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Algebraic combinatorics
around a problem in enumerative geometry

Philippe Nadeau



Outline

I. Quasisymmetric polynomials revisited

II. The original problem in enumerative geometry

III. Extra combinatorics (parking procedures)

We first recall the connection between symmetric and Schubert
polynomials, via divided differences and permutations.

Let w be a permutation in Sn.
aw = number of points in the intersection of the permutahedral variety
Permn with a generic Schubert variety Xw.

Manifestly positive rules for the coefficients aw

We have new trimming operators Ti. The combinatorics is given by certain
forests, and we get a dual basis of forest polynomials.

We present an analogue theory for quasisymmetric polynomials.



I. Quasisymmetric
polynomials revisited



Symmetric polynomials and divided differences

Polynomials Fix n ≥ 1, and define Poln := Q[x1, ... , xn].

Let also Pol := Q[x1, x2, ...] which we see as Pol = ∪n Poln.

Let also S∞ =
S

n Sn

Let Sn be the group of permutations of {1, ... , n}, generated by si = (i, i + 1) for i < n.

= { Permutations w of Z>0 = {1, 2, ...} such that w(i) = i for i >> 0.}.

Sn acts on Poln, and f ∈ Poln is called symmetric (f ∈ Symn) if fixed by the action.

Example for n = 3, elementary symmetric polynomials
e1 = x1 + x2 + x3, e2 = x1x2 + x1x3 + x2x3, e3 = x1x2x3.



Symmetric polynomials and divided differences

Polynomials Fix n ≥ 1, and define Poln := Q[x1, ... , xn].

Let also Pol := Q[x1, x2, ...] which we see as Pol = ∪n Poln.

Let also S∞ =
S

n Sn

Let Sn be the group of permutations of {1, ... , n}, generated by si = (i, i + 1) for i < n.

= { Permutations w of Z>0 = {1, 2, ...} such that w(i) = i for i >> 0.}.

Sn acts on Poln, and f ∈ Poln is called symmetric (f ∈ Symn) if fixed by the action.

Then f ∈ Poln is symmetric if and only if @if = 0 for i = 1, ... , n− 1.

Operators Define the divided difference @i =
id− si
xi − xi+1

on Poln and Pol.



Symmetric polynomials and divided differences

Polynomials Fix n ≥ 1, and define Poln := Q[x1, ... , xn].

Let also Pol := Q[x1, x2, ...] which we see as Pol = ∪n Poln.

Let also S∞ =
S

n Sn

Let Sn be the group of permutations of {1, ... , n}, generated by si = (i, i + 1) for i < n.

= { Permutations w of Z>0 = {1, 2, ...} such that w(i) = i for i >> 0.}.

Sn acts on Poln, and f ∈ Poln is called symmetric (f ∈ Symn) if fixed by the action.

Then f ∈ Poln is symmetric if and only if @if = 0 for i = 1, ... , n− 1.

MonoidWe now look at the monoid of all composites @i1@i2 · · · @ik in the ring of
endomorphisms of Pol.
It is isomorphic to the nilCoxeter monoid, with underlying set S∞ and multiplication
w · w′ = ww′ if ‘(w) + ‘(w′) = ‘(ww′), and 0 otherwise.

Operators Define the divided difference @i =
id− si
xi − xi+1

on Poln and Pol.

⇒ Composite operators @w := @i1@i2 · · · @ik−1@ik when si1 · si2 · · · sik−1 · sik = w.



Schubert polynomials

S123 = 1
S213 = x1

S132 = x1 + x2
S231 = x1x2

S312 = x21

S321 = x21x2
Ex (w ∈ S3)

Definition-Theorem. The Schubert polynomialsSw for w ∈ S∞, are the unique family
of homogeneous polynomials in Pol such thatSid = 1 and

@iSw =

(
Swsi if w(i) > w(i + 1),
0 otherwise.

Proof Sketch: Pick n such that w ∈ Sn, defineSw = @w−1wo(x
n−1
1 xn−22 · · · x1n−1), and

check that this does not depend on n.

(i is a descent)



Schubert polynomials

S123 = 1
S213 = x1

S132 = x1 + x2
S231 = x1x2

S312 = x21

S321 = x21x2

Origin: Sw encodes the cohomology class of the Schubert subvariety Xwow inside the
full flag variety.

