

Introduction

We refer by **threshold Cox-Ingersoll-Ross (TCIR)** to a continuous-time threshold autoregressive process. It follows the CIR dynamics when above or below a fixed level, yet at this level (threshold) its coefficients can be discontinuous. **Goal:** We discuss **maximum likelihood estimation of the drift parameters**, both assuming continuous and discrete time observations. In the ergodic case, we derive **consistency and speed of convergence** of these estimators in long time and high frequency.

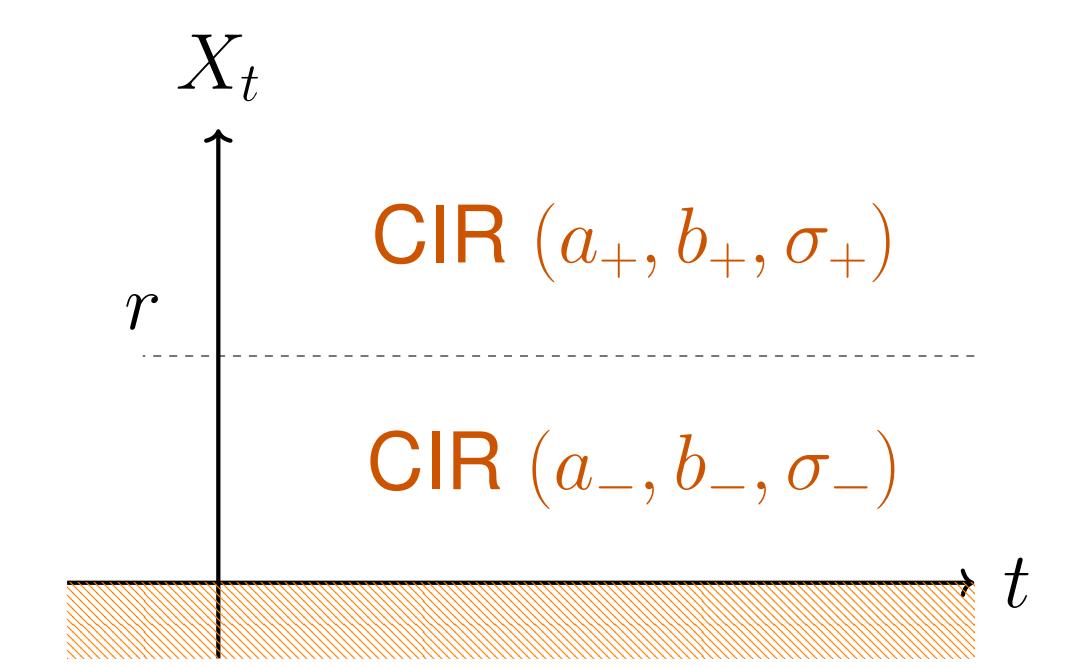
Let $(X_t)_{t \geq 0}$, the process solution of

$$\begin{cases} dX_t = (a_r(X_t) - b_r(X_t)X_t)dt + \sqrt{2\sigma_r(X_t)}X_t dB_t, & t \geq 0, \\ X_0 = x_0. \end{cases} \quad (1)$$

$$\begin{aligned} a_r(x) &= \begin{cases} a_+ \in \mathbb{R} & \text{si } x \geq r, \\ a_- \in \mathbb{R}_+ & \text{si } x < r, \end{cases} & b_r(x) &= \begin{cases} b_+ \in \mathbb{R} & \text{si } x \geq r, \\ b_- \in \mathbb{R} & \text{si } x < r, \end{cases} \\ \sigma_r(x) &= \begin{cases} \sigma_+ > 0 & \text{si } x \geq r, \\ \sigma_- > 0 & \text{si } x < r. \end{cases} \end{aligned} \quad (2)$$

with $r > 0$ et $x_0 > 0$.

For all $t \geq 0$, $X_t \geq 0$.



Statistics of diffusion

Our goal is to estimate the parameter $\theta_0 = (a_{+,0}, b_{+,0}, a_{-,0}, b_{-,0})$ making use of the continuous time observation of $(X_t^{\theta_0})_{t \in [0,T]}$.

