

Deformational Berry Phases of Quantum Hall Droplets

Blagoje Oblak

LPTHE (Sorbonne) & CPHT (Polytechnique)

December 2021

With B. Estienne, to appear.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Intro

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Intro 0●00	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

Diffeomorphisms (cts deformations) ubiquitous in physics

Intro 0●00	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

Diffeomorphisms (cts deformations) ubiquitous in physics :

► General relativity

(gauge symmetry)

・ロト・西ト・モート ヨー うくの

Intro 0●00	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

Diffeomorphisms (cts deformations) ubiquitous in physics :

- ► General relativity
- ► Hydrodynamics

(gauge symmetry) (fluid flows)

< □ > < @ > < E > < E > E のQ@

Intro 0●00	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

Diffeomorphisms (cts deformations) ubiquitous in physics :

- General relativity
- ► Hydrodynamics
- Topological phases of matter

(gauge symmetry) (fluid flows)

(robust to deformations)

Intro 0●00	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

Diffeomorphisms (cts deformations) ubiquitous in physics :

- General relativity (gauge symmetry) Hydrodynamics
- Topological phases of matter

(fluid flows)

(robust to deformations)

Ouestion : **Observables** sensitive to geometry of groups of diffeos?

Intro 0●00	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

Diffeomorphisms (cts deformations) ubiquitous in physics :

- ► General relativity (gauge symmetry)
- ► Hydrodynamics
- Topological phases of matter

(fluid flows) (robust to deformations)

Question : Observables sensitive to geometry of groups of diffeos ? ...i.e. infinite-dimensional geometry ?

Intro 00●0	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

Diffeomorphisms are crucial for quantum Hall effect (QHE)

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for **quantum Hall effect** (QHE) :

Non-commutative space

[Girvin et al. 85, Bellissard 86]

Intro 00●0	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

Diffeomorphisms are crucial for **quantum Hall effect** (QHE) :

- ► Non-commutative space
- ► Area-preserving diffeos

[Girvin et al. 85, Bellissard 86]

[Cappelli et al. 92]

< □ > < @ > < E > < E > E のQ@

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D 0000	Hall viscosity	The End
00●0	000	0000		0000	00

Diffeomorphisms are crucial for **quantum Hall effect** (QHE) :

- ► Non-commutative space [Girvin *et al.* 85, Bellissard 86]
- Area-preserving diffeos (sdiffeos)

[Cappelli et al. 92]

< □ > < @ > < E > < E > E のQ@

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for quantum Hall effect (QHE) :

- Non-commutative space
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity

[Girvin et al. 85, Bellissard 86]

[Cappelli *et al.* 92]

[Avron et al. 95, Lévay 95]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for **quantum Hall effect** (QHE) :

- ► Non-commutative space [Girvin *et al.* 85, Bellissard 86]
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity
- ► Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

[Cappelli *et al.* 92]

[Avron et al. 95, Lévay 95]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for **quantum Hall effect** (QHE) :

- ► Non-commutative space [Girvin *et al.* 85, Bellissard 86]
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity [Avron et al. 95, Lévay 95]
- ► Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

This talk : Berry phases due to adiabatic sdiffeos

[Cappelli *et al.* 92]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for quantum Hall effect (QHE) :

- Non-commutative space
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity

- [Girvin et al. 85, Bellissard 86]
 - [Avron et al. 95, Lévay 95]

[Cappelli et al. 92]

 Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for quantum Hall effect (QHE) :

- Non-commutative space
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity

- [Girvin et al. 85, Bellissard 86]
 - [Avron et al. 95, Lévay 95]

[Cappelli et al. 92]

 Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for quantum Hall effect (QHE) :

- Non-commutative space [Girvin et al. 85, Bellissard 86]
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity

- - [Avron et al. 95, Lévay 95]

[Cappelli et al. 92]

 Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for quantum Hall effect (QHE) :

- Non-commutative space
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity

- [Girvin et al. 85, Bellissard 86]
 - [Avron et al. 95, Lévay 95]

[Cappelli et al. 92]

 Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for quantum Hall effect (QHE) :

- Non-commutative space [Girvin et al. 85, Bellissard 86]
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity

- - [Avron et al. 95, Lévay 95]

[Cappelli et al. 92]

 Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for quantum Hall effect (QHE) :

- Non-commutative space [Girvin et al. 85, Bellissard 86]
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity

- - [Avron et al. 95, Lévay 95]

[Cappelli et al. 92]

 Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for quantum Hall effect (QHE) :

- Non-commutative space
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity

- [Girvin et al. 85, Bellissard 86]
 - [Avron et al. 95, Lévay 95]

[Cappelli et al. 92]

 Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for quantum Hall effect (QHE) :

- Non-commutative space [Girvin et al. 85, Bellissard 86]
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity

- - [Avron et al. 95, Lévay 95]

[Cappelli et al. 92]

 Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for quantum Hall effect (QHE) :

- Non-commutative space [Girvin et al. 85, Bellissard 86]
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity

- - [Avron et al. 95, Lévay 95]

[Cappelli et al. 92]

 Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for quantum Hall effect (QHE) :

- Non-commutative space
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity

- [Girvin et al. 85, Bellissard 86]
 - [Avron et al. 95, Lévay 95]

[Cappelli et al. 92]

 Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for quantum Hall effect (QHE) :

- Non-commutative space
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity

- [Girvin et al. 85, Bellissard 86]
 - [Avron et al. 95, Lévay 95]

[Cappelli et al. 92]

 Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for quantum Hall effect (QHE) :

- ► Non-commutative space
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity

- [Girvin et al. 85, Bellissard 86]
 - [Cappelli et al. 92] [Avron et al. 95, Lévay 95]
- Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for quantum Hall effect (QHE) :

- Non-commutative space
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity

- [Girvin et al. 85, Bellissard 86]
 - [Cappelli et al. 92]
 - [Avron et al. 95, Lévay 95]
- Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for quantum Hall effect (QHE) :

- Non-commutative space
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity

- [Girvin et al. 85, Bellissard 86]
 - [Avron et al. 95, Lévay 95]

[Cappelli et al. 92]

 Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for quantum Hall effect (QHE) :

- Non-commutative space [Girvin et al. 85, Bellissard 86]
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity

- - [Avron et al. 95, Lévay 95]

[Cappelli et al. 92]

► Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for quantum Hall effect (QHE) :

- Non-commutative space [Girvin et al. 85, Bellissard 86]
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity

- - [Avron et al. 95, Lévay 95]

[Cappelli et al. 92]

► Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for quantum Hall effect (QHE) :

- Non-commutative space [Girvin et al. 85, Bellissard 86]
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity

- - [Avron et al. 95, Lévay 95]

[Cappelli et al. 92]

 Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for quantum Hall effect (QHE) :

- Non-commutative space
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity

- [Girvin et al. 85, Bellissard 86]
 - [Avron et al. 95, Lévay 95]

[Cappelli et al. 92]

 Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for quantum Hall effect (QHE) :

- Non-commutative space [Girvin et al. 85, Bellissard 86]
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity

- - [Avron et al. 95, Lévay 95]

[Cappelli *et al.* 92]

 Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for quantum Hall effect (QHE) :

- Non-commutative space
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity

- [Girvin et al. 85, Bellissard 86]
 - [Avron et al. 95, Lévay 95]

[Cappelli *et al.* 92]

 Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for quantum Hall effect (QHE) :

- Non-commutative space
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity

- [Girvin et al. 85, Bellissard 86]
 - [Avron et al. 95, Lévay 95]

[Cappelli *et al.* 92]

 Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for quantum Hall effect (QHE) :

- Non-commutative space
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity

- [Girvin et al. 85, Bellissard 86]
 - [Avron et al. 95, Lévay 95]

[Cappelli et al. 92]

 Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for quantum Hall effect (QHE) :

- Non-commutative space
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity

- [Girvin et al. 85, Bellissard 86]
 - [Avron et al. 95, Lévay 95]

[Cappelli et al. 92]

 Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for quantum Hall effect (QHE) :

- Non-commutative space
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity

- [Girvin et al. 85, Bellissard 86]
 - [Avron et al. 95, Lévay 95]

[Cappelli et al. 92]

 Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for quantum Hall effect (QHE) :

- Non-commutative space
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity

- [Girvin et al. 85, Bellissard 86]
 - [Avron et al. 95, Lévay 95]

[Cappelli et al. 92]

 Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for quantum Hall effect (QHE) :

- Non-commutative space
- Area-preserving diffeos (sdiffeos)
- ► Hall viscosity

- [Girvin et al. 85, Bellissard 86]
 - [Avron et al. 95, Lévay 95]

[Cappelli et al. 92]

 Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for **quantum Hall effect** (QHE) :

- ► Non-commutative space [Girvin *et al.* 85, Bellissard 86]
- ► Area-preserving diffeos (sdiffeos) [Cappelli *et al.* 92]
- Hall viscosity

[Avron *et al*. 95, Lévay 95]

► Geometry of QHE [Read 08, Haldane 11, Bradlyn-Read 15]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for **quantum Hall effect** (QHE) :

- Non-commutative space [Girvin et al. 85, Bellissard 86]
- Area-preserving diffeos (sdiffeos)
- Hall viscosity

[Avron et al. 95, Lévay 95]

[Cappelli *et al.* 92]

 Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for **quantum Hall effect** (QHE) :

- Non-commutative space [Girvin et al. 85, Bellissard 86]
- Area-preserving diffeos (sdiffeos)
- Hall viscosity

[Avron et al. 95, Lévay 95]

[Cappelli *et al.* 92]

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Geometry of QHE [Read 08, Haldane 11, Bradlyn–Read 15]

This talk : Berry phases due to adiabatic sdiffeos

Nonlinear deformations

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for **quantum Hall effect** (QHE) :

- ► Non-commutative space [Girvin *et al.* 85, Bellissard 86]
- Area-preserving diffeos (sdiffeos)
- Hall viscosity

- [Cappelli et al. 92]
 - [Avron et al. 95, Lévay 95]

► Geometry of QHE [Read 08, Haldane 11, Bradlyn-Read 15]

- Nonlinear deformations
- ► Finite droplets ⇒ edge contributions

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
00●0	000	0000	0000	0000	00

Diffeomorphisms are crucial for **quantum Hall effect** (QHE) :

- ► Non-commutative space [Girvin *et al.* 85, Bellissard 86]
- Area-preserving diffeos (sdiffeos)
- Hall viscosity

- [Cappelli *et al.* 92]
 - [Avron et al. 95, Lévay 95]
- ► Geometry of QHE [Read 08, Haldane 11, Bradlyn-Read 15]

- Nonlinear deformations
- ► Finite droplets ⇒ edge contributions
- "Bulk-edge correspondence" for Hall viscosity

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plan

1. Adiabatic diffeos in 1D

- 2. One-body sdiffeos in 2D
- 3. Adiabatic sdiffeos in 2D
- 4. Generalized Hall viscosity

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plan

- 1. Adiabatic diffeos in 1D
- 2. One-body sdiffeos in 2D
- 3. Adiabatic sdiffeos in 2D
- 4. Generalized Hall viscosity

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plan

- 1. Adiabatic diffeos in 1D
- 2. One-body sdiffeos in 2D
- 3. Adiabatic sdiffeos in 2D
- 4. Generalized Hall viscosity

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plan

- 1. Adiabatic diffeos in 1D
- 2. One-body sdiffeos in 2D
- 3. Adiabatic sdiffeos in 2D
- 4. Generalized Hall viscosity

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

1. Adiabatic diffeos in 1D

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

1. Adiabatic diffeos in 1D

A. Reminder on Berry phases

< □ > < @ > < E > < E > E のQ@

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

1. Adiabatic diffeos in 1D

A. Reminder on Berry phases

B. Deformational Berry ϕ in 1D

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Intro 0000	Berry ϕ in 1D $\circ \bullet \circ$	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