Ex (w ∈ S3)

[Lascoux-Schützenberger ’82]

Definition-Theorem. The Schubert polynomialsSw for w ∈ S∞, are the unique family
of homogeneous polynomials in Pol such thatSid = 1 and

@iSw =

(
Swsi if w(i) > w(i + 1),
0 otherwise.

Corollary (Duality). For any w,w′ ∈ S∞,

Constant term of @w(Sw′) =

(
1 if w = w′

0 otherwise.

Proof Sketch: Pick n such that w ∈ Sn, defineSw = @w−1wo(x
n−1
1 xn−22 · · · x1n−1), and

check that this does not depend on n.

(i is a descent)



Schubert polynomials

• TheSw with w ∈ S∞ form an integral basis of Pol.

• Sw is symmetric in x1, ... , xn⇔ w has a unique descent at i = n.

• Let Sym+
n ⊂ Poln be the ideal generated by the f ∈ Symn with f(0) = 0.

→ TheSw form nice bases of various spaces:

Proposition. In that caseSw = s–(x1, ... , xn) (a Schur polynomial).

Proposition. TheSw forw ∈ Sn project to a basis of the coinvariant space Poln=Sym+
n .



Schubert polynomials

• TheSw with w ∈ S∞ form an integral basis of Pol.

• Sw is symmetric in x1, ... , xn⇔ w has a unique descent at i = n.

• Let Sym+
n ⊂ Poln be the ideal generated by the f ∈ Symn with f(0) = 0.

→ Positivity questions

→ TheSw form nice bases of various spaces:

• From their definition, not clear thatSw has positive coefficients.
Needs extra work⇒ Combinatorial interpretation as pipe dreams.

• This approach says little about the known positivity of the coefficients cwuv:

Proposition. In that caseSw = s–(x1, ... , xn) (a Schur polynomial).

Proposition. TheSw forw ∈ Sn project to a basis of the coinvariant space Poln=Sym+
n .

SuSv =
X
w

cwu,vSw.



Quasisymmetric polynomials

Definition. Let f ∈ Poln. Then f is quasisymmetric if for all a1, ... , ak > 0, for all i1, ... , ik
such that 1 ≤ i1 < ... < ik ≤ n, Coeff of xa11 · · · x

ak
k = Coeff of xa1i1 · · · x

ak
ik in f.

For n = 3, f = 4x21x2 + 4x21x3 + 4x22x3 − 3x1 − 3x2 − 3x3 + 2x1x2x23.

a1, a2 = 2, 1 a1, a2, a3 = 1, 1, 2a1 = 1

We let QSymn be the space of these polynomials, graded by degree.



Quasisymmetric polynomials

Definition. Let f ∈ Poln. Then f is quasisymmetric if for all a1, ... , ak > 0, for all i1, ... , ik
such that 1 ≤ i1 < ... < ik ≤ n, Coeff of xa11 · · · x

ak
k = Coeff of xa1i1 · · · x

ak
ik in f.

• Introduced in Stanley’s thesis (1970), explicitly identified by Gessel (1984).
They are the natural setting for certain generating functions for posets.

• Terminal object in the category of combinatorial Hopf algebras.

• Relation to symmetric polynomials: create bases that refine symmetric bases,
expand (quasi)symmetric polynomials in these bases,...

For n = 3, f = 4x21x2 + 4x21x3 + 4x22x3 − 3x1 − 3x2 − 3x3 + 2x1x2x23.

Motivation(s)

a1, a2 = 2, 1 a1, a2, a3 = 1, 1, 2a1 = 1

We let QSymn be the space of these polynomials, graded by degree.

(More precisely this holds for quasisymmetric functions, which are
the power series limits of these polynomials)



Trimming operators

Definition. For f ∈ Poln and i < n, define

Ri(f(x1, ... , xn)) := f(x1, ... , xi−1, 0, xi, xi+1, ... , xn−1)

We define operators that “detect quasisymmetry”.

This is an algebra morphism Poln → Poln−1.



Trimming operators

This characterization is related to (Hivert, 2000).

