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MOTIVATION

Diffeomorphisms (cts deformations) ubiquitous in physics

:

I General relativity (gauge symmetry)
I Hydrodynamics (fluid flows)
I Topological phases of matter (robust to deformations)

Question :
Observables sensitive to geometry of groups of diffeos ?

...i.e. infinite-dimensional geometry ?
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MOTIVATION

Diffeomorphisms are crucial for quantum Hall effect (QHE)

:
I Non-commutative space [Girvin et al. 85, Bellissard 86]

I Area-preserving diffeos

(sdiffeos)

[Cappelli et al. 92]

I Hall viscosity [Avron et al. 95, Lévay 95]

I Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

This talk : Berry phases due to adiabatic sdiffeos
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2. One-body sdiffeos in 2D

3. Adiabatic sdiffeos in 2D

4. Generalized Hall viscosity
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BERRY PHASES

Quantum system depending on parameters g
I Parameter-dep. energy eigenstates |ψ(g)〉
I Vary parameters adiabatically and cyclically

⇒ gt

I Wavefct picks phase
∫

dt E︸ ︷︷ ︸
Dynamical φ

− i
∫

dt
〈
ψ(gt)

∣∣ ∂
∂t
∣∣ψ(gt)

〉
︸ ︷︷ ︸

Berry φ

Example : time-dependent rotations of spin [Berry 84]

I General Berry φ due to unitary group actions [Jordan 87]

I Berry φ produced by unitary sample diffeos ?
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DEFORMATIONAL BERRY φ

Particle on circle ⇒ position ϕ ∼ ϕ+ 2π

I Wavefct ψ(ϕ) on S1

I Let ϕ 7→ g(ϕ) be a diffeo
I Rotations g(ϕ) = ϕ+ θ

I Unitary Diff S1 action :
(
U [ g]ψ

)
(ϕ)

=
√

(g−1)′(ϕ)ψ
(
g−1(ϕ)

)

Choose adiabatic, cyclic gt(ϕ)

I Berry phases ?
I Assume ψ(ϕ) ∝ e ijϕ

I Berry = i
∫

dt
〈
ψ
∣∣U [ gt]

−1 ∂

∂t
U [ gt]

∣∣ψ〉

= j
∫

dt dϕ
ġ
g′

Analogue for 2D electrons in magnetic field ?
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ġ
g′

Analogue for 2D electrons in magnetic field ?



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

DEFORMATIONAL BERRY φ

Particle on circle ⇒ position ϕ ∼ ϕ+ 2π
I Wavefct ψ(ϕ) on S1

I Let ϕ 7→ g(ϕ) be a diffeo

I Rotations g(ϕ) = ϕ+ θ

I Unitary Diff S1 action :
(
U [ g]ψ

)
(ϕ)

=
√

(g−1)′(ϕ)ψ
(
g−1(ϕ)

)

Choose adiabatic, cyclic gt(ϕ)
I Berry phases ?
I Assume ψ(ϕ) ∝ e ijϕ

I Berry = i
∫

dt
〈
ψ
∣∣U [ gt]

−1 ∂

∂t
U [ gt]

∣∣ψ〉

= j
∫

dt dϕ
ġ
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ġ
g′

Analogue for 2D electrons in magnetic field ?



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

DEFORMATIONAL BERRY φ

Particle on circle ⇒ position ϕ ∼ ϕ+ 2π
I Wavefct ψ(ϕ) on S1

I Let ϕ 7→ g(ϕ) be a diffeo
I Rotations g(ϕ) = ϕ+ θ

I Unitary Diff S1 action :
(
U [ g]ψ

)
(ϕ) =

√
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ḡ′(ϕ) ψ

(
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ḡ(ϕ)

)
Choose adiabatic, cyclic gt(ϕ)

I Berry phases ?
I Assume ψ(ϕ) ∝ e ijϕ

I Berry = i
∫

dt
〈
ψ
∣∣U [ gt]

−1 ∂

∂t
U [ gt]

∣∣ψ〉 = j
∫

dt dϕ
ġ
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)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA

I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B

I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos}

≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ)

7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

SDIFFEOS

Plane R2, potential A = Ai(x)dxi

I Magnetic field B = dA
I Diffeo g : x 7→ g(x) preserves area if g∗B = B
I SDiff(R2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

(r2, ϕ) 7−→
( r2

g′(ϕ) , g(ϕ)
)

"edge diffeos"



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

UNITARY SDIFFEOS

Electron in R2

I Hilbert space L2(R2)

I Unitary action of sdiffeos ?

(we wish to compare wavefcts)

(U [ g]ψ) (x) ≡

e iq d−1(A−ḡ∗A)(x)︸ ︷︷ ︸
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e iq d−1(A−ḡ∗A)(x)︸ ︷︷ ︸
compensating gauge tsf

ψ
(
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compensating gauge tsf

ψ
(

ḡ(x)
)

Action on Hamiltonian ?

I U [ g]H U [ g]−1 ∼ (pj − qAj) Gjk(x) (pk − qAk) + V
( )

with Gjk = metric induced by sdiffeo

I Sdiffeos change metric and deform potential
I ∞ parameters !



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

UNITARY SDIFFEOS

Electron in R2

I Hilbert space L2(R2)

I Unitary action of sdiffeos preserving A :
(we wish to compare wavefcts)

(U [ g]ψ) (x) ≡ e iq d−1(A−ḡ∗A)(x)︸ ︷︷ ︸
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ḡ(x)

)
with Gjk = metric induced by sdiffeo

I Sdiffeos change metric and deform potential
I ∞ parameters !



