) if S1 = 1,
and for each w ∈ M and i ∈ {1, 2, . . .} we have

XiSw =
{
Sw/i if i ∈ Last(w)
0 otherwise.

The main questions we ask are: Does such a family exist ? Is it then unique ? Can we find a
formula for it ? We want to have positive answers for all of them, as in our examples. This is what
motivates the next definitions; detailed argumentation for their introduction can be found in [2].

We define creation operators for the operator X to be a collection of degree 1 polynomial
endomorphisms Yi : Pol → Pol such that on the ideal Pol+ ⊂ Pol of f with f(0, 0, . . .) = 0, we
have the identity

∞∑
i=1

YiXi = id. (4.3.2)

A code map for M is an injective map c : M → Codes such that `(w) = |c(w)| and max supp c(w) =
max{i | ai ∈ Last(w)} for all w ∈ M . Given c ∈ Codes, let max supp c be the largest i such that
ci > 0 (set max supp c = 0 if no scugh i).
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Theorem 4.3.3
Suppose that a dd-pair (X,M) has creation operators Yi and a code map. Then

(1) The code map is bijective.
(2) There is a unique dual family (Sw)w∈M defined by

Sw =
∑

(i1,...,ik)∈Fac(w)
Yik

· · ·Yi1(1). (4.3.3)

(3) The subfamily (Sw)w where max supp c(w) ≤ d is a basis of Pold for any d ≥ 0.

Applications. Code maps exist for all of our examples. What about creation operators ?
Let us deal first with the case of partial derivatives: then one can choose Yi(f) = 1

k+1xif where
f has degree k > 0, and extend by linearity. Then (4.3.2) holds as it is Euler’s famous theorem∑
xi

d
dxi

= k id on homogeneous polynomials of positive degree k. Then a direct computation show
that (4.3.3) gives the normalized monomials as expected.

For Schubert polynomials, using xiRi∂i = Ri+1 − Ri and telescoping gives∑
i≥1

xiRi∂i = id −R1. (4.3.4)

Define Z = id +R1 + R2
1 + · · · : Pol+ → Pol+ .. Then

∑
i≥1 ZxiRi∂i = id and thus the ZxiRi are

creation operators for the dd-pair given by ∂ and the nil-Coxeter monoid.
It follows from Theorem 4.3.3 that Schubert polynomials exist as a dual basis, and have the

expansion6:

Sw =
∑

(i1,...,ik)∈Red(w)
Zxik

Rik
· · · Zxi1Ri1(1). (4.3.5)

Corollary 4.3.4
Schubert polynomials have positive coefficients.

Indeed Equation (4.3.5) is clearly positive, as the operators Ri send monomials to monomials or to
zero. This is arguably the simplest proof of positivity for Schubert polynomials.

We can also relate this expansion to the pipe dreams from Section 1.4: applying (4.3.4) directly
to Schubert polynomials, we get the recursion

Sw = R1Sw +
∑

i∈Des(w)
xiRiSwsi .

Using the pipe dream expansion (1.4.4) for each Schubert polynomial hints at a new decomposition
for these objects, which is proved bijectively as Theorem 3.5 in [2]: the first term above corresponds
to pipe dreams of w without crosses in their first column, while the sum can be understood via a
simple transformation

For forest polynomials, recall that Ti = Ri∂i, and so
∑

i≥1 xiTi = id −R1 from (4.3.4). It follows
that the operators Zxi are creation operators for the Ti, and we get from Theorem 4.3.3 that forest
polynomials exist as a dual basis, and have the following expansion:

PF =
∑

(i1,...,ik)∈Trim(F )
Zxik

· · · Zxi1(1).

In that case, the theorem gets us immediately the existence of forest polynomials without having to
come up with Definition 2.3.5.

To conclude, we give in Theorem 5.3 of [2] another application of Theorem 4.3.3: we show that
slide polynomials, which were ubiquitous in the work presented here, occur also naturally as a dual
basis for a certain dd-pair .