Definition. For f ∈ Poln and i < n, define

Lemma. f ∈ QSymn if and only if R1(f) = R2(f) = · · · = Rn(f).

Ri(f(x1, ... , xn)) := f(x1, ... , xi−1, 0, xi, xi+1, ... , xn−1)

We define operators that “detect quasisymmetry”.

This is an algebra morphism Poln → Poln−1.

Corollary. QSymn is a subalgebra of Poln.



Trimming operators

This characterization is related to (Hivert, 2000).

Definition. For f ∈ Poln and i < n, define

Lemma. f ∈ QSymn if and only if R1(f) = R2(f) = · · · = Rn(f).

Definition. For f ∈ Poln and i < n,

Ri(f(x1, ... , xn)) := f(x1, ... , xi−1, 0, xi, xi+1, ... , xn−1)

We define operators that “detect quasisymmetry”.

This is an algebra morphism Poln → Poln−1.

Corollary. QSymn is a subalgebra of Poln.

→ “Trimming” operators Ti.

⇒ f ∈ QSymn if and only if T1f = T2f = · · · = Tn−1f = 0.

Ti := Ri+1−Ri
xi

.



Trimming operators

Ti(f) =
f(x1, ... , xi−1, xi, 0, xi+1, ... , xn−1)− f(x1, ... , xi−1, 0, xi, xi+1, ... , xn−1)

xi

Explicitly,

Note that Ti(monomial of degree d ) = ± a monomial of degree d− 1 (or zero).
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f(x1, ... , xi−1, xi, 0, xi+1, ... , xn−1)− f(x1, ... , xi−1, 0, xi, xi+1, ... , xn−1)

xi

Let n→∞ and consider the Ti as operators on Pol.

The Ti satisfy the relations of the Thompson monoid.

Explicitly,

Note that Ti(monomial of degree d ) = ± a monomial of degree d− 1 (or zero).

TiTj = TjTi+1 if i > j.

(The group given by this
presentation is Thompson group F)



Trimming operators

Ti(f) =
f(x1, ... , xi−1, xi, 0, xi+1, ... , xn−1)− f(x1, ... , xi−1, 0, xi, xi+1, ... , xn−1)

xi

Let n→∞ and consider the Ti as operators on Pol.

The Ti satisfy the relations of the Thompson monoid.

Explicitly,

1 2

1 2

i

i i + 1

To study the combinatorics, associate to Ti the elementary diagramei:

Note that Ti(monomial of degree d ) = ± a monomial of degree d− 1 (or zero).

TiTj = TjTi+1 if i > j.

(The group given by this
presentation is Thompson group F)

ei =



Monoid elements as forests

'
e4e2

e2e5
1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9



Monoid elements as forests

'

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3
44

5 6

77

8 9 10

e4e2
e2e5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10

The equivalence class of

can be represented by

1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

e2e5e3f10e2f11



Combinatorics

Definition. An indexed forest F is a sequence of plane binary trees, eventually trivial.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3
44

5 6

77

8 9 10
F



Combinatorics

Definition. An indexed forest F is a sequence of plane binary trees, eventually trivial.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3
44

5 6

77

8 9 10

Proposition. Define F · G = the forest H obtained by identifying the leaves of F with
the roots of G. Then For ' Thompson monoid.

F

⇒We can define TF = Ti1 · · · Tik by taking any decomposition F = ĩ1 · · · ĩk.

Let For be the set of indexed forests.



Combinatorics

Definition. An indexed forest F is a sequence of plane binary trees, eventually trivial.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3
44

5 6

77

8 9 10

Proposition. Define F · G = the forest H obtained by identifying the leaves of F with
the roots of G. Then For ' Thompson monoid.

F

⇒We can define TF = Ti1 · · · Tik by taking any decomposition F = ĩ1 · · · ĩk.

Let For be the set of indexed forests.

• Let LTer(F) be the set of left leaves i of a terminal node of F.

Example LTer(F) = {2, 4, 7, 11} above

• F=i is defined when i ∈ LTer(F) by removing said terminal node.



