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UNITARY REPS

Let’s build UIRREPs of P!
» Pick an orbit O,
» Let H = space of wavefunctions ¥ : O, — C: q— ¥(q)

> Define (T[(f,a)]¥) (g) = ) w(f1 - g)
» This is an IRREP of P!

How to make 7 unitary?

» Pick a G-invariant measure . on O,

» Scalar product (®|¥) = /O du(q) (2(q))" ¥(q)

All UIRREPs of P are of this form ! [Mackey ~1950]
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BMS; = Diff(S!) x Vect(S!)

[Barnich & BO 2014]
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Unitary reps of BMSs...
» What should we expect ?

Poincaré : exact space-time symmetry
» UIRREP = Hpoinc = Particle

BMS; : aspt. space-time symmetry
» UIRREP = Hpms = Particle dressed w/ soft gravitons
= BMS; particle

v

HBMS = HPoinc & HSoft grav

v

Can we classify BMS; particles? —  Yes!

v

Can we describe Hsoft grav ? —  Yes!
» Can we compute stuff withit? —  Yes!
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Orbits of supermomenta under superrotations?
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[BO 2015]
» One-loop partition fct of gravitons on thermal flat space !

[Barnich, Gonzalez, Maloney, BO 2015]
» Generalization to higher spins
[Campoleoni, Gonzalez, BO, Riegler 2015]
» Flat analogue of AdS3;/CFT); results

[Giombi, Maloney, Yin 2008]
[Gaberdiel, Gopakumar 2010]
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Supermomentum <> Bondi mass aspect
BMS; particle <+ Particle dressed with soft gravitons
BMS; characters <+ One-loop partition fcts around flat space
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Thank you !
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