Quantum system depending on **parameters** *g*

Intro 0000	Berry ϕ in 1D $\circ \bullet \circ$	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

BERRY PHASES

Quantum system depending on **parameters** *g*

► Parameter-dep. energy eigenstates $|\psi(g)\rangle$

Intro 0000	Berry ϕ in 1D $\odot \bullet \odot$	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

Quantum system depending on **parameters** *g*

- ► Parameter-dep. energy eigenstates $|\psi(g)\rangle$
- Vary parameters adiabatically and cyclically

Intro 0000	Berry ϕ in 1D $\odot \bullet \odot$	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

Quantum system depending on **parameters** g

- ► Parameter-dep. energy eigenstates $|\psi(g)\rangle$
- Vary parameters adiabatically and cyclically $\Rightarrow g_t$

< □ > < @ > < E > < E > E のQ@

Intro 0000	Berry ϕ in 1D $\odot \bullet \odot$	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

Quantum system depending on **parameters** g

- ► Parameter-dep. energy eigenstates $|\psi(g)\rangle$
- Vary parameters adiabatically and cyclically $\Rightarrow g_t$
- Wavefet picks phase $\int dt E i \int dt \langle \psi(g_t) | \frac{\partial}{\partial t} | \psi(g_t) \rangle$

< ロ > < 同 > < 三 > < 三 > 、 三 > 、 ○ < ○ </p>

Intro 0000	Berry ϕ in 1D $\circ \bullet \circ$	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

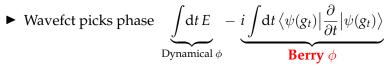
Quantum system depending on **parameters** *g*

- ► Parameter-dep. energy eigenstates $|\psi(g)\rangle$
- Vary parameters adiabatically and cyclically \Rightarrow g_t
- Wavefct picks phase

$$\underbrace{\int \mathrm{d}t \, E}_{\text{Dynamical } \phi} - i \int \mathrm{d}t \left\langle \psi(g_t) \right| \frac{\partial}{\partial t} \big| \psi(g_t) \right\rangle$$

Intro 0000	Berry ϕ in 1D $\circ \bullet \circ$	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

Quantum system depending on **parameters** g

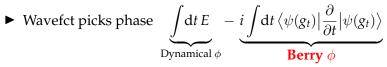

- ► Parameter-dep. energy eigenstates $|\psi(g)\rangle$
- Vary parameters adiabatically and cyclically $\Rightarrow g_t$
- Wavefct picks phase

$$\underbrace{\int dt E}_{\text{Dynamical }\phi} - \underbrace{i \int dt \left\langle \psi(g_t) \right| \frac{\partial}{\partial t} |\psi(g_t) \right\rangle}_{\text{Berry }\phi}$$

Intro 0000	Berry ϕ in 1D $\circ \bullet \circ$	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

Quantum system depending on parameters g

- ► Parameter-dep. energy eigenstates $|\psi(g)\rangle$
- Vary parameters adiabatically and cyclically $\Rightarrow g_t$


Example : time-dependent rotations of spin [Berry 84]

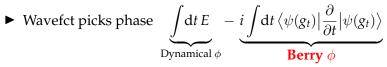
・ロト (四) (日) (日) (日) (日)

Intro 0000	Berry ϕ in 1D $\circ \bullet \circ$	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

Quantum system depending on parameters g

- ► Parameter-dep. energy eigenstates $|\psi(g)\rangle$
- Vary parameters adiabatically and cyclically $\Rightarrow g_t$

Example : time-dependent rotations of spin [Berry 84]


• General Berry ϕ due to unitary group actions

[Jordan 87]

Intro 0000	Berry ϕ in 1D $\circ \bullet \circ$	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

Quantum system depending on parameters g

- ► Parameter-dep. energy eigenstates $|\psi(g)\rangle$
- Vary parameters adiabatically and cyclically $\Rightarrow g_t$

Example : time-dependent rotations of spin [Berry 84]

- General Berry ϕ due to unitary group actions
- [Jordan 87]
- Berry φ produced by unitary sample diffeos ?

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Intro 0000	Berry ϕ in 1D $\circ \circ \bullet$	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

Particle on circle \Rightarrow position $\varphi \sim \varphi + 2\pi$

• Wavefct $\psi(\varphi)$ on S^1

Intro 0000	Berry ϕ in 1D $\circ \circ \bullet$	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

- Wavefet $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
 0000	000	0000	0000	0000	00

- Wavefet $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
 0000	000	0000	0000	0000	00

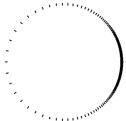
- Wavefet $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**

0000 00 0 0000 0000 000 000	Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
	0000	000	0000	0000	0000	00

- Wavefet $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
 0000	000	0000	0000	0000	00

- Wavefet $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**


Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
 0000	000	0000	0000	0000	00

- Wavefet $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**

Intro 0000	Berry ϕ in 1D $\circ \circ \bullet$	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

- Wavefet $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
 0000	000	0000	0000	0000	00

- Wavefet $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
 0000	000	0000	0000	0000	00

Particle on circle \Rightarrow position $\varphi \sim \varphi + 2\pi$

- Wavefet $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ


Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
 0000	000	0000	0000	0000	00

- Wavefet $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
 0000	000	0000	0000	0000	00

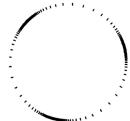
- Wavefet $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
 0000	000	0000	0000	0000	00


- Wavefet $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**

Intro 0000	Berry ϕ in 1D $\circ \circ \bullet$	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

Particle on circle \Rightarrow position $\varphi \sim \varphi + 2\pi$


- Wavefet $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Intro 0000	Berry ϕ in 1D $\circ \circ \bullet$	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

- Wavefet $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**

Intro 0000	Berry ϕ in 1D $\circ \circ \bullet$	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

- Wavefet $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**

Intro 0000	Berry ϕ in 1D $\circ \circ \bullet$	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

- Wavefet $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**

Intro 0000	Berry ϕ in 1D $\circ \circ \bullet$	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

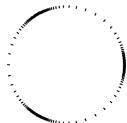
- Wavefet $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**

Intro 0000	Berry ϕ in 1D $\circ \circ \bullet$	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

- Wavefet $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**

Intro 0000	Berry ϕ in 1D $\circ \circ \bullet$	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

- Wavefet $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**


Intro 0000	Berry ϕ in 1D $\circ \circ \bullet$	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

- Wavefet $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**

Intro 0000	Berry ϕ in 1D $\circ \circ \bullet$	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

- Wavefet $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**

Intro 0000	Berry ϕ in 1D $\circ \circ \bullet$	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

- Wavefet $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**

Intro 0000	Berry ϕ in 1D $\circ \circ \bullet$	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

< □ > < @ > < E > < E > E のQ@

Deformational Berry ϕ

- Wavefct $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**
- Rotations $g(\varphi) = \varphi + \theta$

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

- Wavefct $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**
- Rotations $g(\varphi) = \varphi + \theta$
- Unitary Diff S^1 action : $(\mathcal{U}[g]\psi)(\varphi)$

Intro 0000	Berry ϕ in 1D $\circ \circ \bullet$	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

- Wavefct $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**
- Rotations $g(\varphi) = \varphi + \theta$
- Unitary Diff S¹ action : $(\mathcal{U}[g]\psi)(\varphi) = \sqrt{(g^{-1})'(\varphi)}\psi(g^{-1}(\varphi))$

Intro 0000	Berry ϕ in 1D $\circ \circ \bullet$	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

- Wavefct $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**
- Rotations $g(\varphi) = \varphi + \theta$
- Unitary Diff S^1 action : $(\mathcal{U}[g]\psi)(\varphi) = \sqrt{\bar{g}'(\varphi)} \quad \psi(\bar{g}(\varphi))$

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Particle on circle \Rightarrow position $\varphi \sim \varphi + 2\pi$

- Wavefct $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**
- Rotations $g(\varphi) = \varphi + \theta$
- Unitary Diff S^1 action : $(\mathcal{U}[g]\psi)(\varphi) = \sqrt{\bar{g}'(\varphi)} \quad \psi(\bar{g}(\varphi))$

Choose adiabatic, cyclic $g_t(\varphi)$

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Particle on circle \Rightarrow position $\varphi \sim \varphi + 2\pi$

- Wavefct $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**
- Rotations $g(\varphi) = \varphi + \theta$
- Unitary Diff S^1 action : $(\mathcal{U}[g]\psi)(\varphi) = \sqrt{\bar{g}'(\varphi)} \quad \psi(\bar{g}(\varphi))$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Choose adiabatic, cyclic $g_t(\varphi)$

► Berry phases ?

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Particle on circle \Rightarrow position $\varphi \sim \varphi + 2\pi$

- Wavefct $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**
- Rotations $g(\varphi) = \varphi + \theta$
- Unitary Diff S^1 action : $(\mathcal{U}[g]\psi)(\varphi) = \sqrt{\bar{g}'(\varphi)} \quad \psi(\bar{g}(\varphi))$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Choose adiabatic, cyclic $g_t(\varphi)$

- ► Berry phases ?
- Assume $\psi(\varphi) \propto e^{ij\varphi}$

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Particle on circle \Rightarrow position $\varphi \sim \varphi + 2\pi$

- Wavefct $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**
- Rotations $g(\varphi) = \varphi + \theta$
- Unitary Diff S^1 action : $(\mathcal{U}[g]\psi)(\varphi) = \sqrt{\bar{g}'(\varphi)} \quad \psi(\bar{g}(\varphi))$

Choose adiabatic, cyclic $g_t(\varphi)$

- ► Berry phases ?
- Assume $\psi(\varphi) \propto e^{ij\varphi}$

• Berry =
$$i \int dt \langle \psi | \mathcal{U}[g_t]^{-1} \frac{\partial}{\partial t} \mathcal{U}[g_t] | \psi \rangle$$

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Particle on circle \Rightarrow position $\varphi \sim \varphi + 2\pi$

- Wavefct $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**
- Rotations $g(\varphi) = \varphi + \theta$
- Unitary Diff S^1 action : $(\mathcal{U}[g]\psi)(\varphi) = \sqrt{\overline{g}'(\varphi)} \quad \psi(\overline{g}(\varphi))$

Choose adiabatic, cyclic $g_t(\varphi)$

- ► Berry phases ?
- Assume $\psi(\varphi) \propto e^{ij\varphi}$

• Berry =
$$i \int dt \langle \psi | \mathcal{U}[g_t]^{-1} \frac{\partial}{\partial t} \mathcal{U}[g_t] | \psi \rangle = j \int dt \, d\varphi \, \frac{\dot{g}}{g'}$$

Intro 0000	Berry ϕ in 1D $\circ \circ \bullet$	Sdiffeos in 2D 0000	Berry <i>φ</i> in 2D 0000	Hall viscosity 0000	The End 00

Particle on circle \Rightarrow position $\varphi \sim \varphi + 2\pi$

- Wavefct $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**
- Rotations $g(\varphi) = \varphi + \theta$
- Unitary Diff S^1 action : $(\mathcal{U}[g]\psi)(\varphi) = \sqrt{\bar{g}'(\varphi)} \quad \psi(\bar{g}(\varphi))$

Choose adiabatic, cyclic $g_t(\varphi)$

- ► Berry phases ?
- Assume $\psi(\varphi) \propto e^{ij\varphi}$

• Berry =
$$i \int dt \langle \psi | \mathcal{U}[g_t]^{-1} \frac{\partial}{\partial t} \mathcal{U}[g_t] | \psi \rangle = \mathbf{j} \int dt d\varphi \frac{\dot{g}}{g'}$$

・ロト・(中・・モト・モー・)の(の)

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Particle on circle \Rightarrow position $\varphi \sim \varphi + 2\pi$

- Wavefct $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**
- Rotations $g(\varphi) = \varphi + \theta$
- Unitary Diff S^1 action : $(\mathcal{U}[g]\psi)(\varphi) = \sqrt{\bar{g}'(\varphi)} \quad \psi(\bar{g}(\varphi))$

Choose adiabatic, cyclic $g_t(\varphi)$

- ► Berry phases ?
- Assume $\psi(\varphi) \propto e^{ij\varphi}$

• Berry =
$$i \int dt \langle \psi | \mathcal{U}[g_t]^{-1} \frac{\partial}{\partial t} \mathcal{U}[g_t] | \psi \rangle = j \int dt \, d\varphi \, \frac{\dot{g}}{g'}$$

・ロト・(中・・モト・モー・)の(の)

Intro 0000	Berry ϕ in 1D $\circ \circ \bullet$	Sdiffeos in 2D 0000	Berry <i>φ</i> in 2D 0000	Hall viscosity 0000	The End 00

Particle on circle \Rightarrow position $\varphi \sim \varphi + 2\pi$

- Wavefct $\psi(\varphi)$ on S^1
- Let $\varphi \mapsto g(\varphi)$ be a **diffeo**
- Rotations $g(\varphi) = \varphi + \theta$
- Unitary Diff S^1 action : $(\mathcal{U}[g]\psi)(\varphi) = \sqrt{\bar{g}'(\varphi)} \quad \psi(\bar{g}(\varphi))$

Choose adiabatic, cyclic $g_t(\varphi)$

- ► Berry phases ?
- Assume $\psi(\varphi) \propto e^{ij\varphi}$

• Berry =
$$i \int dt \langle \psi | \mathcal{U}[g_t]^{-1} \frac{\partial}{\partial t} \mathcal{U}[g_t] | \psi \rangle = j \int dt \, d\varphi \frac{\dot{g}}{g'}$$

Analogue for 2D electrons in magnetic field ?