Example

1

1

3

2

1

1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4

1 2 3 4

F = 1̃ · 2̃ · 1̃ = 1̃ · 1̃ · 3̃.F

F=i

i



Forest polynomials

Definition-Theorem[N.-Spink-Tewari ’24] The forest polynomialsPF for F ∈ For are the
unique family of homogeneous polynomials such thatP∅ = 1 and

Ti(PF) =

(
PF=i if i ∈ LTer(F),
0 otherwise.



Forest polynomials

Definition-Theorem[N.-Spink-Tewari ’24] The forest polynomialsPF for F ∈ For are the
unique family of homogeneous polynomials such thatP∅ = 1 and

Ti(PF) =

(
PF=i if i ∈ LTer(F),
0 otherwise.

Proof Sketch. Direct combinatorial definition ofPF in terms of certain colorings of F,
and a technical check that it satisfies the condition.



Forest polynomials

Definition-Theorem[N.-Spink-Tewari ’24] The forest polynomialsPF for F ∈ For are the
unique family of homogeneous polynomials such thatP∅ = 1 and

Ti(PF) =

(
PF=i if i ∈ LTer(F),
0 otherwise.

Proof Sketch. Direct combinatorial definition ofPF in terms of certain colorings of F,
and a technical check that it satisfies the condition.

By iteration one gets:

Constant term of TF(PG) =

(
1 if G = F,
0 otherwise.

Corollary. (Duality) For F,G ∈ For, we have



Back to Example

x21x2 + x21x3

x21 x1x2

x1

1

1

1

3

2

1

1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4

1 2 3 4

Some polynomialsPF



Forest polynomials

• (PF)F is an integral basis of Pol.

• PF is quasisymmetric in x1, ... , xn if and only F has a unique terminal node at i = n.

• Let QSymn
+ ⊂ Poln be the ideal generated by the f ∈ QSymn with f(0) = 0.

Proposition. If so,PF is a fundamental quasisymmetric polynomial F¸(x1, ... , xn).

Proposition. PF for F ∈ Forn project to a basis of the coinvariant space Poln=QSymn
+.

This means that all nontrivial
leaves are in {1, ... , n}.

→ Nice bases of various spaces:



Forest polynomials

• (PF)F is an integral basis of Pol.

• PF is quasisymmetric in x1, ... , xn if and only F has a unique terminal node at i = n.

• Let QSymn
+ ⊂ Poln be the ideal generated by the f ∈ QSymn with f(0) = 0.

→ Positivity results
• By their combinatorial definition, thePF have positive coefficients.

• The structure constantsPFPG =
P

H d
H
FGPH are positive.

This can be proved combinatorially.

Proposition. If so,PF is a fundamental quasisymmetric polynomial F¸(x1, ... , xn).

(Key: Leibniz rule Ti(fg) = Ti(f)Ri+1(g) + Ri(f)Ti(g).)

Proposition. PF for F ∈ Forn project to a basis of the coinvariant space Poln=QSymn
+.

This means that all nontrivial
leaves are in {1, ... , n}.

→ Nice bases of various spaces:



Positivity of Schubert polynomials

A direct check shows:

Ti = Ri@i

Now for f ∈ Pol with f(0) = 0,

Choose f = Sw with w 6= id

f =
∞X
i=1

(Ri+1(f)− Ri(f)) + R1(f)

=
∞X
i=1

xiTi(f) + R1(f) =
∞X
i=1

xiRi@i(f) + R1(f)

Sw =
X

i∈Des(w)

xiRi(Swsi) + R1(Sw).

• This is a new recurrence.

• Probably the simplest proof thatSw has positive coefficients.

• Can be interpreted combinatorially on pipe dreams.



General framework

Summary In both cases, we have
• Operators X = (Xi) of degree−1 which generate a certain monoidM.
• A theorem stating the existence and uniqueness of homogenous dual polynomials
Sm form ∈ M (i.e. S1 = 1 and XiSm = Sm=i ifm=i exists, 0 otherwise).

How can we ensure that such a theorem exists ? And in that case, can we have a simple
construction for the the dual polynomials ?



General framework

Theorem[N.-Spink-Tewari ’24] Under certain conditions, if Yi are creation operators,
then the dual family (Sm)m∈M is unique, forms a basis of Pol, and is given by

Sm =
X

(i1,...,ik)∈Fact(m)

Yik · · · Yi1(1).

