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MOTIVATION

Flat space-time

I Symmetries : Poincaré ∼ Lorentz n Translations

But space-time is not flat...
I “Asymptotically flat” space-times
I Symmetries : BMS ∼ Superrotations n Supertranslations

[Bondi et al. 1962, Barnich et al. 2009]

UIRREPs of Poincaré define the notion of “particle”
I What “particles” are defined by BMS symmetry ?

In 4D, algebraic structure is poorly understood
I 3D toy model : BMS3
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SEMI-DIRECT PRODUCTS

Poincaré = Lorentz n Translations

I Elements of P = pairs ( f , α)

I Group operation ( f , α) · (g, β) ≡ ( f · g, α+ f · β)

I P is a semi-direct product :

P = G nσ A

I A = vector group
I σ = representation of G in A
I ( f , α) · (g, β) = ( f · g, α+ σfβ)
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SEMI-DIRECT PRODUCTS

UIRREPs of P = SO(2, 1) nR3 ? [Wigner 1939]

I Start with Abelian group R3

I UIRREPs are one-dimensional :
(α0, α1, α2) 7−→ e i pµαµ

, (p0, p1, p2) ∈ R3

I p = momentum

A UIRREP of P contains many momenta (restriction to A)
I Which momenta?
I Orbits !



Unitary reps of semi-direct products Unitary reps of BMS3 Relation to gravity Conclusion

SEMI-DIRECT PRODUCTS

UIRREPs of P = SO(2, 1) nR3 ? [Wigner 1939]

I Start with Abelian group R3

I UIRREPs are one-dimensional :
(α0, α1, α2) 7−→ e i pµαµ

, (p0, p1, p2) ∈ R3

I p = momentum

A UIRREP of P contains many momenta (restriction to A)
I Which momenta?
I Orbits !



Unitary reps of semi-direct products Unitary reps of BMS3 Relation to gravity Conclusion

SEMI-DIRECT PRODUCTS

UIRREPs of P = SO(2, 1) nR3 ? [Wigner 1939]

I Start with Abelian group R3

I UIRREPs are one-dimensional :

(α0, α1, α2) 7−→ e i pµαµ
, (p0, p1, p2) ∈ R3

I p = momentum

A UIRREP of P contains many momenta (restriction to A)
I Which momenta?
I Orbits !



Unitary reps of semi-direct products Unitary reps of BMS3 Relation to gravity Conclusion

SEMI-DIRECT PRODUCTS

UIRREPs of P = SO(2, 1) nR3 ? [Wigner 1939]

I Start with Abelian group R3

I UIRREPs are one-dimensional :
(α0, α1, α2) 7−→ e i pµαµ

, (p0, p1, p2) ∈ R3

I p = momentum

A UIRREP of P contains many momenta (restriction to A)
I Which momenta?
I Orbits !



Unitary reps of semi-direct products Unitary reps of BMS3 Relation to gravity Conclusion

SEMI-DIRECT PRODUCTS

UIRREPs of P = SO(2, 1) nR3 ? [Wigner 1939]

I Start with Abelian group R3

I UIRREPs are one-dimensional :
(α0, α1, α2) 7−→ e i pµαµ

, (p0, p1, p2) ∈ R3

I p = momentum

A UIRREP of P contains many momenta (restriction to A)
I Which momenta?
I Orbits !



Unitary reps of semi-direct products Unitary reps of BMS3 Relation to gravity Conclusion

SEMI-DIRECT PRODUCTS

UIRREPs of P = G nσ A ? [Wigner 1939]

I Start with Abelian group R3

I UIRREPs are one-dimensional :
(α0, α1, α2) 7−→ e i pµαµ

, (p0, p1, p2) ∈ R3

I p = momentum

A UIRREP of P contains many momenta (restriction to A)
I Which momenta?
I Orbits !



Unitary reps of semi-direct products Unitary reps of BMS3 Relation to gravity Conclusion

SEMI-DIRECT PRODUCTS

UIRREPs of P = G nσ A ? [Wigner 1939]

I Start with Abelian group A
I UIRREPs are one-dimensional :

(α0, α1, α2) 7−→ e i pµαµ
, (p0, p1, p2) ∈ R3

I p = momentum

A UIRREP of P contains many momenta (restriction to A)
I Which momenta?
I Orbits !