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

2. One-body sdiffeos in 2D

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

2. One-body sdiffeos in 2D

A. Area-preserving diffeos

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

2. One-body sdiffeos in 2D

A. Area-preserving diffeos

B. Unitary action of sdiffeos

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plane \mathbb{R}^2

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

0000 000 0000 0000 000 000	Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
	0000	000	000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

• Magnetic field $\mathbf{B} = \mathbf{dA}$

Intro Berry ϕ in 1D 0000 000	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End 00

< □ > < @ > < E > < E > E のQ@

SDIFFEOS

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = \mathbf{dA}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = \mathbf{dA}$
- ► Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ► $SDiff(\mathbb{R}^2) = \{area-preserving diffeos\}$

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = \mathbf{dA}$
- ► Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D ○●○○	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = \mathbf{dA}$
- ► Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Example :

 (r^2,φ)

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D ○●○○	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = \mathbf{dA}$
- ► Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D ○●○○	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = \mathbf{dA}$
- ► Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Example :

$$(r^2,\varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D ○●○○	Berry ϕ in 2D 0000	Hall viscosity 0000	The End 00

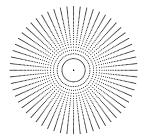
Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = \mathbf{dA}$
- ► Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

◆ロト ◆帰 ト ◆ ヨ ト ◆ ヨ ト ● の Q ()

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

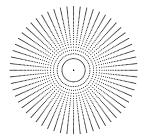

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

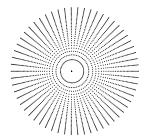

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

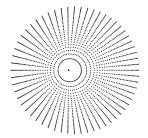

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

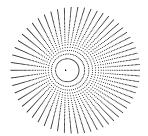

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

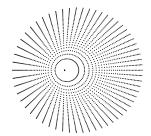

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

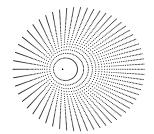

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

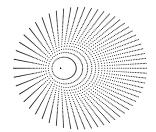

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

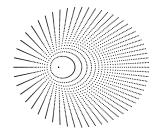

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

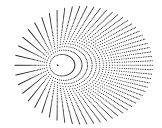

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

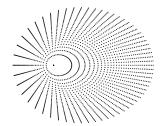

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

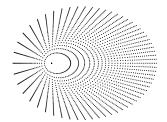

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

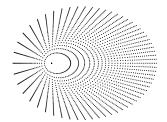

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

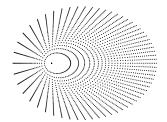

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

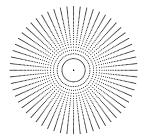

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

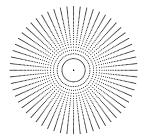

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

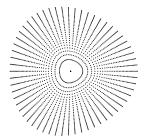

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

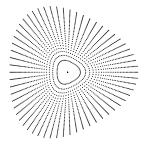

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

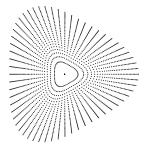

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

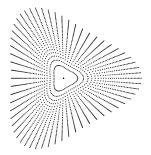

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

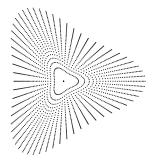

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$


Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

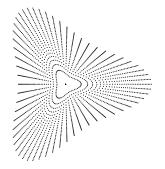
Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00


Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- ► Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

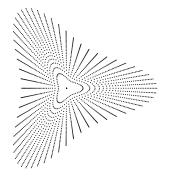
Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

"edge diffeos"

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Dac


Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

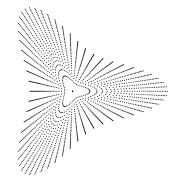
Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00


Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

"edge diffeos"

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Sac

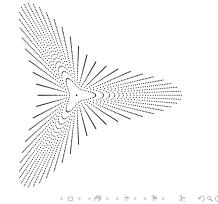
Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

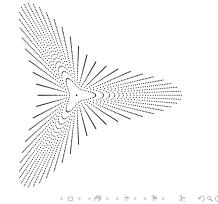

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

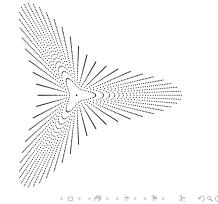

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

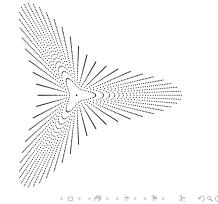

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$


Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Plane \mathbb{R}^2 , potential $\mathbf{A} = A_i(\mathbf{x}) dx^i$

- Magnetic field $\mathbf{B} = d\mathbf{A}$
- Diffeo $g : \mathbf{x} \mapsto g(\mathbf{x})$ preserves area if $g^* \mathbf{B} = \mathbf{B}$
- ▶ SDiff(\mathbb{R}^2) = {area-preserving diffeos} ≡ {sdiffeos}

Example :

$$(r^2, \varphi) \longmapsto \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

UNITARY SDIFFEOS

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

UNITARY SDIFFEOS

Electron in \mathbb{R}^2

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Electron in \mathbb{R}^2

• Hilbert space $L^2(\mathbb{R}^2)$

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Electron in \mathbb{R}^2

- Hilbert space $L^2(\mathbb{R}^2)$
- Unitary action of sdiffeos ?

 $(\mathcal{U}[g]\psi)(\mathbf{x})$

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Electron in \mathbb{R}^2

- Hilbert space $L^2(\mathbb{R}^2)$
- Unitary action of sdiffeos :

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \psi(\bar{g}(\mathbf{x}))$$

< □ > < @ > < E > < E > E のQ@

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Electron in \mathbb{R}^2

- Hilbert space $L^2(\mathbb{R}^2)$
- Unitary action of sdiffeos preserving A : (we wish to compare wavefcts)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \psi(\bar{g}(\mathbf{x}))$$

< □ > < @ > < E > < E > E のQ@

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Electron in \mathbb{R}^2

- Hilbert space $L^2(\mathbb{R}^2)$
- Unitary action of sdiffeos preserving A : (we wish to compare wavefcts)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\,\mathbf{d}^{-1}(\mathbf{A}-\bar{g}^*\mathbf{A})(\mathbf{x})}}_{\text{compensating gauge tsf}}\psi\big(\bar{g}(\mathbf{x})\big)$$

< □ > < @ > < E > < E > E のQ@

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Electron in \mathbb{R}^2

- Hilbert space $L^2(\mathbb{R}^2)$
- Unitary action of sdiffeos preserving A : (we wish to compare wavefcts)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\,\mathbf{d}^{-1}(\mathbf{A}-\bar{g}^*\mathbf{A})(\mathbf{x})}}_{\text{compensating gauge tsf}} \psi(\bar{g}(\mathbf{x}))$$

Action on Hamiltonian?

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Electron in \mathbb{R}^2

- Hilbert space $L^2(\mathbb{R}^2)$
- Unitary action of sdiffeos preserving A : (we wish to compare wavefcts)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\,\mathbf{d}^{-1}(\mathbf{A}-\bar{g}^*\mathbf{A})(\mathbf{x})}}_{\text{compensating gauge tsf}}\psi\big(\bar{g}(\mathbf{x})\big)$$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Action on $H \sim (\mathbf{p} - q\mathbf{A})^2 + V(\mathbf{x})$?

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Electron in \mathbb{R}^2

- ► Hilbert space $L^2(\mathbb{R}^2)$
- Unitary action of sdiffeos preserving A : (we wish to compare wavefcts)

$$\left(\mathcal{U}[g]\psi\right)(\mathbf{x}) \equiv \underbrace{e^{iq\,\mathrm{d}^{-1}(\mathbf{A}-\bar{g}^*\mathbf{A})(\mathbf{x})}}_{\text{compensating gauge tsf}}\psi\big(\bar{g}(\mathbf{x})\big)$$

Action on $H \sim (\mathbf{p} - q\mathbf{A})^2 + V(\mathbf{x})$: $\blacktriangleright \mathcal{U}[g]H\mathcal{U}[g]^{-1} \sim (p_j - qA_j) G^{jk}(\mathbf{x}) (p_k - qA_k) + V(\bar{g}(\mathbf{x}))$

・ロト ・ 直 ト ・ 三 ト ・ 三 ・ つへぐ

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Electron in \mathbb{R}^2

- ► Hilbert space *L*²(ℝ²)
- Unitary action of sdiffeos preserving A : (we wish to compare wavefcts)

$$\left(\mathcal{U}[g]\psi\right)(\mathbf{x}) \equiv \underbrace{e^{iq\,\mathrm{d}^{-1}(\mathbf{A}-\bar{g}^*\mathbf{A})(\mathbf{x})}}_{\text{compensating gauge tsf}}\psi\big(\bar{g}(\mathbf{x})\big)$$

Action on $H \sim (\mathbf{p} - q\mathbf{A})^2 + V(\mathbf{x})$: $\blacktriangleright \mathcal{U}[g]H\mathcal{U}[g]^{-1} \sim (p_j - qA_j) G^{jk}(\mathbf{x}) (p_k - qA_k) + V(\overline{g}(\mathbf{x}))$

・ロト・(中・・モト・モー・)の(の)

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Electron in \mathbb{R}^2

- ► Hilbert space *L*²(ℝ²)
- Unitary action of sdiffeos preserving A : (we wish to compare wavefcts)

$$\left(\mathcal{U}[g]\psi\right)(\mathbf{x}) \equiv \underbrace{e^{iq\,\mathrm{d}^{-1}(\mathbf{A}-\bar{g}^*\mathbf{A})(\mathbf{x})}}_{\text{compensating gauge tsf}}\psi\big(\bar{g}(\mathbf{x})\big)$$

Action on $H \sim (\mathbf{p} - q\mathbf{A})^2 + V(\mathbf{x})$: $\blacktriangleright \mathcal{U}[g]H\mathcal{U}[g]^{-1} \sim (p_j - qA_j) \mathbf{G}^{jk}(\mathbf{x})(p_k - qA_k) + V(\overline{\mathbf{g}}(\mathbf{x}))$