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

UNITARY SDIFFEOS

Composition of sdiffeos ?
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e iqC( f , g)

U [ f ◦ g] with C 6= 0 !

C( f , g) = d−1( f ∗( g∗A−A))− f ∗(d−1( g∗A−A))

I Projective representation of SDiff(R2)

I Central charge = electric charge ×magnetic field

For translations, C( f , g) = B×(area in f g f̄ ḡ)
I Magnetic translations
I C cannot be absorbed by redefinition (non-trivial cocycle)
I Will add Aharonov-Bohm to Berry φ
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I Magnetic translations
I C cannot be absorbed by redefinition (non-trivial cocycle)
I Will add Aharonov-Bohm to Berry φ



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

UNITARY SDIFFEOS

Composition of sdiffeos ?
I U [ f ] ◦ U [ g] = e iqC( f , g) U [ f ◦ g] with C 6= 0 !

C( f , g) = d−1( f ∗( g∗A−A))− f ∗(d−1( g∗A−A))

I Projective representation of SDiff(R2)

I Central charge = electric charge ×magnetic field

For translations, C( f , g) = B×(area in f g f̄ ḡ)
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Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

ONE-BODY BERRY φ

Neutral preliminary

: (U [ g]ψ)(x) ≡ ψ(ḡ(x))

I Energy eigenstate ψ
I Apply adiabatic sdiffeos gt(x)

Charged version ?

Berry = i
∫

dt
〈
ψ
∣∣U [ gt]

† ∂

∂t
U [ gt]

∣∣ψ〉

+ q
∫

d2x |ψ(x)|2
∮

gt(x)

A

I Measures current j = 1
2i(ψ

∗dψ − ψdψ∗)
I Involves log derivative ˙̄g ◦ g

≡ −ḡ ġ

I ...and Aharonov-Bohm φ

This is really
∫

dt

(

〈ψ|U [ g]−1∂t U [ g]|ψ〉

+ q∂τC(g−1
t , gτ )

)
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I ...and Aharonov-Bohm φ

This is really
∫

dt

(

〈ψ|U [ g]−1∂t U [ g]|ψ〉

+ q∂τC(g−1
t , gτ )

)



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

ONE-BODY BERRY φ

Neutral preliminary : (U [ g]ψ)(x) ≡ ψ(ḡ(x))
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Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

MANY-BODY BERRY φ

Droplet of N � 1 electrons

I Assume non-degenerate one-body energies
I Ground state = Slater determinant of ψn’s

Berry =

∫
dt d2x 〈 j(x), ḡ ġ〉+ q

∫
d2x|ψ(x)|2

∮
gt(x)

A

(Adiabatic thm holds despite gaplessness [Avron-Elgart 98])

I Example : Translations gt(x) = x + a(t)

I Berry = qN
∮

a
A

= Aharonov-Bohm φ
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J(r)(ḡ ġ)ϕ + ρ(r)

(gr(x))2

2`2 ġϕ(x)
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ġ
g′

[edge diffeos]

I Fill ν Landau levels
I Superextensive Berry φ

6= Extensive Hall viscosity !?
I Remove AB phase [gauge-invariant]

Linear sdiffeos e2ig(ϕ) = e2iθ e2iϕ coshλ+sinhλ
e2iϕ sinhλ+coshλ

I Berry-AB curvature = Nν × δ(coshλ) ∧ δθ
I Hall viscosity !

... but why ?

[Avron et al. 95]



Intro Berry φ in 1D Sdiffeos in 2D Berry φ in 2D Hall viscosity The End

HALL VISCOSITY REVISITED

Berry =

[ ∫
r dr J︸ ︷︷ ︸
−Nν

(extensive)

+

∫
r3 dr ρ/(2`2)︸ ︷︷ ︸
N2/(2ν)

(superextensive)

] ∫
dt dϕ

ġ
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HALL VISCOSITY REVISITED

Small linear sdiffeo x 7→ x +
(
−Im(ε) ω − Re(ε)
−ω − Re(ε) Im(ε)

)(
x
y

)
I Action on Hall droplet ?
I Mechanical momenta a,a† change Landau levels,

Magnetic translations b,b† change angular mom
I Linear sdiffeo generated by ε a2 + ωa†a︸ ︷︷ ︸

changes metric

− ε̄ b2 − ωb†b︸ ︷︷ ︸
LLL projection

+ h.c.

[U [lin.sdiff] ∼ 1 + iε a2 + · · · ]

Hall viscosity only takes a,a† [Lévay 95]

I To recover it, mod out b,b†

I Removes Aharonov-Bohm, leaves only current
I "Hall viscosity from the edge"
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CONCLUSION

This talk in one sentence :

Arbitrary deformations of quantum Hall droplets
yield Berry phases that generalize Hall viscosity

and involve the edge current.

In practice, unitary sdiffeos ["quantomorphisms" in geom. quantiz.]
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I Independence of potential/disorder ?
I Action of sdiffeos projected in LLL ? [Cappelli et al. 94]

I Generalization to FQHE ? [Read 08, Bradlyn-Read 15]

I Sdiffeos produced by (nonlinear) edge modes ?
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Thanks for listening !
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