Unitary reps of semi-direct products Unitary reps of BMS3 Relation to gravity Conclusion

SEMI-DIRECT PRODUCTS

UIRREPs of P = G nσ A ? [Wigner 1939]

I Start with Abelian group A
I UIRREPs are one-dimensional :

α 7−→ e i pµαµ
, (p0, p1, p2) ∈ R3

I p = momentum

A UIRREP of P contains many momenta (restriction to A)
I Which momenta?
I Orbits !



Unitary reps of semi-direct products Unitary reps of BMS3 Relation to gravity Conclusion

SEMI-DIRECT PRODUCTS

UIRREPs of P = G nσ A ? [Wigner 1939]

I Start with Abelian group A
I UIRREPs are one-dimensional :

α 7−→ e i 〈p,α〉, p ∈ A∗

I p = momentum

A UIRREP of P contains many momenta (restriction to A)
I Which momenta?
I Orbits !



Unitary reps of semi-direct products Unitary reps of BMS3 Relation to gravity Conclusion

SEMI-DIRECT PRODUCTS

UIRREPs of P = G nσ A ? [Wigner 1939]

I Start with Abelian group A
I UIRREPs are one-dimensional :

α 7−→ e i 〈p,α〉, p ∈ A∗

I p = momentum

A UIRREP of P contains many momenta

(restriction to A)
I Which momenta?
I Orbits !



Unitary reps of semi-direct products Unitary reps of BMS3 Relation to gravity Conclusion

SEMI-DIRECT PRODUCTS

UIRREPs of P = G nσ A ? [Wigner 1939]

I Start with Abelian group A
I UIRREPs are one-dimensional :

α 7−→ e i 〈p,α〉, p ∈ A∗

I p = momentum

A UIRREP of P contains many momenta (restriction to A)

I Which momenta?
I Orbits !



Unitary reps of semi-direct products Unitary reps of BMS3 Relation to gravity Conclusion

SEMI-DIRECT PRODUCTS

UIRREPs of P = G nσ A ? [Wigner 1939]

I Start with Abelian group A
I UIRREPs are one-dimensional :

α 7−→ e i 〈p,α〉, p ∈ A∗

I p = momentum

A UIRREP of P contains many momenta (restriction to A)
I Which momenta?

I Orbits !



Unitary reps of semi-direct products Unitary reps of BMS3 Relation to gravity Conclusion

SEMI-DIRECT PRODUCTS

UIRREPs of P = G nσ A ? [Wigner 1939]

I Start with Abelian group A
I UIRREPs are one-dimensional :

α 7−→ e i 〈p,α〉, p ∈ A∗

I p = momentum

A UIRREP of P contains many momenta (restriction to A)
I Which momenta?
I Orbits !



Unitary reps of semi-direct products Unitary reps of BMS3 Relation to gravity Conclusion

ORBITS

Let T = UIRREP of G nσ A

in a Hilbert spaceH, with

T [(e, α)]

∣∣∣
V

= e i〈p,α〉 on V ≤ H.

Pick f ∈ G.

Then, ∃ V′ ≤ H s.t.

T [(e, α)]
∣∣∣
V′

= ei〈p, σf−1α〉

Define 〈 f · p, α〉 ≡ 〈p, σf−1α〉

I Orbit of p : Op ≡ { f · p | f ∈ G}
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UNITARY REPS

Let’s build UIRREPs of P !

I Pick an orbit Op

I LetH = space of wavefunctions Ψ : Op → C : q 7→ Ψ(q)

I Define

(

T [( f , α)]Ψ) (q) = e i〈q,α〉Ψ(

f−1 · q

)

I This is an IRREP of P !