・ロト ・ 直 ト ・ 三 ト ・ 三 ・ つへぐ

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Electron in \mathbb{R}^2

- ► Hilbert space *L*²(ℝ²)
- Unitary action of sdiffeos preserving A : (we wish to compare wavefcts)

$$(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \underbrace{e^{iq\,\mathbf{d}^{-1}(\mathbf{A}-\bar{g}^*\mathbf{A})(\mathbf{x})}}_{\text{compensating gauge tsf}}\psi(\bar{g}(\mathbf{x}))$$

< ロ > < 同 > < 三 > < 三 > 、 三 > 、 ○ < ○ </p>

Action on $H \sim (\mathbf{p} - q\mathbf{A})^2 + V(\mathbf{x})$:

• $\mathcal{U}[g]H\mathcal{U}[g]^{-1} \sim (p_j - qA_j) G^{jk}(\mathbf{x})(p_k - qA_k) + V(\overline{g}(\mathbf{x}))$ with G^{jk} = metric induced by sdiffeo

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Electron in \mathbb{R}^2

- ► Hilbert space *L*²(ℝ²)
- Unitary action of sdiffeos preserving A : (we wish to compare wavefcts)

$$\left(\mathcal{U}[g]\psi\right)(\mathbf{x}) \equiv \underbrace{e^{iq\,\mathrm{d}^{-1}(\mathbf{A}-\bar{g}^*\mathbf{A})(\mathbf{x})}}_{\text{compensating gauge tsf}}\psi\big(\bar{g}(\mathbf{x})\big)$$

Action on $H \sim (\mathbf{p} - q\mathbf{A})^2 + V(\mathbf{x})$:

- $\mathcal{U}[g]H\mathcal{U}[g]^{-1} \sim (p_j qA_j) G^{jk}(\mathbf{x})(p_k qA_k) + V(\overline{g}(\mathbf{x}))$ with G^{jk} = metric induced by sdiffeo
- Sdiffeos change metric and deform potential

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	○○●○	0000	0000	00

Electron in \mathbb{R}^2

- ► Hilbert space *L*²(ℝ²)
- Unitary action of sdiffeos preserving A : (we wish to compare wavefcts)

$$\left(\mathcal{U}[g]\psi\right)(\mathbf{x}) \equiv \underbrace{e^{iq\,\mathbf{d}^{-1}(\mathbf{A}-\bar{g}^*\mathbf{A})(\mathbf{x})}}_{\text{compensating gauge tsf}}\psi\big(\bar{g}(\mathbf{x})\big)$$

Action on $H \sim (\mathbf{p} - q\mathbf{A})^2 + V(\mathbf{x})$:

- $\mathcal{U}[g]H\mathcal{U}[g]^{-1} \sim (p_j qA_j) G^{jk}(\mathbf{x})(p_k qA_k) + V(\overline{g}(\mathbf{x}))$ with G^{jk} = metric induced by sdiffeo
- Sdiffeos change metric and deform potential
- ∞ parameters !

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Composition of sdiffeos ?

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

< □ > < @ > < E > < E > E のQ@

UNITARY SDIFFEOS

Composition of sdiffeos ?

$$\blacktriangleright \ \mathcal{U}[f] \circ \mathcal{U}[g] = \qquad \qquad \mathcal{U}[f \circ g]$$

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

< □ > < @ > < E > < E > E のQ@

UNITARY SDIFFEOS

Composition of sdiffeos ?

$$\blacktriangleright \mathcal{U}[f] \circ \mathcal{U}[g] = e^{iq\mathbf{C}(f,g)} \mathcal{U}[f \circ g]$$

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

UNITARY SDIFFEOS

Composition of sdiffeos ?

• $\mathcal{U}[f] \circ \mathcal{U}[g] = e^{iq\mathbf{C}(f,g)} \mathcal{U}[f \circ g]$ with $\mathbf{C} \neq 0$!

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Composition of sdiffeos ?

•
$$\mathcal{U}[f] \circ \mathcal{U}[g] = e^{iq\mathbf{C}(f,g)} \mathcal{U}[f \circ g]$$
 with $\mathbf{C} \neq 0$!

 $\mathbf{C}(f,g) = \mathbf{d}^{-1}(f^*(g^*\mathbf{A} - \mathbf{A})) - f^*(\mathbf{d}^{-1}(g^*\mathbf{A} - \mathbf{A}))$

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Composition of sdiffeos ?

• $\mathcal{U}[f] \circ \mathcal{U}[g] = e^{iq\mathbf{C}(f,g)} \mathcal{U}[f \circ g]$ with $\mathbf{C} \neq 0$!

 $\mathsf{C}(f,g) = \mathsf{d}^{-1}(f^*(g^*\mathbf{A} - \mathbf{A})) - f^*(\mathsf{d}^{-1}(g^*\mathbf{A} - \mathbf{A}))$

• Projective representation of $SDiff(\mathbb{R}^2)$

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Composition of sdiffeos ?

• $\mathcal{U}[f] \circ \mathcal{U}[g] = e^{iq\mathbf{C}(f,g)} \mathcal{U}[f \circ g]$ with $\mathbf{C} \neq 0$!

 $C(f,g) = d^{-1}(f^*(g^*A - A)) - f^*(d^{-1}(g^*A - A))$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- Projective representation of $SDiff(\mathbb{R}^2)$
- ► Central charge = electric charge × magnetic field

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry <i>φ</i> in 2D	Hall viscosity	The End
0000	000	○○○●	0000	0000	00

Composition of sdiffeos ?

- $\mathcal{U}[f] \circ \mathcal{U}[g] = e^{iq\mathbf{C}(f,g)} \mathcal{U}[f \circ g] \text{ with } \mathbf{C} \neq 0!$ $\mathbf{C}(f,g) = d^{-1}(f^*(g^*\mathbf{A} \mathbf{A})) f^*(d^{-1}(g^*\mathbf{A} \mathbf{A}))$
- Projective representation of $SDiff(\mathbb{R}^2)$
- ► Central charge = electric charge × magnetic field

< ロ > < 同 > < 三 > < 三 > 、 三 > 、 ○ < ○ </p>

For translations, $C(f,g) = B \times (\text{area in } f g \overline{f} \overline{g})$

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry <i>φ</i> in 2D	Hall viscosity	The End
0000	000	○○○●	0000	0000	00

Composition of sdiffeos ?

- $\mathcal{U}[f] \circ \mathcal{U}[g] = e^{iq\mathbf{C}(f,g)} \mathcal{U}[f \circ g] \text{ with } \mathbf{C} \neq 0!$ $\mathbf{C}(f,g) = d^{-1}(f^*(g^*\mathbf{A} \mathbf{A})) f^*(d^{-1}(g^*\mathbf{A} \mathbf{A}))$
- Projective representation of $SDiff(\mathbb{R}^2)$
- ► Central charge = electric charge × magnetic field

For translations, $C(f,g) = B \times (\text{area in } f g \overline{f} \overline{g})$

Magnetic translations

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Composition of sdiffeos ?

 $\mathcal{U}[f] \circ \mathcal{U}[g] = e^{iq\mathbf{C}(f,g)} \mathcal{U}[f \circ g] \text{ with } \mathbf{C} \neq 0!$ $\mathbf{C}(f,g) = d^{-1}(f^*(g^*\mathbf{A} - \mathbf{A})) - f^*(d^{-1}(g^*\mathbf{A} - \mathbf{A}))$

• Projective representation of $SDiff(\mathbb{R}^2)$

► Central charge = electric charge × magnetic field

For translations, $C(f,g) = B \times (\text{area in } f g \overline{f} \overline{g})$

- Magnetic translations
- C cannot be absorbed by redefinition (non-trivial cocycle)

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry <i>φ</i> in 2D	Hall viscosity	The End
0000	000	○○○●	0000	0000	00

Composition of sdiffeos ?

 $\mathcal{U}[f] \circ \mathcal{U}[g] = e^{iq\mathbf{C}(f,g)} \mathcal{U}[f \circ g] \text{ with } \mathbf{C} \neq 0!$ $\mathbf{C}(f,g) = d^{-1}(f^*(g^*\mathbf{A} - \mathbf{A})) - f^*(d^{-1}(g^*\mathbf{A} - \mathbf{A}))$

• Projective representation of $SDiff(\mathbb{R}^2)$

► Central charge = electric charge × magnetic field

For translations, $C(f,g) = B \times (\text{area in } f g \overline{f} \overline{g})$

- Magnetic translations
- C cannot be absorbed by redefinition (non-trivial cocycle)
- Will add Aharonov-Bohm to Berry ϕ

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

3. Adiabatic sdiffeos

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

3. Adiabatic sdiffeos

A. One-body Berry ϕ

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

3. Adiabatic sdiffeos

A. One-body Berry ϕ

B. Many-body Berry ϕ

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $0 \bullet 00$	Hall viscosity 0000	The End 00

Neutral preliminary

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $0 \bullet 00$	Hall viscosity 0000	The End 00

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $0 \bullet 00$	Hall viscosity 0000	The End 00

< □ > < @ > < E > < E > E のQ@

One-body Berry ϕ

Neutral preliminary : $(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \psi(\bar{g}(\mathbf{x}))$

► Energy eigenstate ψ

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \bullet \circ \circ$	Hall viscosity 0000	The End 00

- ► Energy eigenstate ψ
- Apply adiabatic sdiffeos $g_t(\mathbf{x})$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $0 \bullet 00$	Hall viscosity 0000	The End 00

- ► Energy eigenstate ψ
- Apply adiabatic sdiffeos $g_t(\mathbf{x})$

Berry =
$$i \int dt \langle \psi | \mathcal{U}[g_t]^{\dagger} \frac{\partial}{\partial t} \mathcal{U}[g_t] | \psi \rangle$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $0 \bullet 00$	Hall viscosity 0000	The End 00

- Energy eigenstate ψ
- Apply adiabatic sdiffeos $g_t(\mathbf{x})$

Berry =
$$i \int dt \int d^2 \mathbf{x} \, \dot{\bar{g}}(g(\mathbf{x}))^i \, \psi^*(\mathbf{x}) \partial_i \psi(\mathbf{x})$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $0 \bullet 00$	Hall viscosity 0000	The End 00

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

One-body Berry ϕ

Neutral preliminary : $(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \psi(\bar{g}(\mathbf{x}))$

- ► Energy eigenstate ψ
- Apply adiabatic sdiffeos $g_t(\mathbf{x})$

Berry =
$$i \int dt \int d^2 \mathbf{x} \, \dot{\bar{g}}(g(\mathbf{x}))^i \, \psi^*(\mathbf{x}) \partial_i \psi(\mathbf{x})$$

• Measures current $\mathbf{j} = \frac{1}{2i}(\psi^* \mathbf{d}\psi - \psi \mathbf{d}\psi^*)$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $0 \bullet 00$	Hall viscosity 0000	The End 00

Neutral preliminary : $(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \psi(\bar{g}(\mathbf{x}))$

- Energy eigenstate ψ
- Apply adiabatic sdiffeos $g_t(\mathbf{x})$

Berry =
$$-\int dt \int d^2 \mathbf{x} \, \dot{\bar{g}}(g(\mathbf{x}))^i \mathbf{j}_i$$

• Measures current $\mathbf{j} = \frac{1}{2i}(\psi^* \mathbf{d}\psi - \psi \mathbf{d}\psi^*)$

・ロト (四) (日) (日) (日) (日) (日)

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $0 \bullet 00$	Hall viscosity 0000	The End 00

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

One-body Berry ϕ

- Energy eigenstate ψ
- Apply adiabatic sdiffeos $g_t(\mathbf{x})$

Berry =
$$-\int dt \int d^2 \mathbf{x} \, \dot{\bar{g}}(g(\mathbf{x}))^i \mathbf{j}_i$$

- Measures current $\mathbf{j} = \frac{1}{2i}(\psi^* \mathbf{d}\psi \psi \mathbf{d}\psi^*)$
- Involves **log derivative** $\dot{\bar{g}} \circ g$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $0 \bullet 00$	Hall viscosity 0000	The End 00