Summary In both cases, we have
• Operators X = (Xi) of degree−1 which generate a certain monoidM.
• A theorem stating the existence and uniqueness of homogenous dual polynomials
Sm form ∈ M (i.e. S1 = 1 and XiSm = Sm=i ifm=i exists, 0 otherwise).

How can we ensure that such a theorem exists ? And in that case, can we have a simple
construction for the the dual polynomials ?
We give a solution based on the existence of creation operators Yi: these must satisfy
for f ∈ Pol with f(0) = 0,

∞X
i=1

YiXi(f) = f.

If the creation operators preserve coefficient positivity of polynomials, we get
immediately that the Sm have positive coefficients.



Related work

→ There are non-homogenous versions of Schubert polynomials called Grothendieck
polynomials, related to K-theory.
We can also define non-homogeneous versions of forest polynomials, called grove
polynomials, using an operator approach.

→ Double Schubert polynomials are a generalization of Schubert polynomials, related
to equivariant algebraic geometry.
We can also define double versions of forest polynomials, using an operator approach.
These have surprising connections with noncrossing partitions.

This is joint work with N. Bergeron, L. Gagnon, H. Spink and V. Tewari: see Equivariant
quasisymmetry and noncrossing partitions, arXiv:2504.15234.

This is work in progress with H. Spink and V. Tewari.



II. A problem in
enumerative geometry



The flag variety and its cohomology

→ The flag variety Fl(n) is the set of complete flags
V• = (V0 = {0} ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = Cn).

Fix Vref
• ∈ Fl(n). The Schubert varieties Xw(Vref

• ) ⊂ Fl(n) are defined for w ∈ Sn.
It admits a natural structure of a smooth projective variety of dimension

`n
2

´
.
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→ The flag variety Fl(n) is the set of complete flags
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• ∈ Fl(n). The Schubert varieties Xw(Vref
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2
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→ The cohomology ring H∗(Fl(n)) overQ is a graded commutative ring.
For any irreducible subvariety Y ⊂ Fl(n) of dimension d, we have a fundamental class
[Y] ∈ Hn(n−1)−2d(Fl(n)). In particular ffw := [Xw0w(Vref

• )] ∈ H2‘(w).

These form a linear basis: H∗(Fl(n)) =
L

w∈Sn Qffw.
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→ The flag variety Fl(n) is the set of complete flags
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For any irreducible subvariety Y ⊂ Fl(n) of dimension d, we have a fundamental class
[Y] ∈ Hn(n−1)−2d(Fl(n)). In particular ffw := [Xw0w(Vref

• )] ∈ H2‘(w).

These form a linear basis: H∗(Fl(n)) =
L

w∈Sn Qffw.

→ For Y of dimension d, write [Y] =
P

w bw(Y)ffw.
The numbers bw(Y) are nonnegative integers: they count the number of intersection
points of Y with generic Schubert subvarieties of codimension d.

In particular when Y = Xu ∩ Xv, finding a manifestly positive rule
for cwuv = bw(Y) is a major open problem.



The flag variety and its cohomology

→ The flag variety Fl(n) is the set of complete flags
V• = (V0 = {0} ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = Cn).

Fix Vref
• ∈ Fl(n). The Schubert varieties Xw(Vref

• ) ⊂ Fl(n) are defined for w ∈ Sn.
It admits a natural structure of a smooth projective variety of dimension

`n
2

´
.

→ The cohomology ring H∗(Fl(n)) overQ is a graded commutative ring.
For any irreducible subvariety Y ⊂ Fl(n) of dimension d, we have a fundamental class
[Y] ∈ Hn(n−1)−2d(Fl(n)). In particular ffw := [Xw0w(Vref

• )] ∈ H2‘(w).

These form a linear basis: H∗(Fl(n)) =
L

w∈Sn Qffw.

→ For Y of dimension d, write [Y] =
P

w bw(Y)ffw.
The numbers bw(Y) are nonnegative integers: they count the number of intersection
points of Y with generic Schubert subvarieties of codimension d.

In particular when Y = Xu ∩ Xv, finding a manifestly positive rule
for cwuv = bw(Y) is a major open problem.