How to make T unitary?
I Pick a G-invariant measure µ on Op

I Scalar product 〈Φ|Ψ〉 ≡
∫
Op

dµ(q) (Φ(q))∗Ψ(q)

All UIRREPs of P are of this form ! [Mackey ∼1950]
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DEFINITION OF BMS3

BMS3 = Aspt. symmetry group of 3D aspt. flat space-times
[Ashtekar et al. 1996, Barnich et al. 2009]

I Aspt. flat metrics in 3D :
ds2 r→+∞∼ −du2 − 2dudr + r2dϕ2

+ subleading terms

I Aspt. symmetry transformations :
ϕ 7→ f (ϕ), u 7→

[

u + α(ϕ)

] f ′(ϕ)

↙

↓

Superrotations Supertranslations

I Infinite-dimensional extension of Poincaré



Unitary reps of semi-direct products Unitary reps of BMS3 Relation to gravity Conclusion

DEFINITION OF BMS3

BMS3 = Aspt. symmetry group of 3D aspt. flat space-times
[Ashtekar et al. 1996, Barnich et al. 2009]

I Aspt. flat metrics in 3D :
ds2 r→+∞∼ −du2 − 2dudr + r2dϕ2

+ subleading terms

I Aspt. symmetry transformations :
ϕ 7→ f (ϕ), u 7→

[

u + α(ϕ)

] f ′(ϕ)

↙

↓

Superrotations Supertranslations

I Infinite-dimensional extension of Poincaré



Unitary reps of semi-direct products Unitary reps of BMS3 Relation to gravity Conclusion

DEFINITION OF BMS3

BMS3 = Aspt. symmetry group of 3D aspt. flat space-times
[Ashtekar et al. 1996, Barnich et al. 2009]

I Aspt. flat metrics in 3D :
ds2 r→+∞∼ −du2 − 2dudr + r2dϕ2

+ subleading terms

I Aspt. symmetry transformations :
ϕ 7→ f (ϕ), u 7→

[

u + α(ϕ)

] f ′(ϕ)

↙

↓

Superrotations Supertranslations

I Infinite-dimensional extension of Poincaré



Unitary reps of semi-direct products Unitary reps of BMS3 Relation to gravity Conclusion

DEFINITION OF BMS3

BMS3 = Aspt. symmetry group of 3D aspt. flat space-times
[Ashtekar et al. 1996, Barnich et al. 2009]

I Aspt. flat metrics in 3D :
ds2 r→+∞∼ −du2 − 2dudr + r2dϕ2

+ subleading terms

I Aspt. symmetry transformations :
ϕ 7→ f (ϕ), u 7→

[

u + α(ϕ)

] f ′(ϕ)

↙

↓

Superrotations Supertranslations

I Infinite-dimensional extension of Poincaré



Unitary reps of semi-direct products Unitary reps of BMS3 Relation to gravity Conclusion

DEFINITION OF BMS3

BMS3 = Aspt. symmetry group of 3D aspt. flat space-times
[Ashtekar et al. 1996, Barnich et al. 2009]

I Aspt. flat metrics in 3D :
ds2 r→+∞∼ −du2 − 2dudr + r2dϕ2 + subleading terms

I Aspt. symmetry transformations :
ϕ 7→ f (ϕ), u 7→

[

u + α(ϕ)

] f ′(ϕ)

↙

↓

Superrotations Supertranslations

I Infinite-dimensional extension of Poincaré



Unitary reps of semi-direct products Unitary reps of BMS3 Relation to gravity Conclusion

DEFINITION OF BMS3

BMS3 = Aspt. symmetry group of 3D aspt. flat space-times
[Ashtekar et al. 1996, Barnich et al. 2009]

I Aspt. flat metrics in 3D :
ds2 r→+∞∼ −du2 − 2dudr + r2dϕ2 + subleading terms

I Aspt. symmetry transformations :
ϕ 7→ f (ϕ),

u 7→

[

u + α(ϕ)

] f ′(ϕ)

↙

↓

Superrotations Supertranslations

I Infinite-dimensional extension of Poincaré



Unitary reps of semi-direct products Unitary reps of BMS3 Relation to gravity Conclusion

