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Calculus of Variations and Elliptic PDEs

Final Exam

3h duration. All kind of documents (notes, books...) are authorized, but not communication
devices. The total number of points is much larger than 20, so attacking only some exercises
could be a reasonable option. The exercises are not necessarily ordered by difficulty.

Exercice 1 (7 points). Given a function f € L*(]0, 1]), consider the optimization problem

min{/ol e’ (M + f(t)u(t)) dt + u e CY([o, 1])} .

Find a necessary and sufficient condition on f so that the problem above admits a solution.
Find this solution in the case f(t) = ¢ — a for the only value of a which allows to satisfy such
a condition.

Solution: The condition is fol e ' f(t)dt = 0. Indeed, if this condition is met, the functional
becomes invariant by adding a constant, so that we can assume that a minimizing sequence
is made of fucntions with zero mean, and we can apply the Poncaré-Wirtinger inequality to
obtain that it is bounded in H'. It is also necessary because otherwise adding a constant to u
does not change the first term but allows to let the second tend to —oo, and the inf would not
be finite.

To be sure that when fol e~ f(t)dt = 0 the problem admits a C'' minimizer we can define the
function u via

(1) = ¢ / e f(s)ds,

and we observe that it satisfies the Euler-Lgrange equation (e '/(t))" = e ' f(t) together with
the boundary conditions «'(0) = /(1) = 0. The proble being convex, this is enough for being
a minimizer. Morover, u' is continuous since it is defined by taking the primitive of an L'

function.

In the case f(t) = t—a the condition on a is given by 0 = fol e H(t—a)dt = (1—-2e ) —a(l—et),
ie. a= ‘ej In this case the solution is given by solving the Euler-Lgrange equation, which
can be re-written as

u'(t) —u(t)=t—a
with Neumann boundary conditions. The general solution of the homogeneous equation is of
the form A + Be' and a particular solution is given by —3¢* + (a — 1)t. The solution is then
given by A + Be' — 1t + (a — 1)t and we need to impose «'(0) = w/(1) = 0. The value of A is

arbitrary and the value of B is given by B = ﬁ

Exercice 2 (8 points). Given a bounded and smooth domain  C R? and a constant m € R
consider the problem

min{/ (]Vv|2—|—v|Vu|2+vu2> dr : v,uEHl(Q),v—l,u—lGH&(Q),vzm}.
Q



1. Prove that for the problem admits a solution if m > 0 and does not admit solutions if
m < 0. What is the difficulty for the case m = 07

2. When a solution exists, prove that it can be taken such that we have 0 < u < 1 and
m<wv<l1.

3. Prove that the minimizers (u,v) satisfy distributionally inside

V- (vVu) = vu,
—Av+ L(|Vul? +u?) >0,

but also satisfy the equality

/Q(U —m)(|Vul® + v*)ndz + 2/QVU V(v —=m)nlde =0

for every smooth function n > 0 such that the support of 7 is compactly contained in the
open set ().

4. If m > 0 prove that for any optimal (u,v) the function u is locally Holder continuous
inside €.

Solution:

1. If m > 0 then we take a minimizing sequence (v,,u,) and, since all terms are positive,
we obtain a bound on ||v,||z1 and ||u,||z: (for this second bound, we use v, > m). We
can then extract weakly converging subsequences (and the condition v — 1,v — 1 € H]}
passes to the limit), and all the terms are convex in the gradient variables and continuous
in the others, which means that the functional is l.s.c. If, instead, m < 0, the inf is —oo.
Indeed, we can choose an admissible v which is equal to —m on a ball B C  far from
the boundary, and an arbitrary function ¢ € C!(B) and take u = 1 + ¢. The functional

is then equal to
Jrwek+ [ o—m [ (ver+ 4o,
Q Q\B B

which can be made as negative as we want by multplying ¢ times a constant.

The difficulty in proving existence for m = 0 comes from the fact that we cannot bound
Vu, in L2. Any form of weak convergence of Vu, would be enough for semicontinuity, but
we would also need to guarantee that the limit is in the space of admissible competitors.

2. When a solution exists, we can truncate it, i.e. we replace (u,v) with (max{0, min{1, u}}, max{m,n
and the value of the functional does not increase. Actually, the truncation in v strictly
decreases this vlaue (so any solution must satisfy m < v < 1) but wa can’t say the same
for w in case m = 0 (for which we do not exclude the existence of a minimizer) on the set

{v = 0}.

3. We take a minimizer (u,v), freeze v and look at this problem as a variational problem
on u. The Euler-Lagrange equation on w provides the first condition. For v it is more
delicate, since we have a constraint v > m. thus, we can only test the optimality of v
against perturbations of the form v 4+ ¢ with ¢ > 0. The first-order expansion provides

/QVU Yo+ o(|Vul® +u?) > 0,

which corresponds to the claimed inequality. Yet, it is also possible to take ¢ < 0 on the
set where v > m, which should provide the equality on the set {v > m}. To make this



rigorous, we consider a smooth function > 0 as in the statement and € > 0 small enough
so that €||n]|oc < 1. We then compare v to v. := (1 — en)v + epm, which amounts at
obtaining the same first-order expansion as above for ¢ = n(m —v). Since this function is
nonpositive, the above inequality holds for —¢, which finally provides the desired equality.

. If m > 0 the equation satisfied by u can be treated using DeGiorgi-Nash-Moser’s theory

for equations with bounded coeeficients, anf the right-hand side wv is L (hence, it belogs
to L? and as such is a divergence of a WP function, so in particular of a function in L?,
and this holds for every p).