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

One-body Berry ϕ

Neutral preliminary : $(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \psi(\bar{g}(\mathbf{x}))$

- Energy eigenstate ψ
- Apply adiabatic sdiffeos $g_t(\mathbf{x})$

Berry =
$$-\int dt \int d^2 \mathbf{x} \, \dot{\bar{g}}(g(\mathbf{x}))^i \mathbf{j}_i$$

- Measures current $\mathbf{j} = \frac{1}{2i}(\psi^* \mathbf{d}\psi \psi \mathbf{d}\psi^*)$
- Involves log derivative $\dot{\bar{g}} \circ g \equiv -\bar{g}\dot{g}$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $0 \bullet 00$	Hall viscosity 0000	The End 00

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

One-body Berry ϕ

Neutral preliminary : $(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \psi(\bar{g}(\mathbf{x}))$

- ► Energy eigenstate ψ
- Apply adiabatic sdiffeos $g_t(\mathbf{x})$

Berry =
$$\int dt \int d^2 \mathbf{x} \langle \mathbf{j}, \bar{g} \dot{g} \rangle$$

- Measures current $\mathbf{j} = \frac{1}{2i}(\psi^* \mathbf{d}\psi \psi \mathbf{d}\psi^*)$
- Involves log derivative $\dot{\bar{g}} \circ g \equiv -\bar{g}\dot{g}$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $0 \bullet 00$	Hall viscosity 0000	The End 00

< ロ > < 同 > < 三 > < 三 > 、 三 > 、 ○ < ○ </p>

One-body Berry ϕ

Neutral preliminary : $(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \psi(\bar{g}(\mathbf{x}))$

- Energy eigenstate ψ
- Apply adiabatic sdiffeos $g_t(\mathbf{x})$

Charged version ? Berry = $\int dt \int d^2 \mathbf{x} \langle \mathbf{j}, \bar{g} \dot{g} \rangle$

- Measures current $\mathbf{j} = \frac{1}{2i}(\psi^* \mathbf{d}\psi \psi \mathbf{d}\psi^*)$
- Involves log derivative $\dot{\bar{g}} \circ g \equiv -\bar{g}\dot{g}$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $0 \bullet 00$	Hall viscosity 0000	The End 00

Neutral preliminary : $(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \psi(\bar{g}(\mathbf{x}))$

- Energy eigenstate ψ
- Apply adiabatic sdiffeos $g_t(\mathbf{x})$

Charged version ? Berry = $\int dt \int d^2 \mathbf{x} \langle \mathbf{j}, \bar{g} \dot{g} \rangle$

• Gauge-inv. current $\mathbf{j} = \frac{1}{2i}(\psi^* d\psi - \psi d\psi^*) - q|\psi|^2 \mathbf{A}$

< ロ > < 同 > < 三 > < 三 > 、 三 > 、 ○ < ○ </p>

• Involves log derivative $\dot{\bar{g}} \circ g \equiv -\bar{g}\dot{g}$

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D $0 \bullet 00$	Hall viscosity	The End
0000	000	0000		0000	00

Neutral preliminary : $(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \psi(\bar{g}(\mathbf{x}))$

- Energy eigenstate ψ
- Apply adiabatic sdiffeos $g_t(\mathbf{x})$

Charged version ? Berry = $\int dt \int d^2 \mathbf{x} \langle \mathbf{j}, \bar{g} \dot{g} \rangle$

• Gauge-inv. current $\mathbf{j} = \frac{1}{2i}(\psi^* d\psi - \psi d\psi^*) - q|\psi|^2 \mathbf{A}$

< ロ > < 同 > < 三 > < 三 > 、 三 > 、 ○ < ○ </p>

- Involves log derivative $\dot{\bar{g}} \circ g \equiv -\bar{g}\dot{g}$
- ...and **Aharonov-Bohm** ϕ

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $0 \bullet 00$	Hall viscosity 0000	The End 00

Neutral preliminary : $(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \psi(\bar{g}(\mathbf{x}))$

- Energy eigenstate ψ
- Apply adiabatic sdiffeos $g_t(\mathbf{x})$

Charged version : Berry = $\int dt \int d^2 \mathbf{x} \langle \mathbf{j}, \bar{g} \dot{g} \rangle + q \int d^2 \mathbf{x} |\psi(\mathbf{x})|^2 \oint_{g_t(\mathbf{x})} \mathbf{A}$

• Gauge-inv. current $\mathbf{j} = \frac{1}{2i}(\psi^* d\psi - \psi d\psi^*) - q|\psi|^2 \mathbf{A}$

< ロ > < 同 > < 三 > < 三 > 、 三 > 、 ○ < ○ </p>

- Involves log derivative $\dot{\bar{g}} \circ g \equiv -\bar{g}\dot{g}$
- ...and **Aharonov-Bohm** ϕ

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $0 \bullet 00$	Hall viscosity 0000	The End 00

Neutral preliminary : $(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \psi(\bar{g}(\mathbf{x}))$

- Energy eigenstate ψ
- Apply adiabatic sdiffeos $g_t(\mathbf{x})$

Charged version : Berry = $\int dt \int d^2 \mathbf{x} \langle \mathbf{j}, \bar{g} \dot{g} \rangle + q \int d^2 \mathbf{x} |\psi(\mathbf{x})|^2 \oint_{g_t(\mathbf{x})} \mathbf{A}$

- Gauge-inv. current $\mathbf{j} = \frac{1}{2i}(\psi^* d\psi \psi d\psi^*) q|\psi|^2 \mathbf{A}$
- Involves log derivative $\dot{\bar{g}} \circ g \equiv -\bar{g}\dot{g}$
- ...and **Aharonov-Bohm** ϕ

This is really
$$\int dt \ \langle \psi | \mathcal{U}[g]^{-1} \partial_t \mathcal{U}[g] | \psi \rangle$$

< ロ > < 同 > < 三 > < 三 > 、 三 > 、 ○ < ○ </p>

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $0 \bullet 00$	Hall viscosity 0000	The End 00

Neutral preliminary : $(\mathcal{U}[g]\psi)(\mathbf{x}) \equiv \psi(\bar{g}(\mathbf{x}))$

- Energy eigenstate ψ
- Apply adiabatic sdiffeos $g_t(\mathbf{x})$

Charged version : Berry = $\int dt \int d^2 \mathbf{x} \langle \mathbf{j}, \bar{g} \dot{g} \rangle + q \int d^2 \mathbf{x} |\psi(\mathbf{x})|^2 \oint_{g_t(\mathbf{x})} \mathbf{A}$

- Gauge-inv. current $\mathbf{j} = \frac{1}{2i}(\psi^* d\psi \psi d\psi^*) q|\psi|^2 \mathbf{A}$
- Involves log derivative $\dot{\bar{g}} \circ g \equiv -\bar{g}\dot{g}$
- ...and **Aharonov-Bohm** ϕ

This is really
$$\int dt \Big(\langle \psi | \mathcal{U}[g]^{-1} \partial_t \mathcal{U}[g] | \psi \rangle + q \partial_\tau \mathbf{C}(g_t^{-1}, g_\tau) \Big)$$

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

tro 200	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

Droplet of $N \gg 1$ electrons

Assume non-degenerate one-body energies

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

Many-body Berry ϕ

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

Many-body Berry ϕ

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{j}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} |\psi(\mathbf{x})|^2 \oint_{g_t(\mathbf{x})} \mathbf{A}$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

Many-body Berry ϕ

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{j}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

Many-body Berry ϕ

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

Droplet of $N \gg 1$ electrons

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

Droplet of $N \gg 1$ electrons

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

Droplet of $N \gg 1$ electrons

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

Droplet of $N \gg 1$ electrons

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

Droplet of $N \gg 1$ electrons

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

Droplet of $N \gg 1$ electrons

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

Droplet of $N \gg 1$ electrons

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

Droplet of $N \gg 1$ electrons

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

Droplet of $N \gg 1$ electrons

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

Droplet of $N \gg 1$ electrons

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

<ロト < 団 > < 巨 > < 巨 > 三 · の < ()</p>

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

Droplet of $N \gg 1$ electrons

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

Droplet of $N \gg 1$ electrons

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

Droplet of $N \gg 1$ electrons

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

Droplet of $N \gg 1$ electrons

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

Droplet of $N \gg 1$ electrons

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − ����

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

Droplet of $N \gg 1$ electrons

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − ����

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

Droplet of $N \gg 1$ electrons

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ����

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

Droplet of $N \gg 1$ electrons

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ����

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

< □ > < @ > < E > < E > E のQ@

Many-body Berry ϕ

Droplet of $N \gg 1$ electrons

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Many-body Berry ϕ

Droplet of $N \gg 1$ electrons

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

• Example : Translations $g_t(\mathbf{x}) = \mathbf{x} + \mathbf{a}(t)$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Many-body Berry ϕ

Droplet of $N \gg 1$ electrons

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

• Example : Translations $g_t(\mathbf{x}) = \mathbf{x} + \mathbf{a}(t)$

• Berry =
$$qN \oint_a \mathbf{A}$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

Many-body Berry ϕ

Droplet of $N \gg 1$ electrons

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt d^2 \mathbf{x} \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \bullet \circ$	Hall viscosity 0000	The End 00

Droplet of $N \gg 1$ electrons

- Assume non-degenerate one-body energies
- Ground state = Slater determinant of ψ_n 's

Berry =
$$\int dt \, d^2 \mathbf{x} \, \langle \mathbf{J}(\mathbf{x}), \, \bar{g} \, \dot{g} \rangle + q \int d^2 \mathbf{x} \, \boldsymbol{\rho}(\mathbf{x}) \oint_{g_t(\mathbf{x})} \mathbf{A}$$

(Adiabatic thm holds despite gaplessness [Avron-Elgart 98])

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Hall droplet :

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Hall droplet :

Assume isotropic potential

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \circ \bullet$	Hall viscosity 0000	The End 00

Hall droplet :

► Assume isotropic potential

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \circ \bullet$	Hall viscosity 0000	The End 00

Hall droplet :

► Assume isotropic potential

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \circ \bullet$	Hall viscosity 0000	The End 00

Hall droplet :

- Assume isotropic potential
- Density $\rho(r)$ (bulk)

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \circ \bullet$	Hall viscosity 0000	The End 00

Hall droplet :

- Assume isotropic potential
- Density $\rho(r)$ (bulk)

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \circ \bullet$	Hall viscosity 0000	The End 00

Hall droplet :

- Assume isotropic potential
- Density $\rho(r)$ (bulk)
- Current $J(r)d\varphi$ (edge)

< □ > < @ > < E > < E > E のQ@

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \circ \bullet$	Hall viscosity 0000	The End 00

Hall droplet :

- Assume isotropic potential
- Density $\rho(r)$ (bulk)
- Current $J(r)d\varphi$ (edge)
- Symmetric gauge

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \circ \bullet$	Hall viscosity 0000	The End 00

Hall droplet :

- Assume isotropic potential
- Density $\rho(r)$ (bulk)
- Current $J(r)d\varphi$ (edge)
- ► Symmetric gauge

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 - のへぐ

Berry =
$$\int dt \, d^2 \mathbf{x} \left[J(r) (\bar{g} \, \dot{g})^{\varphi} + \rho(r) \frac{(g^r(\mathbf{x}))^2}{2\ell^2} \dot{g}^{\varphi}(\mathbf{x}) \right]$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \circ \bullet$	Hall viscosity 0000	The End 00

Hall droplet :

- Assume isotropic potential
- Density $\rho(r)$ (bulk)
- Current $J(r)d\varphi$ (edge)
- ► Symmetric gauge

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 - のへぐ

Berry =
$$\int dt \, d^2 \mathbf{x} \left[J(r) (\bar{g} \, \dot{g})^{\varphi} + \rho(r) \frac{(g^r(\mathbf{x}))^2}{2\ell^2} \dot{g}^{\varphi}(\mathbf{x}) \right]$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \circ \bullet$	Hall viscosity 0000	The End 00
					1