6This is different from the BJS expansion (1.4.3)
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Appendix A

Tables

c(F ) PF

(0, 0, 0, 0, 0) 1
(1, 0, 0, 0, 0) x1
(0, 1, 0, 0, 0) x1 + x2
(0, 0, 1, 0, 0) x1 + x2 + x3
(0, 0, 0, 1, 0) x1 + x2 + x3 + x4
(2, 0, 0, 0, 0) x2

1
(1, 1, 0, 0, 0) x1x2
(1, 0, 1, 0, 0) x2

1 + x1x2 + x1x3
(1, 0, 0, 1, 0) x2

1 + x1x2 + x1x3 + x1x4
(0, 2, 0, 0, 0) x2

1 + x1x2 + x2
2

(0, 1, 1, 0, 0) x1x2 + x1x3 + x2x3
(0, 1, 0, 1, 0) x2

1 + 2x1x2 + x2
2 + x1x3 + x2x3 + x1x4 + x2x4

(0, 0, 2, 0, 0) x2
1 + x1x2 + x2

2 + x1x3 + x2x3 + x2
3

(0, 0, 1, 1, 0) x1x2 + x1x3 + x2x3 + x1x4 + x2x4 + x3x4
(3, 0, 0, 0, 0) x3

1
(2, 1, 0, 0, 0) x2

1x2
(2, 0, 1, 0, 0) x2

1x2 + x2
1x3

(2, 0, 0, 1, 0) x3
1 + x2

1x2 + x2
1x3 + x2

1x4
(1, 2, 0, 0, 0) x1x2

2
(1, 1, 1, 0, 0) x1x2x3
(1, 1, 0, 1, 0) x2

1x2 + x1x2
2 + x1x2x3 + x1x2x4

(1, 0, 2, 0, 0) x3
1 + x2

1x2 + x1x2
2 + x2

1x3 + x1x2x3 + x1x2
3

(1, 0, 1, 1, 0) x2
1x2 + x2

1x3 + x1x2x3 + x2
1x4 + x1x2x4 + x1x3x4

(0, 3, 0, 0, 0) x3
1 + x2

1x2 + x1x2
2 + x3

2
(0, 2, 1, 0, 0) x2

1x2 + x2
1x3 + x1x2x3 + x2

2x3
(0, 2, 0, 1, 0) x2

1x2 + x1x2
2 + x2

1x3 + x1x2x3 + x2
2x3 + x2

1x4 + x1x2x4 + x2
2x4

(0, 1, 2, 0, 0) x1x2
2 + x1x2x3 + x1x2

3 + x2x2
3

(0, 1, 1, 1, 0) x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4
(4, 0, 0, 0, 0) x4

1
(3, 1, 0, 0, 0) x3

1x2
(3, 0, 1, 0, 0) x3

1x2 + x3
1x3

(3, 0, 0, 1, 0) x3
1x2 + x3

1x3 + x3
1x4

(2, 2, 0, 0, 0) x2
1x2

2
(2, 1, 1, 0, 0) x2

1x2x3
(2, 1, 0, 1, 0) x2

1x2
2 + x2

1x2x3 + x2
1x2x4

(2, 0, 2, 0, 0) x2
1x2

2 + x2
1x2x3 + x2

1x2
3

(2, 0, 1, 1, 0) x2
1x2x3 + x2

1x2x4 + x2
1x3x4

(1, 3, 0, 0, 0) x1x3
2

(1, 2, 1, 0, 0) x1x2
2x3

(1, 2, 0, 1, 0) x1x2
2x3 + x1x2

2x4
(1, 1, 2, 0, 0) x1x2x2

3
(1, 1, 1, 1, 0) x1x2x3x4

Table A.1. Table of forest polynomials PF .
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QSymn Symn

Divided differences Ti ∂i

Indexing combinatorics F ∈ Forest w ∈ S∞
Fully supported forests Forestn Sn

Forest code c(F ) Lehmer code lcode(w)
Left terminal set LTer(F ) Descent set Des(w)
F/i for i ∈ LTer(F ) wsi for i ∈ Des(w)

Trimming sequences Trim(F ) Reduced words w
Zigzag forests Z ∈ ZigZagn Grassmannian permutations λ

Monoid Thompson monoid nilCoxeter monoid
Pol-basis Forest polynomials PF Schuberts Sw

Composites TF = Ti1 · · · Tik
for i ∈ Trim(F ) ∂w = ∂i1 · · · ∂ik

for i ∈ w

Poln-basis {PF | LTer(F ) ⊂ [n]} {Sw | Des(w) ⊂ [n]}
Duality ev0 TF PG = δF,G ev0 ∂wSw′ = δw,w′