Exercice 3 (10 points). On the torus T¢ (in dimension d > 2), given a Lipschitz continuous
function f : T¢ — R and an exponent p > 1, consider the two nonlinear elliptic PDEs

= W D=

Q) Ayju=u+f, (W) Apju=—u+u’+f
Prove by variational methods that both of them admit a weak solution in WP,
Prove that the solution of (Q) is unique, while (W) could have several solutions.
Prove that any W' solution u of (Q) satisfies |Vu|2 'Vu € H' as soon as p > 2.

Prove that any W' solution u of (W) satisfies |Vu|2~'Vu € H' as soon as

d
> 44—,
P=%0

. Prove that any W solution of a PDE of the form A,u = g(u) + f for g nondecreasing

satisfies |Vu|2 " 'Vu € H' as soon as f € W and deduce that we can obtain the same
answer to the two previous questions even if we remove the assumption p > 2 in the case
of (Q) and we only assume p > 2 in the case of (W).

Solution:

1.

The equation (Q) and (W) are the Euler-Lagrange equations of the minimization of

ut u?

2
u /1\Vu\p—|-u+fu and un—>/1|Vu|p+

p 2 p
respectively. For the first probem, any minimzing sequence (u,,) is bounded in L? and its
gradient in L”, and this ie enough to extract a converging subsequence. In the second,
the L* part dominates the negative L? part, and the same occurs. The functional is not
convex in the variable u (only in Vu) but u, will converge strongly in L?, hence a.e., and

4
Uy U

it is enough to use Fatous’s lemma on the sequence - — 72, which is bounded from below
by —1/4.

. The solution of (Q) is unique because the corresponding functional is trictly convex,

which is not the case for (W). In particular, for f = 0 we have at least three solutions,
the constants 0,1, —1.

. For solutions of A,u = F' the condition |Vu|2~'Vu € H' is satisfied as soon as F' € W',

Here F = u+ f, f is Lipschitz, and uw € W'? ¢ W' because p > 2 > p/..
d

. Since d > 2 the exponent 4-% is at least 2, so we have —u + f € W as before. But we

d+2
need to guarantee as well u® € Wh?'. We treat separaely the case p = 2,d = 2. In all the
other cases we have p > 2 and we write

1/q 1/q
/Vug\p/ = C/uzp,|Vu\p, <C (/ umql) (/ Vu]p/q> :



choosing ¢ = p/p’ = p — 1. This gives ¢ = (p—1)/(p — 2) and 2p'q = 2p/(p — 2). Since
Vu € LP we only need to guarantee u € L*/®=2) If p > d the u € L>® and if p = d
we have anyway u € L" for every r. So the only case to be considered is p < d and
we need 2p/(p — 2) < dp/(d — p), which is the exponent of the Sobolev injection. After
simplification this gives exactly the desired condition on p.

We now come back to the case p = 2,d = 2 but in this case the equation becomes a linear
Laplacian, and the right hand side belongs to all L" spaces. We then deduce u € W?",
which is stronger than what we have to prove.

The equation Ayu = g(u) + f is the Euler-Lagrange equation of the minimization of
min | %|Vu|p + G(u) + fu,, where G is the antiderivative of g, and is convex. We can
consider the dual probelm which, by Fenchel-Rockafellar, is (written as a minimization)
min [ %|v|q + G*(V -v — f). We then apply the usual regularity-via-duality argument to
these problems, using %|v|q + %|w\p > v-w+ clv?? — wP/?2 but for G and G* we only use
their convexity. This provides the desired regularity result for solutions of A,u = g(u)+F
and in our cases we have to consider either F' = f (for the equation (Q), and f being
Lipschitz satisfies the required assumptions) or F' = —u + f (for the equation (W), and
we need u € W' which is true if p > 2).

Exercice 4 (6 points). Consider a sequence of functionals F,, : X — R, defined on a metric
space (X, d), which is ['-converging to a functional F'. Suppose that on a subset D C X the
functionals F,, uniformly converge to the restriction to D of a functional G : X — R. For each
of the following proposition say whether they are true or false, and explain why.

1. If D= X then F =(G.

2. If G is continuous and D is dense, then F' < G.

3. If G is continuous and D is dense, then F' > G.

4. If X is compact, D is dense, and F,,, G are continuous, then miny F' = miny G.

5. If D is open, then ' =G on D.

6. If G is lower-semicontinuous, then F' = G on the interior of D.

Solution:

1. False. We need G lsc for it to be true. Consider F,, = GG a non-lsc function. Then F' is
not G but its lower semicontinuous envelop.

2. True. This is a consequence of the facl that the I' — lim sup inequality can be verifies on
a set which is dense in energy.

3. False. Take a set D which is dense, but X \ D is also dense (for instance the set of rational
points). Take G =1 and F,, =1 on D, F,, =0 on X \ D. The I'—limit of F, is then the
lower semicontinuous envelop F' = 0.

4. True. If X is compact, then miny F,, — minyx F. But we also have miny F},, = infp F,, —
infp G = miny G (we used the fact tha, on any set, the uniform convergence is enough to
pass to the limit the value of the inf).

5. False. We need G Isc for it to be true. Again, take F,, = G a non-lsc function, and D = X.

6. True. Take a point z in the interior of D and a sequence z,, — x. Then we have z,, € D

as well for n > ng and F,(z,) > G(x,) — ||F, — G||so.p- Using the lower semicontinuity of
G to obaint liminf F,,(x,) > G(x). This proves that the I' — lim inf is larger than G. But
the I' — lim sup, using the constant sequence x,, = x, is smaller than G. Hence, ' = G on
the interior of D.