Hall droplet :

- Assume isotropic potential
- Density $\rho(r)$ (bulk)
- Current $J(r)d\varphi$ (edge)
- ► Symmetric gauge

< □ > < @ > < E > < E > E のQ@

Berry =
$$\int dt \, d^2 \mathbf{x} \left[J(r) (\bar{g} \, \dot{g})^{\varphi} + \rho(r) \frac{(g^r(\mathbf{x}))^2}{2\ell^2} \dot{g}^{\varphi}(\mathbf{x}) \right]$$

• Edge diffeos
$$g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \circ \bullet$	Hall viscosity 0000	The End 00

Hall droplet :

- Assume isotropic potential
- Density $\rho(r)$ (bulk)
- Current $J(r)d\varphi$ (edge)
- Symmetric gauge

Berry =
$$\int r dr [J + \rho r^2 / (2\ell^2)] \int dt d\varphi \frac{\dot{g}}{g'}$$

• Edge diffeos
$$g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \circ \bullet$	Hall viscosity 0000	The End 00

Hall droplet :

- Assume isotropic potential
- Density $\rho(r)$ (bulk)
- Current $J(r)d\varphi$ (edge)
- Symmetric gauge

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Berry =
$$\int r dr [J + \rho r^2 / (2\ell^2)] \int dt d\varphi \frac{\dot{g}}{g'}$$

• Edge diffeos
$$g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \circ \bullet$	Hall viscosity 0000	The End 00

Hall droplet :

- Assume isotropic potential
- Density $\rho(r)$ (bulk)
- Current $J(r)d\varphi$ (edge)
- Symmetric gauge

Berry =
$$\int r dr [J + \rho r^2 / (2\ell^2)] \int dt d\varphi \frac{\dot{g}}{g'}$$
 as in 1D !

• Edge diffeos
$$g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \circ \bullet$	Hall viscosity 0000	The End 00

Hall droplet :

- Assume isotropic potential
- Density $\rho(r)$ (bulk)
- Current $J(r)d\varphi$ (edge)
- Symmetric gauge

Berry =
$$\int r dr [J + \rho r^2 / (2\ell^2)] \int dt d\varphi \frac{\dot{g}}{g'}$$
 as in 1D !

• Edge diffeos
$$g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

Linear sdiffeos take this form

$$g(\mathbf{x}) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

・ロト・西ト・山田・山田・山下

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D $\circ \circ \circ \bullet$	Hall viscosity 0000	The End 00

Hall droplet :

- Assume isotropic potential
- Density $\rho(r)$ (bulk)
- Current $J(r)d\varphi$ (edge)
- Symmetric gauge

Berry =
$$\int r dr [J + \rho r^2 / (2\ell^2)] \int dt d\varphi \frac{\dot{g}}{g'}$$
 as in 1D !

• Edge diffeos
$$g(r^2, \varphi) = \left(\frac{r^2}{g'(\varphi)}, g(\varphi)\right)$$

- Linear sdiffeos take this form
- ► Relation to Hall viscosity ?

$$g(\mathbf{x}) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

4. Hall viscosity

< □ > < @ > < E > < E > E のQ@

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

4. Hall viscosity

A. Reminder on Hall viscosity

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

4. Hall viscosity

A. Reminder on Hall viscosity

B. Comparison with SDiff Berry ϕ

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

QHE on torus

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

QHE on torus

・ロト < 団 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

QHE on torus

► Linear sdiffeos deform torus

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

QHE on torus

Linear sdiffeos deform torus

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

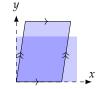
Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	○●○○	00

QHE on torus

- Linear sdiffeos deform torus
- ► Equivalently, deform metric

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	○●○○	00

QHE on torus


- Linear sdiffeos deform torus
- ► Equivalently, deform metric
- Deform Hamiltonian

ntro	Berry φ in 1D	Sdiffeos in 2D	Berry <i>φ</i> in 2D	Hall viscosity	The End
000	000	0000	0000	○●○○	00

QHE on torus

- Linear sdiffeos deform torus
- ► Equivalently, deform metric
- ► Deform Hamiltonian :

$$H \sim (\mathbf{p} - q\mathbf{A})^2 \longrightarrow \mathcal{U}H\mathcal{U}^{-1} \sim (p_j - qA_j)G^{ij}(p_k - qA_k)$$

ntro	Berry φ in 1D	Sdiffeos in 2D	Berry <i>φ</i> in 2D	Hall viscosity	The End
000	000	0000	0000	○●○○	00

QHE on torus

- Linear sdiffeos deform torus
- ► Equivalently, deform metric
- ► Deform Hamiltonian :

$$H \sim (\mathbf{p} - q\mathbf{A})^2 \longrightarrow \mathcal{U}H\mathcal{U}^{-1} \sim (p_j - qA_j)\mathbf{G}^{ij}(p_k - qA_k)$$

< □ > < @ > < E > < E > E のQ@

ntro	Berry φ in 1D	Sdiffeos in 2D	Berry <i>φ</i> in 2D	Hall viscosity	The End
000	000	0000	0000	○●○○	00

QHE on torus

- Linear sdiffeos deform torus
- ► Equivalently, deform metric
- ► Deform Hamiltonian :

$$H \sim (\mathbf{p} - q\mathbf{A})^2 \longrightarrow \mathcal{U} H \mathcal{U}^{-1} \sim (p_j - qA_j) \mathbf{G}^{ij}(p_k - qA_k)$$

ntro	Berry φ in 1D	Sdiffeos in 2D	Berry <i>φ</i> in 2D	Hall viscosity	The End
000	000	0000	0000	○●○○	00

QHE on torus

- Linear sdiffeos deform torus
- ► Equivalently, deform metric
- ► Deform Hamiltonian :

$$\begin{array}{ccc} H \sim (\mathbf{p} - q\mathbf{A})^2 & \longrightarrow & \mathcal{U} H \mathcal{U}^{-1} \sim (p_j - qA_j) \mathbf{G}^{ij}(p_k - qA_k) \\ \downarrow \\ a^{\dagger}a \end{array}$$

ntro	Berry φ in 1D	Sdiffeos in 2D	Berry <i>φ</i> in 2D	Hall viscosity	The End
000	000	0000	0000	○●○○	00

QHE on torus

- Linear sdiffeos deform torus
- ► Equivalently, deform metric
- ► Deform Hamiltonian :

$$\begin{array}{ccc} H \sim (\mathbf{p} - q\mathbf{A})^2 & \longrightarrow & \mathcal{U}H\mathcal{U}^{-1} \sim (p_j - qA_j)\mathbf{G}^{ij}(p_k - qA_k) \\ \downarrow & & \downarrow \\ a^{\dagger}a & & \exp[\#a^2 + \cdots] \end{array}$$

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry <i>φ</i> in 2D	Hall viscosity	The End
0000	000	0000	0000	○●○○	00

QHE on torus

- Linear sdiffeos deform torus
- ► Equivalently, deform metric
- Deform Hamiltonian :

$$\begin{array}{ccc} H \sim (\mathbf{p} - q\mathbf{A})^2 & \longrightarrow & \mathcal{U}H\mathcal{U}^{-1} \sim (p_j - qA_j)\mathbf{G}^{ij}(p_k - qA_k) \\ \downarrow & & \downarrow \\ a^{\dagger}a & & \exp[\#a^2 + \cdots] \end{array}$$

► Unitary SL(2, ℝ) action by mechanical momenta

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry <i>φ</i> in 2D	Hall viscosity	The End
0000	000	0000	0000	○●○○	00

OHE on torus

1

- Linear sdiffeos deform torus
- Equivalently, deform metric
- Deform Hamiltonian :

$$\begin{array}{ccc} H \sim (\mathbf{p} - q\mathbf{A})^2 & \longrightarrow & \mathcal{U} H \mathcal{U}^{-1} \sim (p_j - qA_j) \mathbf{G}^{ij}(p_k - qA_k) \\ \downarrow & & \downarrow \\ a^{\dagger}a & & \exp[\#a^2 + \cdots] \end{array}$$

• Unitary SL(2, \mathbb{R}) action by mechanical momenta

Fill ν Landau levels

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry <i>φ</i> in 2D	Hall viscosity	The End
0000	000	0000	0000	○●○○	00

QHE on torus

- Linear sdiffeos deform torus
- ► Equivalently, deform metric
- Deform Hamiltonian :

$$\begin{array}{ccc} H \sim (\mathbf{p} - q\mathbf{A})^2 & \longrightarrow & \mathcal{U}H\mathcal{U}^{-1} \sim (p_j - qA_j)\mathbf{G}^{ij}(p_k - qA_k) \\ \downarrow & & \downarrow \\ a^{\dagger}a & & \exp[\#a^2 + \cdots] \end{array}$$

► Unitary SL(2, ℝ) action by mechanical momenta

Fill ν Landau levels

• Berry =
$$N\nu \times$$
 (hyperbolic area) [Avron *et al.* 95]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry <i>φ</i> in 2D	Hall viscosity	The End
0000	000	0000	0000	○●○○	00

QHE on torus

- Linear sdiffeos deform torus
- ► Equivalently, deform metric
- Deform Hamiltonian :

$$\begin{array}{ccc} H \sim (\mathbf{p} - q\mathbf{A})^2 & \longrightarrow & \mathcal{U}H\mathcal{U}^{-1} \sim (p_j - qA_j)\mathbf{G}^{ij}(p_k - qA_k) \\ \downarrow & & \downarrow \\ a^{\dagger}a & & \exp[\#a^2 + \cdots] \end{array}$$

► Unitary SL(2, ℝ) action by mechanical momenta

Fill ν Landau levels

• Berry =
$$N\nu \times$$
 (hyperbolic area) [Avron *et al.* 95]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry <i>φ</i> in 2D	Hall viscosity	The End
0000	000	0000	0000	○●○○	00

QHE on torus

- Linear sdiffeos deform torus
- ► Equivalently, deform metric
- Deform Hamiltonian :

$$\begin{array}{ccc} H \sim (\mathbf{p} - q\mathbf{A})^2 & \longrightarrow & \mathcal{U}H\mathcal{U}^{-1} \sim (p_j - qA_j)\mathbf{G}^{ij}(p_k - qA_k) \\ \downarrow & & \downarrow \\ a^{\dagger}a & & \exp[\#a^2 + \cdots] \end{array}$$

► Unitary SL(2, ℝ) action by mechanical momenta

Fill ν Landau levels

• Berry =
$$N\nu \times$$
 (hyperbolic area) [Avron *et al.* 95]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry <i>φ</i> in 2D	Hall viscosity	The End
0000	000	0000	0000	○●○○	00

QHE on torus

- Linear sdiffeos deform torus
- ► Equivalently, deform metric
- Deform Hamiltonian :

$$\begin{array}{ccc} H \sim (\mathbf{p} - q\mathbf{A})^2 & \longrightarrow & \mathcal{U}H\mathcal{U}^{-1} \sim (p_j - qA_j)\mathbf{G}^{ij}(p_k - qA_k) \\ \downarrow & & \downarrow \\ a^{\dagger}a & & \exp[\#a^2 + \cdots] \end{array}$$

► Unitary SL(2, ℝ) action by mechanical momenta

Fill ν Landau levels

• Berry = $N\nu \times (hyperbolic area)$ [Avron *et al.* 95]

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry <i>φ</i> in 2D	Hall viscosity	The End
0000	000	0000	0000	○●○○	00

QHE on torus

- Linear sdiffeos deform torus
- ► Equivalently, deform metric
- Deform Hamiltonian :

$$\begin{array}{ccc} H \sim (\mathbf{p} - q\mathbf{A})^2 & \longrightarrow & \mathcal{U}H\mathcal{U}^{-1} \sim (p_j - qA_j)\mathbf{G}^{ij}(p_k - qA_k) \\ \downarrow & & \downarrow \\ a^{\dagger}a & & \exp[\#a^2 + \cdots] \end{array}$$

► Unitary SL(2, ℝ) action by mechanical momenta

Fill ν Landau levels

- Berry = $N\nu \times (hyperbolic area)$
- Reproduce with planar sdiffeos ?