Positive expansions PF PH =
∑
cG

F,HPG, cG
F,H ≥ 0 SuSw =

∑
cv

u,wSv, cv
u,w ≥ 0

Invariant basis Fundamentals Fm,S(xn) Schur polynomials sλ(xn)
Coinvariant basis {PF | F ∈ Forestn} {Sw | w ∈ Sn}

Table A.2. Comparing the symmetric and quasisymmetric stories; here ev0(f) = f(0, 0, . . .)
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Combinatoire algébrique autour d’un problème de géométrie énumérative

Résumé: Les travaux présentés dans ce mémoire d’HDR s’inscrivent dans le domaine de la combinatoire
algébrique et consistent en plusieurs contributions originales. Ils ont été motivés par une question initiale
de géométrie énumérative, à savoir calculer explicitement le nombre de points d’intersection aw entre la
variété permutaédrale et une sous-variété de Schubert Xw de la variété des drapeaux.
La première partie est consacrée à la présentation du problème initial ainsi qu’à la description des tech-
niques classiques de cohomologie permettant d’énoncer deux formules distinctes pour aw. La première
formule, sur les travaux de Klyachko, permet d’établir la stricte positivité des nombres aw et de mettre
en évidence diverses propriétés structurelles de ces derniers. La seconde formule, obtenue au terme d’un
développement algébrique et combinatoire substantiel, fournit une interprétation combinatoire explicite
de ces mêmes nombres.
La deuxième partie rassemble plusieurs contributions développées au cours de l’étude du problème orig-
inal. On y introduit notamment des q-analogues des quantités apparaissant dans la première formule,
les polynômes eulériens mixtes, qui constituent une famille riche englobant de nombreuses suites combi-
natoires classiques. Les propriétés combinatoires et algébriques de cette q-déformation font l’objet d’une
étude approfondie. Par ailleurs, une variante de la théorie des P -partitions est développée, en lien avec la
seconde formule, ainsi qu’une théorie des fonctions de parking bilatères, qui permet d’éclairer les aspects
combinatoires de cette dernière.
La troisième et dernière partie est consacrée aux polynômes quasisymétriques, une famille qui joue un rôle
central dans la démonstration de la seconde formule pour les nombres aw. Une nouvelle approche fondée
sur des opérateurs est proposée, permettant de simplifier et d’étendre les méthodes classiques d’étude
de ces polynômes. Cette construction est directement inspirée de celle des polynômes symétriques, les
polynômes forêts jouant ici un rôle analogue à celui des polynômes de Schubert.



Algebraic combinatorics around a problem in enumerative geometry

Abstract: The research presented in this habilitation thesis falls within the field of algebraic combi-
natorics, and consists of several original contributions. It was initially motivated by an enumerative
geometry problem: namely, the explicit computation of the number of intersection points aw be-
tween the permutahedral variety and a Schubert subvariety Xw within the flag variety.
The first part introduces the original problem and describes classical cohomological techniques that
allow for the derivation of two distinct formulas for aw. The first formula, based on Klyachko’s
work, establishes the strict positivity of the numbers aw and highlights several of their structural
properties. The second formula, obtained through substantial algebraic and combinatorial develop-
ments, provides an explicit combinatorial interpretation of these numbers.
The second part gathers various contributions that emerged during the resolution of the initial
problem. In particular, q-analogues of the quantities appearing in the first formula, named remixed
Eulerian numbers, are introduced and studied. This rich family encompasses many classical combi-
natorial sequences, and the combinatorial and algebraic aspects of this q-deformation are studied in
depth. Additionally, in connection with the second formula, a variant of the theory of P -partitions
is developed, along with a theory of bilateral parking functions which sheds light on certain combi-
natorial aspects of the formula.
The third and final part focuses on quasisymmetric polynomials, an important family playing a cen-
tral role in the derivation of the second formula for aw. A new operator-based approach is introduced,
simplifying and extending classical methods for studying these polynomials. This construction is
directly inspired by the theory of symmetric polynomials, with forest polynomials playing a role
analogous to that of Schubert polynomials.

Image en couverture : Une dissection du permutaèdre en cubes.
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