We denote $\theta = (a_+, b_+, a_-, b_-)$, the likelihood ratio evaluated at time T is given by

$$G_T(\theta) = \frac{d\mathbb{P}_{\theta,T}}{d\mathbb{P}_{\theta_0,T}} = \exp \left(\int_0^T \frac{a_r(X_s) - b_r(X_s)X_s}{2\sigma_r(X_s)X_s} dX_s - \frac{1}{4} \int_0^T \frac{(a_r(X_s) - b_r(X_s)X_s)^2}{\sigma_r(X_s)X_s} ds \right).$$

Remark: The estimators and the Likelihood is well defined iff $a_- > \sigma_-$ i.e.

$$\mathbb{P}_\theta \left(\int_0^T \frac{\mathbb{1}_{X_s \leq r} ds}{X_s} < \infty \right) = 1.$$

For the estimation problem, we suppose r and σ_\pm to be known.

Process long time behavior depends on the parameters:

	Null recurrent	Positive Recurrent (Ergodic)	Transience
{0} Absorbing point ($a_- = 0$)	$[b_+ = 0 \text{ and } 0 \leq a_+ < \sigma_+]$ and $[b_- \in \mathbb{R} \text{ and } a_- \leq 0]$	\emptyset	$[b_+ < 0 \text{ or } a_+ \geq \sigma_+]$
{0} Instantaneous reflecting point ($0 < a_- \leq \sigma_-$)	$[b_+ = 0 \text{ and } 0 \leq a_+ < \sigma_+]$ and $[b_- \in \mathbb{R} \text{ and } 0 < a_- \leq \sigma_-]$	$[b_+ > 0 \text{ and } a_+ \in \mathbb{R}]$ or $[b_+ = 0 \text{ and } a_+ < 0]$ and $[b_- \in \mathbb{R} \text{ and } 0 < a_- \leq \sigma_-]$	$[b_+ < 0 \text{ or } a_+ \geq \sigma_+]$
{0} is not reached ($a_- > \sigma_-$)	$[b_+ = 0 \text{ and } 0 \leq a_+ < \sigma_+]$ and $[b_- \in \mathbb{R} \text{ and } a_- > \sigma_-]$	$[b_+ > 0 \text{ and } a_+ \in \mathbb{R}]$ or $[b_+ = 0 \text{ and } a_+ < 0]$ and $[b_- \in \mathbb{R} \text{ and } a_- > \sigma_-]$	$[b_+ < 0 \text{ or } a_+ \geq \sigma_+]$

We take Θ such that

$$\Theta := \{(\alpha_\pm, \beta_\pm) \text{ s.t. } [[b_+ > 0 \text{ and } a_+ \in \mathbb{R}]] \text{ or } [[b_+ = 0 \text{ and } a_+ < 0]] \text{ and } [b_- \in \mathbb{R} \text{ and } a_- > \sigma_-]\}.$$

Maximum Likelihood Estimators

Imagine that we observe $(X_t)_{t \in [0,T]}$ in continuous time. For $T \in (0, \infty)$ and $m = -1, 0, 1$, we define

$$\mathcal{Q}_T^{\pm,m} = \int_0^T X_s^m \mathbb{1}_{\{\pm(X_s-r) \geq 0\}} ds \quad \text{and} \quad \mathcal{M}_T^{\pm,m} = \int_0^T X_s^m \mathbb{1}_{\{\pm(X_s-r) \geq 0\}} dX_s.$$

Let $\theta_0 = (a_0^\pm, b_0^\pm)$, the parameter to be estimated and $\theta \in \Theta \subset \mathbb{R}^4$. We denote

$$(\alpha_T^\pm, \beta_T^\pm) = \underset{\theta \in \Theta}{\text{Argmax}} G_T(\theta).$$

ML-Estimators:

For every $T \in (0, \infty)$ the MLE are given by

$$\alpha_T^\pm = \frac{\mathcal{M}_T^{\pm,-1} \mathcal{Q}_T^{\pm,1} - \mathcal{M}_T^{\pm,0} \mathcal{Q}_T^{\pm,0}}{\mathcal{Q}_T^{\pm,1} \mathcal{Q}_T^{\pm,-1} - (\mathcal{Q}_T^{\pm,0})^2} \quad \text{and} \quad \beta_T^\pm = \frac{\mathcal{M}_T^{\pm,-1} \mathcal{Q}_T^{\pm,0} - \mathcal{Q}_T^{\pm,-1} \mathcal{M}_T^{\pm,0}}{\mathcal{Q}_T^{\pm,1} \mathcal{Q}_T^{\pm,-1} - (\mathcal{Q}_T^{\pm,0})^2}.$$

Theorem MLE: Long-time behavior for continuous time observations

► $\frac{1}{T} \mathcal{Q}_T^{\pm,m} \xrightarrow[N \rightarrow \infty]{\text{a.s.}} \mathcal{Q}_\infty^{\pm,m} \in \mathbb{R}_+^*$.