[Avron et al. 95]

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Berry =
$$\left[\int r \, \mathrm{d}r J + \int r^3 \, \mathrm{d}r \, \rho / (2\ell^2) \right] \int \mathrm{d}t \, \mathrm{d}\varphi \frac{\dot{g}}{g'}$$

[edge diffeos]

< □ > < @ > < E > < E > E のQ@

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Berry =
$$\left[\int r \, \mathrm{d}r J + \int r^3 \, \mathrm{d}r \, \rho / (2\ell^2) \right] \int \mathrm{d}t \, \mathrm{d}\varphi \frac{\dot{g}}{g'}$$

[edge diffeos]

Fill ν Landau levels

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Berry =
$$\left[\underbrace{\int r \, \mathrm{d}r J}_{-N\nu} + \int r^3 \, \mathrm{d}r \, \rho / (2\ell^2) \right] \int \mathrm{d}t \, \mathrm{d}\varphi \frac{\dot{g}}{g'}$$

Fill ν Landau levels

[edge diffeos]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Berry =
$$\left[\underbrace{\int r \, dr J}_{-N\nu} + \int r^3 \, dr \, \rho/(2\ell^2) \right] \int dt \, d\varphi \frac{\dot{g}}{g'}$$
(extensive)

[edge diffeos]

Fill ν Landau levels

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Berry =
$$\left[\underbrace{\int r \, dr J}_{-N\nu} + \underbrace{\int r^3 \, dr \, \rho/(2\ell^2)}_{N^2/(2\nu)}\right] \int dt \, d\varphi \frac{\dot{g}}{g'}$$
(extensive)

[edge diffeos]

・ロト・西ト・ヨー シック・

Fill ν Landau levels

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

$$\operatorname{Berry} = \left[\underbrace{\int r \, \mathrm{d}r J}_{-N\nu} + \underbrace{\int r^3 \, \mathrm{d}r \, \rho/(2\ell^2)}_{(\text{extensive})} \right] \int \mathrm{d}t \, \mathrm{d}\varphi \frac{\dot{g}}{g'} \qquad \text{[edge diffeos]}$$

< □ > < @ > < E > < E > E のQ@

Fill ν Landau levels

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Berry =
$$\left[\underbrace{\int r \, dr J}_{-N\nu} + \underbrace{\int r^3 \, dr \, \rho/(2\ell^2)}_{\text{(extensive)}}\right] \int dt \, d\varphi \frac{\dot{g}}{g'}$$

$$\underbrace{\int dt \, d\varphi \frac{\dot{g}}{g'}}_{\text{(superextensive)}}$$

[edge diffeos]

◆□ > ◆□ > ◆ 臣 > ◆ 臣 > ◆ 臣 = • • ○ < ⊙

- Fill ν Landau levels
- **Superextensive** Berry ϕ

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Berry =
$$\left[\underbrace{\int r \, dr J}_{-N\nu} + \underbrace{\int r^3 \, dr \, \rho/(2\ell^2)}_{\text{(extensive)}}\right] \int dt \, d\varphi \frac{\dot{g}}{g'} \qquad \text{[edge diffeos}$$

- Fill ν Landau levels
- **Superextensive** Berry $\phi \neq$ **Extensive** Hall viscosity !?

< □ > < @ > < E > < E > E のQ@

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Berry =
$$\left[\underbrace{\int r \, dr J}_{(\text{extensive})} + \underbrace{\int r^3 \, dr \, \rho/(2\ell^2)}_{(\text{superextensive})}\right] \int dt \, d\varphi \frac{\dot{g}}{g'} \qquad \text{[edge diffeos]}$$

- Fill ν Landau levels
- **Superextensive** Berry $\phi \neq$ **Extensive** Hall viscosity !?

< □ > < @ > < E > < E > E のQ@

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Berry =
$$\left[\underbrace{\int r \, dr J}_{(\text{extensive})} + \underbrace{\int r^3 \, dr \, \rho/(2\ell^2)}_{(\text{superextensive})}\right] \int dt \, d\varphi \frac{\dot{g}}{g'} \qquad \text{[edge diffeos]}$$

- Fill ν Landau levels
- **Superextensive** Berry $\phi \neq$ **Extensive** Hall viscosity !?
- ► Remove AB phase

[gauge-invariant]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Berry =
$$\left[\underbrace{\int r \, dr J}_{(\text{extensive})} + \underbrace{\int r^3 \, dr \, \rho/(2\ell^2)}_{(\text{superextensive})}\right] \int dt \, d\varphi \frac{\dot{g}}{g'} \qquad \text{[edge diffeos]}$$

- Fill ν Landau levels
- **Superextensive** Berry $\phi \neq$ **Extensive** Hall viscosity !?
- Remove AB phase

[gauge-invariant]

Linear sdiffeos $e^{2ig(\varphi)} = e^{2i\theta} \frac{e^{2i\varphi}\cosh\lambda + \sinh\lambda}{e^{2i\varphi}\sinh\lambda + \cosh\lambda}$

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Berry =
$$\left[\underbrace{\int r \, dr J}_{(\text{extensive})} + \underbrace{\int r^3 \, dr \, \rho/(2\ell^2)}_{(\text{superextensive})}\right] \int dt \, d\varphi \frac{\dot{g}}{g'} \qquad \text{[edge diffeos]}$$

- Fill ν Landau levels
- **Superextensive** Berry $\phi \neq$ **Extensive** Hall viscosity !?
- Remove AB phase

[gauge-invariant]

Linear sdiffeos $e^{2ig(\varphi)} = e^{2i\theta} \frac{e^{2i\varphi}\cosh\lambda + \sinh\lambda}{e^{2i\varphi}\sinh\lambda + \cosh\lambda}$

• Berry-AB curvature = $N\nu \times \delta(\cosh \lambda) \wedge \delta\theta$

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Berry =
$$\left[\underbrace{\int r \, dr J}_{(\text{extensive})} + \underbrace{\int r^3 \, dr \, \rho/(2\ell^2)}_{(\text{superextensive})}\right] \int dt \, d\varphi \frac{\dot{g}}{g'} \qquad \text{[edge diffeos]}$$

- Fill ν Landau levels
- **Superextensive** Berry $\phi \neq$ **Extensive** Hall viscosity !?
- Remove AB phase

[gauge-invariant]

Linear sdiffeos $e^{2ig(\varphi)} = e^{2i\theta} \frac{e^{2i\varphi}\cosh\lambda + \sinh\lambda}{e^{2i\varphi}\sinh\lambda + \cosh\lambda}$

• Berry-AB curvature = $N\nu \times \delta(\cosh \lambda) \wedge \delta\theta$

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Berry =
$$\left[\underbrace{\int r \, dr J}_{(\text{extensive})} + \underbrace{\int r^3 \, dr \, \rho/(2\ell^2)}_{(\text{superextensive})}\right] \int dt \, d\varphi \frac{\dot{g}}{g'} \qquad \text{[edge diffeos]}$$

- Fill ν Landau levels
- **Superextensive** Berry $\phi \neq$ **Extensive** Hall viscosity !?
- Remove AB phase

[gauge-invariant]

Linear sdiffeos $e^{2ig(\varphi)} = e^{2i\theta} \frac{e^{2i\varphi}\cosh\lambda + \sinh\lambda}{e^{2i\varphi}\sinh\lambda + \cosh\lambda}$

• Berry-AB curvature = $N\nu \times \delta(\cosh \lambda) \wedge \delta\theta$

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Berry =
$$\left[\underbrace{\int r \, dr J}_{(\text{extensive})} + \underbrace{\int r^3 \, dr \, \rho/(2\ell^2)}_{(\text{superextensive})}\right] \int dt \, d\varphi \frac{\dot{g}}{g'} \qquad \text{[edge diffeos]}$$

- Fill ν Landau levels
- **Superextensive** Berry $\phi \neq$ **Extensive** Hall viscosity !?
- Remove AB phase

[gauge-invariant]

Linear sdiffeos $e^{2ig(\varphi)} = e^{2i\theta} \frac{e^{2i\varphi}\cosh\lambda + \sinh\lambda}{e^{2i\varphi}\sinh\lambda + \cosh\lambda}$

• Berry-AB curvature = $N\nu \times \delta(\cosh\lambda) \wedge \delta\theta$

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Berry =
$$\left[\underbrace{\int r \, dr J}_{(\text{extensive})} + \underbrace{\int r^3 \, dr \, \rho/(2\ell^2)}_{(\text{superextensive})}\right] \int dt \, d\varphi \frac{\dot{g}}{g'} \qquad \text{[edge diffeos]}$$

- Fill ν Landau levels
- **Superextensive** Berry $\phi \neq$ **Extensive** Hall viscosity !?
- Remove AB phase

[gauge-invariant]

Linear sdiffeos $e^{2ig(\varphi)} = e^{2i\theta} \frac{e^{2i\varphi}\cosh\lambda + \sinh\lambda}{e^{2i\varphi}\sinh\lambda + \cosh\lambda}$

- Berry-AB curvature = $N\nu \times \delta(\cosh\lambda) \wedge \delta\theta$
- Hall viscosity !

[Avron et al. 95]

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Berry =
$$\left[\underbrace{\int r \, dr J}_{(\text{extensive})} + \underbrace{\int r^3 \, dr \, \rho/(2\ell^2)}_{(\text{superextensive})}\right] \int dt \, d\varphi \frac{\dot{g}}{g'} \qquad \text{[edge diffeos]}$$

- Fill ν Landau levels
- **Superextensive** Berry $\phi \neq$ **Extensive** Hall viscosity !?
- Remove AB phase

[gauge-invariant]

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Linear sdiffeos $e^{2ig(\varphi)} = e^{2i\theta} \frac{e^{2i\varphi}\cosh\lambda + \sinh\lambda}{e^{2i\varphi}\sinh\lambda + \cosh\lambda}$

- Berry-AB curvature = $N\nu \times \delta(\cosh\lambda) \wedge \delta\theta$
- ► Hall viscosity ! ... but why ? [Avron *et al.* 95]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Small linear sdiffeo

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Small linear sdiffeo
$$\mathbf{x} \mapsto \mathbf{x} + \begin{pmatrix} -\mathrm{Im}(\epsilon) & \omega - \mathrm{Re}(\epsilon) \\ -\omega - \mathrm{Re}(\epsilon) & \mathrm{Im}(\epsilon) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

HALL VISCOSITY REVISITED

Small linear sdiffeo $\mathbf{x} \mapsto \mathbf{x} + \begin{pmatrix} -\operatorname{Im}(\epsilon) & \omega - \operatorname{Re}(\epsilon) \\ -\omega - \operatorname{Re}(\epsilon) & \operatorname{Im}(\epsilon) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

► Action on Hall droplet ?