DEFINITION OF BMS3

BMS3 = Aspt. symmetry group of 3D aspt. flat space-times
[Ashtekar et al. 1996, Barnich et al. 2009]

I Aspt. flat metrics in 3D :
ds2 r→+∞∼ −du2 − 2dudr + r2dϕ2 + subleading terms

I Aspt. symmetry transformations :
ϕ 7→ f (ϕ), u 7→

[

u + α(ϕ)

] f ′(ϕ)
↙

↓

Superrotations Supertranslations

I Infinite-dimensional extension of Poincaré



Unitary reps of semi-direct products Unitary reps of BMS3 Relation to gravity Conclusion

DEFINITION OF BMS3

BMS3 = Aspt. symmetry group of 3D aspt. flat space-times
[Ashtekar et al. 1996, Barnich et al. 2009]

I Aspt. flat metrics in 3D :
ds2 r→+∞∼ −du2 − 2dudr + r2dϕ2 + subleading terms

I Aspt. symmetry transformations :
ϕ 7→ f (ϕ), u 7→

[

u + α(ϕ)

] f ′(ϕ)

↙

↓

Superrotations

Supertranslations

I Infinite-dimensional extension of Poincaré



Unitary reps of semi-direct products Unitary reps of BMS3 Relation to gravity Conclusion

DEFINITION OF BMS3

BMS3 = Aspt. symmetry group of 3D aspt. flat space-times
[Ashtekar et al. 1996, Barnich et al. 2009]

I Aspt. flat metrics in 3D :
ds2 r→+∞∼ −du2 − 2dudr + r2dϕ2 + subleading terms

I Aspt. symmetry transformations :
ϕ 7→ f (ϕ), u 7→

[

u + α(ϕ)

] f ′(ϕ)

↙ ↓
Superrotations Supertranslations

I Infinite-dimensional extension of Poincaré



Unitary reps of semi-direct products Unitary reps of BMS3 Relation to gravity Conclusion

DEFINITION OF BMS3

BMS3 = Aspt. symmetry group of 3D aspt. flat space-times
[Ashtekar et al. 1996, Barnich et al. 2009]

I Aspt. flat metrics in 3D :
ds2 r→+∞∼ −du2 − 2dudr + r2dϕ2 + subleading terms

I Aspt. symmetry transformations :
ϕ 7→ f (ϕ), u 7→ [u + α(ϕ)] f ′(ϕ)
↙ ↓

Superrotations Supertranslations

I Infinite-dimensional extension of Poincaré



Unitary reps of semi-direct products Unitary reps of BMS3 Relation to gravity Conclusion

DEFINITION OF BMS3

BMS3 = Aspt. symmetry group of 3D aspt. flat space-times
[Ashtekar et al. 1996, Barnich et al. 2009]

I Aspt. flat metrics in 3D :
ds2 r→+∞∼ −du2 − 2dudr + r2dϕ2 + subleading terms

I Aspt. symmetry transformations :
ϕ 7→ f (ϕ), u 7→ [u + α(ϕ)] f ′(ϕ)
↙ ↓

Superrotations Supertranslations

I Infinite-dimensional extension of Poincaré



Unitary reps of semi-direct products Unitary reps of BMS3 Relation to gravity Conclusion

DEFINITION OF BMS3

BMS3 transformations :

ϕ 7→ f (ϕ), u 7→ [u + α(ϕ)] f ′(ϕ)

I Elements of BMS3 = pairs ( f , α)

I Group operation ?
( f , α) · (g, β) = ( f ◦ g, α+ σfβ), σfβ

∣∣
f (ϕ) = f ′(ϕ)β(ϕ)

I σ = tsf. law of vector fields under diffeos !
I α = α(ϕ) ∂

∂ϕ

BMS3 ≡ Diff(S1)n Vect(S1) [Barnich & BO 2014]
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I σ = tsf. law of vector fields under diffeos !
I α = α(ϕ) ∂

∂ϕ

BMS3 ≡ Diff(S1)n Vect(S1) [Barnich & BO 2014]
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Unitary reps of BMS3...

I What should we expect ?