→ Connection with Schubert polynomials: There exists a surjective morphism
jn : Poln → H∗(Fl(n)) with kernel Sym+

n . It satisfies jn(Sw) = ffw for w ∈ Sn.



The numbers aw

Definition Let w ∈ S′n and Vref
• generic.

aw is the number of points in Perm(n) ∩ Xwow(Vref
• ).

The permutahedral variety Perm(n) is the generic orbit closure of the maximal torus
acting in Fl(n).

(It can also be described as a regular semisimple Hessenberg variety, or
abstractly as the toric variety associated with the braid arrangement.)

It is a smooth variety of dimension n− 1.

In the rest of this section, we will see three different positive formulas for aw.

Write S′n for the set of permutations in Sn of length n− 1.



The numbers aw

Definition Let w ∈ S′n and Vref
• generic.

aw is the number of points in Perm(n) ∩ Xwow(Vref
• ).

The permutahedral variety Perm(n) is the generic orbit closure of the maximal torus
acting in Fl(n).

(It can also be described as a regular semisimple Hessenberg variety, or
abstractly as the toric variety associated with the braid arrangement.)

It is a smooth variety of dimension n− 1.

In the rest of this section, we will see three different positive formulas for aw.

Note that if jn(f) = [Perm(n)], then one transforms the computation of aw into finding
the coefficients of a polynomial in its Schubert basis expansion.

Write S′n for the set of permutations in Sn of length n− 1.

The first two formulas are based on this approach; the third one is based on
computations in the cohomology ring of Perm(n).



A (non manifestly positive) formula

We introduce the operator of divided symmetrization
˙
·
¸
n. This is the linear operator

on Poln defined by:˙
f(x1, ... , xn)

¸
n :=

X
w∈Sn

w ·
 

f(x1, ... , xn)Q
1≤i≤n−1(xi − xi+1)

!
.

Proposition[N.-Tewari ’21] For any w ∈ S′n,

aw =
˙
Sw(x1, ... , xn)

¸
n.

This follows from the fact that jn sendsY
1≤i<j≤n
j>i+1

(xi − xj)

to [Perm(n)], a special case of a result of Anderson and Tymoczko [’10].



Formula 1

Proposition [N.-Spink-Tewari ’24] For any f ∈ Poln of degree n− 1,˙
f
¸
n = T1(T1 + T2) · · · (T1 + · · ·+ Tn−1)f.

Remark: This factorization was the starting point of the theory developed in the first
section of this talk.
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Proposition [N.-Spink-Tewari ’24] For any f ∈ Poln of degree n− 1,˙
f
¸
n = T1(T1 + T2) · · · (T1 + · · ·+ Tn−1)f.

Remark: This factorization was the starting point of the theory developed in the first
section of this talk.

By expanding and applying toSw, we obtain

Formula 1 For any w ∈ S′n
aw =

X
(i1,...,in−1)
1≤ij≤j

Ti1 · · ·Tin−1Sw.



Formula 1

Proposition [N.-Spink-Tewari ’24] For any f ∈ Poln of degree n− 1,˙
f
¸
n = T1(T1 + T2) · · · (T1 + · · ·+ Tn−1)f.

Remark: This factorization was the starting point of the theory developed in the first
section of this talk.

By expanding and applying toSw, we obtain

Formula 1 For any w ∈ S′n
aw =

X
(i1,...,in−1)
1≤ij≤j

Ti1 · · ·Tin−1Sw.

One can show that TiSw is always a sum of Schubert polynomials.
⇒ this shows by induction that aw ∈ Z≥0.

By a careful analysis, one can in fact show from this formula that aw ∈ Z>0.



Formula 2

aw =
˙
Sw(x1, ... , xn)

¸
n.

Here we start again with the expression

This time we decomposeSw =
P

bFwPF, via a certain combinatorial procedure.

Now forest polynomialsPF behave well with
˙
·
¸
n: they either vanish or give a simple

combinatorial quantity.
The final result can then be expressed via a certain “parking procedure”:



Formula 2

aw =
˙
Sw(x1, ... , xn)

¸
n.

Here we start again with the expression

This time we decomposeSw =
P

bFwPF, via a certain combinatorial procedure.

