Preprints
49. A continuous random operator associated with the Vertex Reinforced
Jump Process on the circle and the real line. Joint with Valentin Rapenne.
arXiv:2308.01120
pdf
48. A multi-dimensional version of Lamperti's relation and the
Matsumoto-Yor processes. Joint with Thomas Gérard, Valentin Rapenne and
Xiaolin Zeng. arXiv:2306.02158.
pdf
47. The *-Vertex-Reinforced Jump Process. Joint with Pierre Tarrès.
arXiv:2102.08988.
pdf
46. The *-Edge-Reinforced-Random-Walk. Joint with S. Bacallado and Pierre
Tarrès. arXiv:2102.08988. pdf
Publications
45. Polynomial localization of the 2D-Vertex Reinforced Jump
Process. Electron. Commun. Probab. 26
1 - 9, 2021.
pdf
44. Inverting
Ray-Knight identity on the line. Joint with Titus Lupu and Pierre Tarrès.
In: Electronic Journal of Probability 26 (2021), pp. 1–25. pdf
43. Random walks in hypergeometric random environments.
Joint with Tal Orenshtein. Electron. J. Probab. Volume 25 (2020), paper no.
33, 21 pp. pdf
42. Velocity estimates for symmetric random walks at low
ballistic disorder. Joint with Clément Laurent, Alejandro F. Ramírez,
Santiago Saglietti. In: Sidoravicius V. (eds) Sojourns in Probability Theory
and Statistical Physics - III. Springer Proceedings in Mathematics &
Statistics, vol 300. Springer, Singapore. pdf
41. Fine mesh limit of the VRJP in dimension one and
Bass-Burdzy flow. Joint with Titus Lupu and Pierre Tarrès. Probability
Theory and Related Fields volume 177, pages55–90(2020). pdf
40. Hitting times of interacting drifted Brownian motions
and the vertex reinforced jump process. Joint with X. Zeng. Ann. Probab.
Volume 48, Number 3 (2020), 1057-1085. pdf
39. Inverting the coupling of the signed Gausssian free
field with a loop soup. Joint with Titus Lupu, Pierre Tarrès, Elecronic
Journal of Probability. Volume 24 (2019), paper no. 70, 28 pp. pdf
38. A random Schrödinger operator associated with the
Vertex Reinforced Jump Process on infinite graphs, joint with X. Zeng, J.
Amer. Math. Soc. 32 (2019), 311-349, pdf
37. Random walks in Dirichlet environment: an overview.
Joint with Laurent Tournier. Annales de la faculté des sciences de Toulouse
Sér. 6, 26 no. 2 (2017), p. 463-509, pdf
36. The Vertex Reinforced Jump Process and a Random
Schrödinger operator on finite graphs, joint with P. Tarrès and X. Zeng, pdf,
Annals of Probability, Volume 45, Number 6A (2017), 3967-3986.
35. A Quenched Functional Central Limit Theorem for Random
Walks in Random Environments under (T)_γ. Joint with E. Bouchet, R. Soares
dos Santos. Stoc. Proc. and their App., Volume 126, Issue 4, April 2016,
Pages 1206-1225. pdf
34. Transience of Edge-Reinforced Random Walk, avec M.
Disertori, P. Tarrès, Communications in Mathematical Physics: Volume 339,
Issue 1 (2015), Page 121-148, pdf
33. Ray-Knight Theorem: a short proof, avec P. Tarrès, P.
Probab. Theory Relat. Fields (2016) 165: 559, pdf.
32. Sharp ellipticity conditions for ballistic behavior of
random walks in random environment, avec E. Bouchet et A. Ramirez,
Bernoulli, Volume 22, Number 2 (2016), 969-994, pdf
31. Edge-reinforced random walk, Vertex-Reinforced Jump
Process and the supersymmetric hyperbolic sigma model, avec Pierre Tarrès.
Journal of the European Math. Society, Volume 17, Issue 9, 2015, pp.
2353–2378. pdf
30. Central limit theorems for open quantum random walks, avec
N. Guillotin-Plantard et S. Attal. Annales Henri Poincaré A, January 2015,
Volume 16, Issue 1, pp 15-43, pdf
29. Quenched limits for the fluctuations of transient
random walks in random environment on ℤ, avec N. Enriquez, L. Tournier, O.