► The estimator is strongly consistent:

$$(\alpha_T^\pm - a_\pm, \beta_T^\pm - b_\pm) \xrightarrow[N \rightarrow \infty]{\text{a.s.}} (0, 0),$$

► and asymptotically normal:

$$\sqrt{T} (\alpha_T^\pm - a_\pm, \beta_T^\pm - b_\pm) \xrightarrow[N \rightarrow \infty]{\text{stably}} N^\pm := (N^{\pm,\alpha}, N^{\pm,\beta}),$$

where N^+ , N^- are two mutually independent, independent of $(X_t)_{t \geq 0}$, two-dimensional Gaussian r.v. with covariance matrices given by

$$2\sigma_\pm \Gamma_\pm^{-1} \text{ with } \Gamma_\pm = \begin{pmatrix} \mathcal{Q}_\infty^{\pm,-1} & -\mathcal{Q}_\infty^{\pm,0} \\ -\mathcal{Q}_\infty^{\pm,0} & \mathcal{Q}_\infty^{\pm,1} \end{pmatrix}.$$

Outlook

- Our results can be extended to the multi-threshold CIR.
- Some work is necessary to prove the strong existence and unicity of the SDE (1): extension of Le Gall 1985.
- These results can be extended to the case where $0 < a_- \leq \sigma_-$ making use of the Quasi-Likelihood.
- A statistical test can be performed to verify if the process hit zero or not.
- A second statistical test can be performed to verify the existence of a threshold.
- A quadratic estimator is proposed to estimate σ_\pm .

High Frequency and Long time case

We assume in this section to observe the process on the discrete time grid $0 = t_0 < t_1 \cdots < t_{N-1} < t_N = T$, for $N \in \mathbb{N}$, $T \in (0, \infty)$, and set $\Delta_N = \max_{k=1, \dots, N} \{t_k - t_{k-1}\}$. We define $X_i := X_{t_i}$, with $i = 0, \dots, N$.

The discretized likelihood provides an estimator $(\alpha_{T,N}^\pm, \beta_{T,N}^\pm)$. Which is the discretized version of the one from continuous time observations.

Remark: Consistency and asymptotic normality holds for $(\alpha_{T,N}^\pm, \beta_{T,N}^\pm)$. Where $\lim_{N \rightarrow +\infty} T_N = +\infty$ and $\lim_{N \rightarrow +\infty} \Delta_N = 0$.

Numerical application

We simulate the threshold OU process using the Euler scheme (time scale 10^{-3}).

a_+	a_-	b_+	b_-	σ_+	σ_-	r	X_0
5	3	2.5	3	1	1.5	1	0.6

Table 1: Parameter choice for simulation.

parameter	a_-	a_+	b_-	b_+
bias	0.086	0.112	-0.009	0.012
MSE	$4, 12 \times 10^{-6}$	2.67×10^{-6}	1.05×10^{-5}	$9, 02 \times 10^{-7}$

Table 2: Mean, mean squared error (MSE) of the MLE estimators with parameters as in Table 1, on $n = 10^3$ trajectories, with $T = 10^3$ and $N = 10^6$ observations on each trajectory.