Now forest polynomialsPF behave well with
˙
·
¸
n: they either vanish or give a simple

combinatorial quantity.
The final result can then be expressed via a certain “parking procedure”:
Parking procedure Ω: Consider parking spots indexed by Z. Cars 1, 2, ... arrive
successively, with car i preferring spot vi. If spot vi is empty, then car i parks there.
Otherwise, vi belongs to a maximal interval [a, b]. Let j < i be maximal such that
vj ∈ [a, b]. The parking rule is then that car i parks in b + 1 if vi ≥ vj, while it parks in
a− 1 if vi < vj.

A Ω-parking function is a word v1 · · · vn such that all cars park in {1, ... , n}.



Formula 2

aw =
˙
Sw(x1, ... , xn)

¸
n.

Here we start again with the expression

This time we decomposeSw =
P

bFwPF, via a certain combinatorial procedure.

Now forest polynomialsPF behave well with
˙
·
¸
n: they either vanish or give a simple

combinatorial quantity.
The final result can then be expressed via a certain “parking procedure”:
Parking procedure Ω: Consider parking spots indexed by Z. Cars 1, 2, ... arrive
successively, with car i preferring spot vi. If spot vi is empty, then car i parks there.
Otherwise, vi belongs to a maximal interval [a, b]. Let j < i be maximal such that
vj ∈ [a, b]. The parking rule is then that car i parks in b + 1 if vi ≥ vj, while it parks in
a− 1 if vi < vj.

Formula 2 [N.-Tewari ’24] Let w ∈ S′n. Then aw is the number of reduced words of w−1
that are also Ω-parking functions.

From this aw ∈ Z≥0 (but it is not obvious that aw > 0 !).

A Ω-parking function is a word v1 · · · vn such that all cars park in {1, ... , n}.



Formula 3

This last formula relies on seminal work of Klyachko [’85].

He essentially computed the action of the natural map H∗(Fl(n)) 7→ H∗(Perm(n)) on
Schubert classes.

One also needs to introduce Posnikov’s mixed Eulerian numbers Ai [’09]: these are
defined as “mixed volumes of hypersimplices”⇒ The Ai are in Z>0.



Formula 3

aw =
X

i∈Red(w)

Ai

(n− 1)!
.

Formula 3 [N.-Tewari ’23] For any w ∈ S′n,

This last formula relies on seminal work of Klyachko [’85].

He essentially computed the action of the natural map H∗(Fl(n)) 7→ H∗(Perm(n)) on
Schubert classes.

One also needs to introduce Posnikov’s mixed Eulerian numbers Ai [’09]: these are
defined as “mixed volumes of hypersimplices”⇒ The Ai are in Z>0.

This formula implies that aw > 0 (but not that it is an integer!).
Because of the properties of mixed Eulerian numbers, it also follows that aw = aw−1 , a
property that is more mysterious from the other formulas.



Perspectives

→ The link between the various formulas can be explained algebraically. It would be
interesting to also match the combinatorics of the various expressions.

→ One should also try to find manifestly positive rules to compute the “Schubert
coefficients” of the other regular semimple Hessenberg varieties.

This is an interesting family of size the nth Catalan number, whose cohomology is
linked to the Shareshian–Wachs conjecture about certain chromatic (quasi)symmetric
functions.



Extra Combinatorics
(Parking procedures)



Classical Parking Functions

Classical parking procedure ([Konheim-Weiss ’66]).
− r cars want to park on Z.
− The ith car has a preferred spot ai.
− If the spot is available, it parks there.
− If not, it parks in the nearest available spot on the right.

Example.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

a1a2a3a4a5a6a7 = 3525895
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Classical Parking Functions

Classical parking procedure ([Konheim-Weiss ’66]).
− r cars want to park on Z.
− The ith car has a preferred spot ai.
− If the spot is available, it parks there.
− If not, it parks in the nearest available spot on the right.

Example.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

a1a2a3a4a5a6a7 = 3525895

Definition. A word a1a2 ... ar is called a parking function if the parking procedure ends
up with all spots 1, ... , r occupied.

Example.