Zindy, Ann. Appl. Probab. 23 (2013), no. 3, 1148–1187, pdf
28. Random Dirichlet environment viewed from the particle
in dimension $d\ge 3$, Ann. Probab. 41 (2013), no. 2, 722–743, pdf
27. Open quantum random walks, avec S. Attal, F. Petruccione, I.
Sinayskiy, J. Stat. Phys. 147 (2012), no. 4, 832–852, pdf
26. Reversed Dirichlet environment and directional
transience of random walks in Dirichlet random environment, avec
Laurent Tournier, Ann. Inst. Henri Poincaré Probab. Stat. 47
(2011), no. 1, 1–8. pdf
25. Random Walks in Random Dirichlet Environment are
transient in dimension $d\ge 3$, Probab. Theory Related Fields 151 (2011),
no. 1-2, 297–317. pdf
24. Stokes matrices of hypergeometric integrals, Alexey
Glutsyuk, Christophe Sabot, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 1,
291–317, pdf
23. Aging and quenched localization for one-dimensional
random walks in random environment in the sub-ballistic regime, avec
Nathanaël Enriquez, Olivier Zindy, Bulletins de la Société Mathématique de
France, 137, fascicule 3 (2009), pdf
22. Limit laws for transient random walks in random
environment on Z, avec Nathanaël Enriquez et Olivier Zindy, Ann. Inst.
Fourier (Grenoble) 59 (2009), no. 6, 2469–2508. pdf
21. A probabilistic representation of constants in Kesten's renewal theorem
avec N. Enriquez et Olivier Zindy, Probability Theory and Related Fields,
Volume 144, Numbers 3-4 / juillet 2009, pdf
20. Renewal series and square-root boundaries for Bessel Processes, avec N.
Enriquez et Marc Yor, Electronic Communications in Probability, vol 13
(2008), pdf
19. Markov chains in a Dirichlet Environment and hypergeometric
integrals, C. R. Math. Acad. Sci. Paris 342 (2006), no. 1, 57--62, pdf
18. Random walks in a Dirichlet environment, avec N. Enriquez, Electron. J.
Probab. 11 (2006), no. 31, 802--817 (electronic), pdf
17. Transparent boundary conditions for the Helmholtz equation in some
ramified domains with a fractal boundary, avec Y. Achdou Y. et N.
Tchou, J. Comput. Phys. 220 (2007), no. 2, 712--739,
16. Transparent boundary conditions for a class of boundary value problems
in some ramified domains with a fractal boundary. C. R. Math. Acad. Sci.
Paris 342 (2006), no. 8, 605--610.
15. Diffusion and propagation problems in some ramified domains with a
fractal boundary, avec Y. Achdou et N. Tchou, M2AN Math. Model. Numer. Anal.
40 (2006), no. 4, 623--652, pdf
14. A multiscale numerical method for Poisson problems in some
ramified domains with a fractal boundary, avec Y. Achdou et N. Tchou.
Multiscale Model. Simul. 5 (2006), no. 3, 828--860.
13. Spectral Analysis of a Self-Similar Sturm-Liouville Operator, Indiana
Univ. Math. J. 54 (2005), no. 3, 645--668.
12. Electrical Networks, Symplectic Reductions, and Application to the
Renormalization Map of Self-Similar Lattices , Proc. Sympos. Pure Math., 72,
Part 1, Amer. Math. Soc., Providence, RI, 2004, pdf
11. Ballistic random walks in random environment at low disorder, Ann.
Probab. 32 (2004), no. 4, 2996--3023, pdf
10. Laplace operators on fractal lattices with random blow-ups. Potential
Anal. 20 (2004), no. 2, 177--193.
9. Spectral properties of self-similar lattices and iteration of rational
maps. Mém. Soc. Math. Fr. (N.S.) No. 92 (2003), vi+104 pp, pdf
8. Edge oriented reinforced random walks and RWRE, avec N. Enriquez, C. R.
Math. Acad. Sci. Paris 335 (2002), no. 11, 941--946.
7. Integrated density of states of self-similar Sturm-Liouville operators
and holomorphic dynamics in higher dimension. Ann. Inst. H. Poincaré Probab.
Statist. 37 (2001), no. 3, 275--311.
6. Pure point spectrum for the Laplacian on unbounded nested fractals. J.
Funct. Anal. 173 (2000), no. 2, 497--524.
5. Espaces de Dirichlet reliés par des points et application aux diffusions
sur les fractals finiment ramifiés.(French) Potential Anal. 11 (1999), no.
2, 183--212.
4. Density of states of diffusions on self-similar sets and holomorphic
dynamics in $P\sp k$: the example of the interval $[0,1]$. C. R. Acad. Sci.
Paris Sér. I Math. 327 (1998), no. 4, 359--364.
3. Existence and uniqueness of diffusions on finitely ramified self-similar
fractals. Ann. Sci. École Norm. Sup. (4) 30 (1997), no. 5, 605--673, pdf
2. New examples of Dirichlet spaces, avec Y. Le Jan, Dirichlet forms and
stochastic processes (Beijing, 1993), 253--256, de Gruyter, Berlin, 1995.
1. Existence et unicité de la diffusion sur un ensemble fractal.(French) C.
R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 8, 1053--1059.