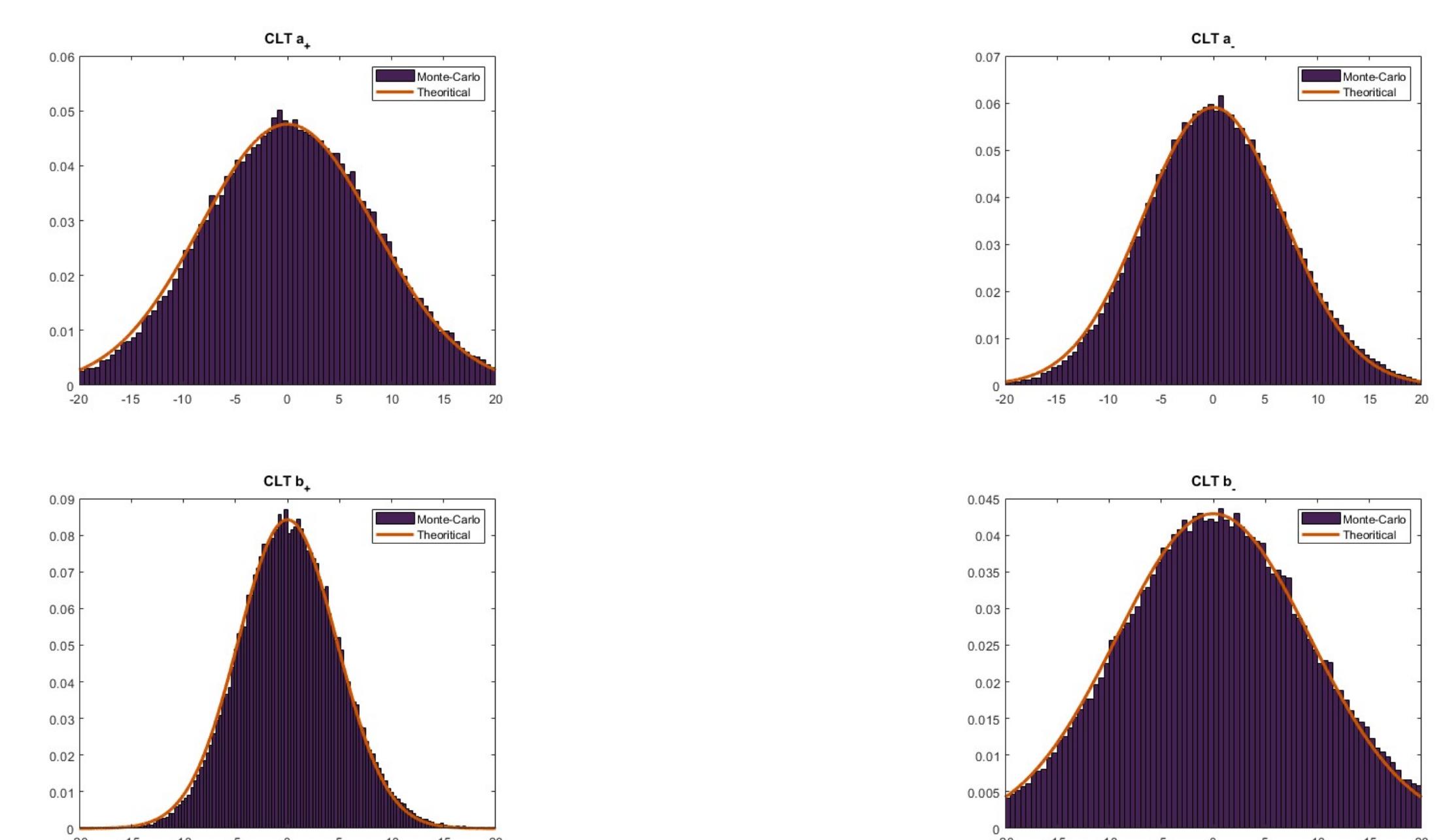


Figure 2: CLT in Theorem MLE, with parameters as in Table 1. We plot the theoretical distribution of the estimation error and compare with the distribution of the error on $n = 10^3$ trajectories, with $T = 10^3$ and $N = 10^6$ observations on each trajectory.

References

- [1] Ben Alaya, Kebaier. Asymptotic Behavior of The Maximum Likelihood Estimator For Ergodic and Nonergodic Sqaure-Root Diffusions, *Stochastic Analysis and Applications*, 2013.
- [2] Mazzonetto, Pigato. Drift estimation of the threshold Ornstein-Uhlenbeck process from continuous and discrete observations, *Statistica Sinica*, 2022.
- [3] Lejay, Pigato. Maximum likelihood drift estimation for a threshold diffusion, *Scandinavian Journal of Statistics*, 2020.