(r = 1) 1
(r = 2) 11, 12, 21
(r = 3) 111, 112, 113, 121, 122, 123, 131, 132, 211, 212, 213, 221, 231, 311, 312, 321



Bilateral Parking Procedures

Bilateral parking procedure ([Nadeau ’22]).
− r cars want to park on Z.
− The ith car has a preferred spot ai.
− If the spot is available, it parks there.
− If not, it parks in the nearest available spot on the right or on the left, according to

a predetermined rule P.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

“block”

Left Right



Bilateral Parking Procedures

Bilateral parking procedure ([Nadeau ’22]).
− r cars want to park on Z.
− The ith car has a preferred spot ai.
− If the spot is available, it parks there.
− If not, it parks in the nearest available spot on the right or on the left, according to

a predetermined rule P.

Example. (Pprime) Count the number of cars on the block.
If this is a prime number, go right, otherwise go left.

Example. (Pclosest) Count the number of cars on the block to your left (nL) and to your
right (nR). If nL ≥ nR, go right, otherwise go left.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

“block”

Left Right

Example. (Ω) If the desired spot of the last car that parked on the block is to your left,
go right, otherwise go left.



Bilateral Parking Procedures

Bilateral parking procedure ([Nadeau ’22]).
− r cars want to park on Z.
− The ith car has a preferred spot ai.
− If the spot is available, it parks there.
− If not, it parks in the nearest available spot on the right or on the left, according to

a predetermined rule P.

• One can define the notion of a local procedure P: roughly speaking, this means the
the rule is “shift-invariant” and depends only on the block where one wants to park.

• A P-parking function is a word a1 · · · ar such that all cars park in the spots {1, ... , r}.

All of our previous examples are local.



Bilateral Parking Procedures

Bilateral parking procedure ([Nadeau ’22]).
− r cars want to park on Z.
− The ith car has a preferred spot ai.
− If the spot is available, it parks there.
− If not, it parks in the nearest available spot on the right or on the left, according to

a predetermined rule P.

• One can define the notion of a local procedure P: roughly speaking, this means the
the rule is “shift-invariant” and depends only on the block where one wants to park.

Theorem ([N. ’22+]). Let P be a local parking procedure.
Then the number of P-parking functions of size r is (r + 1)r−1.

• A P-parking function is a word a1 · · · ar such that all cars park in the spots {1, ... , r}.

→We have the following “discrete universality result”:

All of our previous examples are local.

The proof relies on a generalization of Pollak’s “cyclic lemma” argument.



A probabilistic parking procedure

→ Fix a real number q ≥ 0, and consider the following procedure Pq: when the
desired spot is occupied, go one spot to the left with probability q=(1 + q), and to the
right with probability 1=(1 + q).
Continue until you find an empty parking spot.
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→ Fix a real number q ≥ 0, and consider the following procedure Pq: when the
desired spot is occupied, go one spot to the left with probability q=(1 + q), and to the
right with probability 1=(1 + q).
Continue until you find an empty parking spot.

→ Given a word v, define the remixed Eulerian number ([N.-Tewari ’21])

Let pv1···vr(q) be the probability that all cars are parked in {1, ... , r} starting from the
list of desired spots v1, · · · , vr.

Here (r)q! = (r)q(r− 1)q · · · (1)q
where (i)q = (1− qi)=(1− q).Av(q) := (r)q!pv(q).

By a result of Petrov [’18], Av(1) = Av, Posnikov’s mixed Eulerian number.



A probabilistic parking procedure

→ Fix a real number q ≥ 0, and consider the following procedure Pq: when the
desired spot is occupied, go one spot to the left with probability q=(1 + q), and to the
right with probability 1=(1 + q).
Continue until you find an empty parking spot.

→ Given a word v, define the remixed Eulerian number ([N.-Tewari ’21])

Let pv1···vr(q) be the probability that all cars are parked in {1, ... , r} starting from the
list of desired spots v1, · · · , vr.

Here (r)q! = (r)q(r− 1)q · · · (1)q
where (i)q = (1− qi)=(1− q).Av(q) := (r)q!pv(q).

By a result of Petrov [’18], Av(1) = Av, Posnikov’s mixed Eulerian number.

→More generally these polynomials comprise several well-known families of standard
“q-analogues" of classical numbers. Furthermore,

Theorem [N.-Tewari ’23] Av(q) is a polynomial in q with positive integral coefficients.
It is symmetric and unimodal.
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