Poincaré : exact space-time symmetry
I UIRREP =HPoinc = Particle

BMS3 : aspt. space-time symmetry
I UIRREP =HBMS = Particle dressed w/ soft gravitons

≡ BMS3 particle

I HBMS = HPoinc ⊗HSoft grav

I Can we classify BMS3 particles ?

−→ Yes !

I Can we describeHSoft grav ?

−→ Yes !

I Can we compute stuff with it ?

−→ Yes !
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ORBITS AND UNITARY REPS

Unitary reps of BMS3 = Diff(S1) n Vect(S1) ?

I A∗ = space of

super

momenta p(ϕ) :

〈 p, α〉 = 1
2π

∫
dϕ p(ϕ)α(ϕ)

p(ϕ) =
∑
n∈Z

pn e−inϕ

I p0 = energy
I p±1 = spatial momentum

Orbits of supermomenta under superrotations?
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ORBITS AND UNITARY REPS

Fix a supermomentum p(ϕ)

I Find all f · p, where f ∈ Diff(S1).

〈

f · p, α〉 = 〈p, σf−1α〉

I f · p| f (ϕ) =
1

( f ′(ϕ))2

[

p(ϕ) +
c

12
{ f ;ϕ}

]
I p(ϕ) ∼ CFT stress tensor on S1

I BMS3 orbits = orbits of stress tensors under conf. tsfs !
= coadjoint orbits of the Virasoro group

[Lazutkin & Pankratova 1975, Witten 1988, Balog et al. 1997]
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f · p|f (ϕ) =
1

( f ′(ϕ))2

[
p(ϕ) +

c
12
{ f ;ϕ}

]

= p0

I Op =
{

f · p| f ∈ Diff(S1)
}
→ complicated !

I Let’s make it simple :
1. Constant supermomentum p(ϕ) = p0 ( ∼ particle at rest)
2. Look for stabilizer Gp

I Op ∼= Diff(S1)/Gp

Generic p0 : f (ϕ) = ϕ+ θ  Gp ∼= U(1)

p0 = −n2c/24 : f (ϕ) = ϕ+ θ + · · ·  Gp ∼= SO(n)(2, 1)
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SUPERMOMENTUM & BONDI MASS

On-shell aspt. flat metrics
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ds2 = 8G p(ϕ)du2 − 2dudr + r2dϕ2
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p(ϕ) = Bondi mass aspect
I Action of BMS3 on p(ϕ) ?

f · p|f (ϕ) =
1

f ′2
[
p +
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{ f ;ϕ}

]
with c = 3/G

I Supermomentum↔ Bondi mass aspect !

Ex. : p0 = −c/24 ↔Minkowski space
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CHARACTERS & PARTITION FUNCTIONS

BMS3 particle = Particle ⊗ Soft gravitons

I Vacuum BMS3 character↔ graviton partition function ?

Characters of unitary reps of semi-direct products :
I Orbit Op

I Character :

χ[( f , α)] = Tr (T [( f , α)]) =

∫
Op

dµ(q) e i〈q,α〉 δ(q, f · q)
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CHARACTERS & PARTITION FUNCTIONS

Massive BMS3 particle

I p = p0 →Op = Diff(S1)/S1

Take f (ϕ) = ϕ+ θ (rotation by θ)
I Character ?

χ[(rotθ, α)] =

∫
Op

dµ(q) δ(q, rotθ · q) e i〈q,α〉

(rotθ · q)(ϕ) = q(ϕ− θ)
I The integral “localizes” to a point !

I Fourier modes = coordinates on Op

I [rotθ · q]n = einθqn
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χvac[(rotθ, α)] = e−iα0c/24 1∏+∞
n=2 |1− ein(θ+iε)|2

[BO 2015]

I One-loop partition fct of gravitons on thermal flat space !
[Barnich, González, Maloney, BO 2015]

I Generalization to higher spins
[Campoleoni, González, BO, Riegler 2015]

I Flat analogue of AdS3/CFT2 results
[Giombi, Maloney, Yin 2008]

[Gaberdiel, Gopakumar 2010]
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Thank you !
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