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

HALL VISCOSITY REVISITED

Small linear sdiffeo $\mathbf{x} \mapsto \mathbf{x} + \begin{pmatrix} -\operatorname{Im}(\epsilon) & \omega - \operatorname{Re}(\epsilon) \\ -\omega - \operatorname{Re}(\epsilon) & \operatorname{Im}(\epsilon) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

- ► Action on Hall droplet ?
- Mechanical momenta a,a^{\dagger} change Landau levels

Intro 0000	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity ○○○●	The End 00
0000	000	0000	0000	000	00

HALL VISCOSITY REVISITED

Small linear sdiffeo $\mathbf{x} \mapsto \mathbf{x} + \begin{pmatrix} -\operatorname{Im}(\epsilon) & \omega - \operatorname{Re}(\epsilon) \\ -\omega - \operatorname{Re}(\epsilon) & \operatorname{Im}(\epsilon) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

- Action on Hall droplet ?
- Mechanical momenta *a*,*a*[†] change Landau levels, Magnetic translations *b*,*b*[†] change angular mom

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	○○○●	00

Small linear sdiffeo $\mathbf{x} \mapsto \mathbf{x} + \begin{pmatrix} -\operatorname{Im}(\epsilon) & \omega - \operatorname{Re}(\epsilon) \\ -\omega - \operatorname{Re}(\epsilon) & \operatorname{Im}(\epsilon) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

- Action on Hall droplet ?
- Mechanical momenta *a*,*a*[†] change Landau levels, Magnetic translations *b*,*b*[†] change angular mom
- Linear sdiffeo generated by $\epsilon a^2 + \omega a^{\dagger} a \bar{\epsilon} b^2 \omega b^{\dagger} b + h.c.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Small linear sdiffeo $\mathbf{x} \mapsto \mathbf{x} + \begin{pmatrix} -\operatorname{Im}(\epsilon) & \omega - \operatorname{Re}(\epsilon) \\ -\omega - \operatorname{Re}(\epsilon) & \operatorname{Im}(\epsilon) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

- Action on Hall droplet ?
- Mechanical momenta *a*,*a*[†] change Landau levels, Magnetic translations *b*,*b*[†] change angular mom
- Linear sdiffeo generated by $\epsilon a^2 + \omega a^{\dagger} a \bar{\epsilon} b^2 \omega b^{\dagger} b + h.c.$

 $[\mathcal{U}[\text{lin.sdiff}] \sim 1 + i\epsilon a^2 + \cdots]$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	○○○●	00

Small linear sdiffeo $\mathbf{x} \mapsto \mathbf{x} + \begin{pmatrix} -\operatorname{Im}(\epsilon) & \omega - \operatorname{Re}(\epsilon) \\ -\omega - \operatorname{Re}(\epsilon) & \operatorname{Im}(\epsilon) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

- Action on Hall droplet ?
- Mechanical momenta *a*,*a*[†] change Landau levels, Magnetic translations *b*,*b*[†] change angular mom
- Linear sdiffeo generated by $\epsilon a^2 + \omega a^{\dagger} a \bar{\epsilon} b^2 \omega b^{\dagger} b + h.c.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	○○○●	00

Small linear sdiffeo $\mathbf{x} \mapsto \mathbf{x} + \begin{pmatrix} -\operatorname{Im}(\epsilon) & \omega - \operatorname{Re}(\epsilon) \\ -\omega - \operatorname{Re}(\epsilon) & \operatorname{Im}(\epsilon) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

- Action on Hall droplet ?
- Mechanical momenta *a*,*a*[†] change Landau levels, Magnetic translations *b*,*b*[†] change angular mom
- Linear sdiffeo generated by $\epsilon a^2 + \omega a^{\dagger}a \overline{\epsilon}b^2 \omega b^{\dagger}b + h.c.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	00

Small linear sdiffeo $\mathbf{x} \mapsto \mathbf{x} + \begin{pmatrix} -\operatorname{Im}(\epsilon) & \omega - \operatorname{Re}(\epsilon) \\ -\omega - \operatorname{Re}(\epsilon) & \operatorname{Im}(\epsilon) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

- Action on Hall droplet ?
- Mechanical momenta *a*,*a*[†] change Landau levels, Magnetic translations *b*,*b*[†] change angular mom
- Linear sdiffeo generated by $\underbrace{\epsilon a^2 + \omega a^{\dagger} a}_{\text{changes metric}} \underbrace{\overline{\epsilon} b^2 \omega b^{\dagger} b}_{\text{LLL projection}} + h.c.$

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	○○○●	00

Small linear sdiffeo $\mathbf{x} \mapsto \mathbf{x} + \begin{pmatrix} -\operatorname{Im}(\epsilon) & \omega - \operatorname{Re}(\epsilon) \\ -\omega - \operatorname{Re}(\epsilon) & \operatorname{Im}(\epsilon) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

- Action on Hall droplet ?
- Mechanical momenta *a*,*a*[†] change Landau levels, Magnetic translations *b*,*b*[†] change angular mom
- Linear sdiffeo generated by $\underbrace{\epsilon a^2 + \omega a^{\dagger} a}_{\text{changes metric}} \underbrace{\overline{\epsilon} b^2 \omega b^{\dagger} b}_{\text{LLL projection}} + h.c.$

Hall viscosity only takes a, a^{\dagger}

[Lévay 95]

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry <i>φ</i> in 2D	Hall viscosity	The End
0000	000	0000	0000	○○○●	00

Small linear sdiffeo $\mathbf{x} \mapsto \mathbf{x} + \begin{pmatrix} -\operatorname{Im}(\epsilon) & \omega - \operatorname{Re}(\epsilon) \\ -\omega - \operatorname{Re}(\epsilon) & \operatorname{Im}(\epsilon) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

- Action on Hall droplet ?
- Mechanical momenta *a*,*a*[†] change Landau levels, Magnetic translations *b*,*b*[†] change angular mom
- Linear sdiffeo generated by $\underbrace{\epsilon a^2 + \omega a^{\dagger} a}_{\text{changes metric}} \underbrace{\overline{\epsilon} b^2 \omega b^{\dagger} b}_{\text{LLL projection}} + h.c.$

Hall viscosity only takes a, a^{\dagger}

[Lévay 95]

• To recover it, **mod out** b, b^{\dagger}

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	○○○●	00

Small linear sdiffeo $\mathbf{x} \mapsto \mathbf{x} + \begin{pmatrix} -\operatorname{Im}(\epsilon) & \omega - \operatorname{Re}(\epsilon) \\ -\omega - \operatorname{Re}(\epsilon) & \operatorname{Im}(\epsilon) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

- Action on Hall droplet ?
- Mechanical momenta *a*,*a*[†] change Landau levels, Magnetic translations *b*,*b*[†] change angular mom
- Linear sdiffeo generated by $\underbrace{\epsilon a^2 + \omega a^{\dagger} a}_{\text{changes metric}} \underbrace{\overline{\epsilon} b^2 \omega b^{\dagger} b}_{\text{LLL projection}} + h.c.$

Hall viscosity only takes a, a^{\dagger}

[Lévay 95]

- To recover it, **mod out** b, b^{\dagger}
- Removes Aharonov-Bohm

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	○○○●	00

Small linear sdiffeo $\mathbf{x} \mapsto \mathbf{x} + \begin{pmatrix} -\operatorname{Im}(\epsilon) & \omega - \operatorname{Re}(\epsilon) \\ -\omega - \operatorname{Re}(\epsilon) & \operatorname{Im}(\epsilon) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

- Action on Hall droplet ?
- Mechanical momenta *a*,*a*[†] change Landau levels, Magnetic translations *b*,*b*[†] change angular mom
- Linear sdiffeo generated by $\underbrace{\epsilon a^2 + \omega a^{\dagger} a}_{\text{changes metric}} \underbrace{\overline{\epsilon} b^2 \omega b^{\dagger} b}_{\text{LLL projection}} + h.c.$

Hall viscosity only takes a, a^{\dagger}

[Lévay 95]

シック・ボート ボボット 小田 マ

- To recover it, **mod out** b, b^{\dagger}
- Removes Aharonov-Bohm, leaves only current

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	○○○●	00

Small linear sdiffeo $\mathbf{x} \mapsto \mathbf{x} + \begin{pmatrix} -\operatorname{Im}(\epsilon) & \omega - \operatorname{Re}(\epsilon) \\ -\omega - \operatorname{Re}(\epsilon) & \operatorname{Im}(\epsilon) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

- Action on Hall droplet ?
- Mechanical momenta *a*,*a*[†] change Landau levels, Magnetic translations *b*,*b*[†] change angular mom
- Linear sdiffeo generated by $\underbrace{\epsilon a^2 + \omega a^{\dagger} a}_{\text{changes metric}} \underbrace{\overline{\epsilon} b^2 \omega b^{\dagger} b}_{\text{LLL projection}} + h.c.$

Hall viscosity only takes a, a^{\dagger}

[Lévay 95]

- To recover it, **mod out** b, b^{\dagger}
- Removes Aharonov-Bohm, leaves only current
- ▶ "Hall viscosity from the edge"

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	•0

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	●0

This talk in one sentence :

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End ●0

This talk in one sentence :

Arbitrary deformations of quantum Hall droplets

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End ●0

This talk in one sentence :

Arbitrary deformations of quantum Hall droplets yield Berry phases that **generalize Hall viscosity**

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End ●0

This talk in one sentence :

Arbitrary deformations of quantum Hall droplets yield Berry phases that generalize Hall viscosity and involve the edge current.

< □ > < @ > < E > < E > E のQ@

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End ●0

This talk in one sentence :

Arbitrary deformations of quantum Hall droplets yield Berry phases that generalize Hall viscosity and involve the edge current.

In practice, unitary sdiffeos

・ロト・(部・・モト・モー・)の(の)

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End ●0

This talk in one sentence :

Arbitrary deformations of quantum Hall droplets yield Berry phases that generalize Hall viscosity and involve the edge current.

In practice, unitary sdiffeos ["quantomorphisms" in geom. quantiz.]

・ロト (四) (日) (日) (日) (日) (日)

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End ●0

This talk in one sentence :

Arbitrary deformations of quantum Hall droplets yield Berry phases that generalize Hall viscosity and involve the edge current.

In practice, unitary sdiffeos ["quantomorphisms" in geom. quantiz.]

< ロ > < 同 > < 三 > < 三 > 、 三 > 、 ○ < ○ </p>

Follow-ups :

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End ●0

This talk in one sentence :

Arbitrary deformations of quantum Hall droplets yield Berry phases that generalize Hall viscosity and involve the edge current.

In practice, unitary sdiffeos ["quantomorphisms" in geom. quantiz.]

< ロ > < 同 > < 三 > < 三 > 、 三 > 、 ○ < ○ </p>

Follow-ups :

Independence of potential/disorder ?

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End ●0

This talk in one sentence :

Arbitrary deformations of quantum Hall droplets yield Berry phases that generalize Hall viscosity and involve the edge current.

In practice, unitary sdiffeos ["quantomorphisms" in geom. quantiz.]

Follow-ups :

- Independence of potential/disorder ?
- Action of sdiffeos projected in LLL ?

[Cappelli et al. 94]

うして 山田 マイボット ボット シックション

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End ●0

This talk in one sentence :

Arbitrary deformations of quantum Hall droplets yield Berry phases that generalize Hall viscosity and involve the edge current.

In practice, unitary sdiffeos ["quantomorphisms" in geom. quantiz.]

Follow-ups :

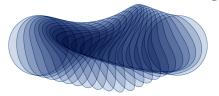
- Independence of potential/disorder ?
- ► Action of sdiffeos projected in LLL ? [Cappelli *et al.* 94]
- ► Generalization to FQHE ?

[Read 08, Bradlyn-Read 15]

Intro 0000	Berry ϕ in 1D 000	Sdiffeos in 2D 0000	Berry ϕ in 2D 0000	Hall viscosity 0000	The End ●0

This talk in one sentence :

Arbitrary deformations of quantum Hall droplets yield Berry phases that generalize Hall viscosity and involve the edge current.


In practice, unitary sdiffeos ["quantomorphisms" in geom. quantiz.]

Follow-ups :

- ► Independence of potential/disorder ?
- ► Action of sdiffeos projected in LLL ? [Cappelli *et al.* 94]
- ► Generalization to FQHE ? [Read 08, Bradlyn-Read 15]
- Sdiffeos produced by (nonlinear) edge modes ?

Intro	Berry ϕ in 1D	Sdiffeos in 2D	Berry ϕ in 2D	Hall viscosity	The End
0000	000	0000	0000	0000	0.

Thanks for listening !

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − ����