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Calculus of Variations and Elliptic PDEs
–

Final Exam
–

3h duration. All kind of documents (notes, books. . . ) are authorized, but not communication
devices. The total number of points is much larger than 20, so attacking only some exercises
could be a reasonable option. The exercises are not necessarily ordered by difficulty.

Exercice 1 (7 points). Given a function f ∈ L1([0, 1]), consider the optimization problem

min
{ˆ 1

0
e−t

(
|u′(t)|2

2 + f(t)u(t)
)
dt : u ∈ C1([0, 1])

}
.

Find a necessary and sufficient condition on f so that the problem above admits a solution.
Find this solution in the case f(t) = t − a for the only value of a which allows to satisfy such
a condition.

Solution: The condition is
´ 1

0 e
−tf(t)dt = 0. Indeed, if this condition is met, the functional

becomes invariant by adding a constant, so that we can assume that a minimizing sequence
is made of fucntions with zero mean, and we can apply the Poncaré-Wirtinger inequality to
obtain that it is bounded in H1. It is also necessary because otherwise adding a constant to u
does not change the first term but allows to let the second tend to −∞, and the inf would not
be finite.
To be sure that when

´ 1
0 e
−tf(t)dt = 0 the problem admits a C1 minimizer we can define the

function u via
u′(t) = et

ˆ t

0
e−sf(s)ds,

and we observe that it satisfies the Euler-Lgrange equation (e−tu′(t))′ = e−tf(t) together with
the boundary conditions u′(0) = u′(1) = 0. The proble being convex, this is enough for being
a minimizer. Morover, u′ is continuous since it is defined by taking the primitive of an L1

function.
In the case f(t) = t−a the condition on a is given by 0 =

´ 1
0 e
−t(t−a)dt = (1−2e−1)−a(1−e−1),

i.e. a = e−2
e−1 . In this case the solution is given by solving the Euler-Lgrange equation, which

can be re-written as
u′′(t)− u′(t) = t− a

with Neumann boundary conditions. The general solution of the homogeneous equation is of
the form A + Bet and a particular solution is given by −1

2t
2 + (a − 1)t. The solution is then

given by A+ Bet − 1
2t

2 + (a− 1)t and we need to impose u′(0) = u′(1) = 0. The value of A is
arbitrary and the value of B is given by B = 1

e−1 .

Exercice 2 (8 points). Given a bounded and smooth domain Ω ⊂ Rd and a constant m ∈ R
consider the problem

min
{ˆ

Ω

(
|∇v|2 + v|∇u|2 + vu2

)
dx : v, u ∈ H1(Ω), v − 1, u− 1 ∈ H1

0 (Ω), v ≥ m

}
.



1. Prove that for the problem admits a solution if m > 0 and does not admit solutions if
m < 0. What is the difficulty for the case m = 0?

2. When a solution exists, prove that it can be taken such that we have 0 ≤ u ≤ 1 and
m ≤ v ≤ 1.

3. Prove that the minimizers (u, v) satisfy distributionally inside Ω∇ · (v∇u) = vu,

−∆v + 1
2(|∇u|2 + u2) ≥ 0,

but also satisfy the equality
ˆ

Ω
(v −m)(|∇u|2 + u2)ηdx+ 2

ˆ
Ω
∇v · ∇[(v −m)η]dx = 0

for every smooth function η ≥ 0 such that the support of η is compactly contained in the
open set Ω.

4. If m > 0 prove that for any optimal (u, v) the function u is locally Hölder continuous
inside Ω.

Solution:

1. If m > 0 then we take a minimizing sequence (vn, un) and, since all terms are positive,
we obtain a bound on ||vn||H1 and ||un||H1 (for this second bound, we use vn ≥ m). We
can then extract weakly converging subsequences (and the condition u − 1, v − 1 ∈ H1

0
passes to the limit), and all the terms are convex in the gradient variables and continuous
in the others, which means that the functional is l.s.c. If, instead, m < 0, the inf is −∞.
Indeed, we can choose an admissible v which is equal to −m on a ball B ⊂ Ω far from
the boundary, and an arbitrary function φ ∈ C1

c (B) and take u = 1 + φ. The functional
is then equal to ˆ

Ω
|∇v|2 +

ˆ
Ω\B

v −m
ˆ

B

(|∇φ|2 + (1 + φ)2),

which can be made as negative as we want by multplying φ times a constant.
The difficulty in proving existence for m = 0 comes from the fact that we cannot bound
∇un in L2. Any form of weak convergence of ∇un would be enough for semicontinuity, but
we would also need to guarantee that the limit is in the space of admissible competitors.

2. When a solution exists, we can truncate it, i.e. we replace (u, v) with (max{0,min{1, u}},max{m,min{1, v}})
and the value of the functional does not increase. Actually, the truncation in v strictly
decreases this vlaue (so any solution must satisfy m ≤ v ≤ 1) but wa can’t say the same
for u in case m = 0 (for which we do not exclude the existence of a minimizer) on the set
{v = 0}.

3. We take a minimizer (u, v), freeze v and look at this problem as a variational problem
on u. The Euler-Lagrange equation on u provides the first condition. For v it is more
delicate, since we have a constraint v ≥ m. thus, we can only test the optimality of v
against perturbations of the form v + εφ with φ ≥ 0. The first-order expansion provides

ˆ
2∇v · ∇φ+ φ(|∇u|2 + u2) ≥ 0,

which corresponds to the claimed inequality. Yet, it is also possible to take φ < 0 on the
set where v > m, which should provide the equality on the set {v > m}. To make this



rigorous, we consider a smooth function η ≥ 0 as in the statement and ε ≥ 0 small enough
so that ε||η||∞ ≤ 1. We then compare v to vε := (1 − εη)v + εηm, which amounts at
obtaining the same first-order expansion as above for φ = η(m− v). Since this function is
nonpositive, the above inequality holds for −φ, which finally provides the desired equality.

4. If m > 0 the equation satisfied by u can be treated using DeGiorgi-Nash-Moser’s theory
for equations with bounded coeeficients, anf the right-hand side uv is L∞ (hence, it belogs
to Lp and as such is a divergence of a W 1,p function, so in particular of a function in Lp,
and this holds for every p).

Exercice 3 (10 points). On the torus Td (in dimension d ≥ 2), given a Lipschitz continuous
function f : Td → R and an exponent p > 1, consider the two nonlinear elliptic PDEs

(Q) ∆pu = u+ f, (W) ∆pu = −u+ u3 + f.

1. Prove by variational methods that both of them admit a weak solution in W 1,p.

2. Prove that the solution of (Q) is unique, while (W) could have several solutions.

3. Prove that any W 1,p solution u of (Q) satisfies |∇u| p2−1∇u ∈ H1 as soon as p ≥ 2.

4. Prove that any W 1,p solution u of (W) satisfies |∇u| p2−1∇u ∈ H1 as soon as

p ≥ 4 d

d+ 2 .

5. Prove that any W 1,p solution of a PDE of the form ∆pu = g(u) + f for g nondecreasing
satisfies |∇u| p2−1∇u ∈ H1 as soon as f ∈ W 1,p′ and deduce that we can obtain the same
answer to the two previous questions even if we remove the assumption p ≥ 2 in the case
of (Q) and we only assume p ≥ 2 in the case of (W).

Solution:

1. The equation (Q) and (W) are the Euler-Lagrange equations of the minimization of

u 7→
ˆ 1
p
|∇u|p + u2

2 + fu and u 7→
ˆ 1
p
|∇u|p + u4

4 −
u2

2 + fu,

respectively. For the first probem, any minimzing sequence (un) is bounded in L2 and its
gradient in Lp, and this ie enough to extract a converging subsequence. In the second,
the L4 part dominates the negative L2 part, and the same occurs. The functional is not
convex in the variable u (only in ∇u) but un will converge strongly in Lp, hence a.e., and
it is enough to use Fatous’s lemma on the sequence u4

n

4 −
u2

n

2 , which is bounded from below
by −1/4.

2. The solution of (Q) is unique because the corresponding functional is trictly convex,
which is not the case for (W). In particular, for f = 0 we have at least three solutions,
the constants 0, 1,−1.

3. For solutions of ∆pu = F the condition |∇u| p2−1∇u ∈ H1 is satisfied as soon as F ∈ W 1,p′ .
Here F = u+ f , f is Lipschitz, and u ∈ W 1,p ⊂ W 1,p′ because p ≥ 2 ≥ p′..

4. Since d ≥ 2 the exponent 4 d
d+2 is at least 2, so we have −u+ f ∈ W 1,p′ as before. But we

need to guarantee as well u3 ∈ W 1,p′ . We treat separaely the case p = 2, d = 2. In all the
other cases we have p > 2 and we write

ˆ
|∇u3|p′ = C

ˆ
u2p′|∇u|p′ ≤ C

(ˆ
u2p′q′

)1/q′ (ˆ
∇u|p′q

)1/q

,



choosing q = p/p′ = p − 1. This gives q′ = (p − 1)/(p − 2) and 2p′q = 2p/(p − 2). Since
∇u ∈ Lp we only need to guarantee u ∈ L2p/(p−2). If p > d the u ∈ L∞ and if p = d
we have anyway u ∈ Lr for every r. So the only case to be considered is p < d and
we need 2p/(p − 2) ≤ dp/(d − p), which is the exponent of the Sobolev injection. After
simplification this gives exactly the desired condition on p.
We now come back to the case p = 2, d = 2 but in this case the equation becomes a linear
Laplacian, and the right hand side belongs to all Lr spaces. We then deduce u ∈ W 2,r,
which is stronger than what we have to prove.

5. The equation ∆pu = g(u) + f is the Euler-Lagrange equation of the minimization of
min
´ 1

p
|∇u|p + G(u) + fu,, where G is the antiderivative of g, and is convex. We can

consider the dual probelm which, by Fenchel-Rockafellar, is (written as a minimization)
min
´ 1

q
|v|q + G∗(∇ · v − f). We then apply the usual regularity-via-duality argument to

these problems, using 1
q
|v|q + 1

p
|w|p ≥ v ·w+ c|vq/2−wp/2|2 but for G and G∗ we only use

their convexity. This provides the desired regularity result for solutions of ∆pu = g(u)+F
and in our cases we have to consider either F = f (for the equation (Q), and f being
Lipschitz satisfies the required assumptions) or F = −u + f (for the equation (W), and
we need u ∈ W 1,p′ , which is true if p ≥ 2).

Exercice 4 (6 points). Consider a sequence of functionals Fn : X → R, defined on a metric
space (X, d), which is Γ-converging to a functional F . Suppose that on a subset D ⊂ X the
functionals Fn uniformly converge to the restriction to D of a functional G : X → R. For each
of the following proposition say whether they are true or false, and explain why.

1. If D = X then F = G.

2. If G is continuous and D is dense, then F ≤ G.

3. If G is continuous and D is dense, then F ≥ G.

4. If X is compact, D is dense, and Fn, G are continuous, then minX F = minX G.

5. If D is open, then F = G on D.

6. If G is lower-semicontinuous, then F = G on the interior of D.

Solution:

1. False. We need G lsc for it to be true. Consider Fn = G a non-lsc function. Then F is
not G but its lower semicontinuous envelop.

2. True. This is a consequence of the facI that the Γ− lim sup inequality can be verifies on
a set which is dense in energy.

3. False. Take a set D which is dense, but X \D is also dense (for instance the set of rational
points). Take G = 1 and Fn = 1 on D, Fn = 0 on X \D. The Γ−limit of Fn is then the
lower semicontinuous envelop F = 0.

4. True. If X is compact, then minX Fn → minX F . But we also have minX Fn = infD Fn →
infD G = minX G (we used the fact tha, on any set, the uniform convergence is enough to
pass to the limit the value of the inf).

5. False. We need G lsc for it to be true. Again, take Fn = G a non-lsc function, and D = X.

6. True. Take a point x in the interior of D and a sequence xn → x. Then we have xn ∈ D
as well for n ≥ n0 and Fn(xn) ≥ G(xn)−||Fn−G||∞,D. Using the lower semicontinuity of
G to obaint lim inf Fn(xn) ≥ G(x). This proves that the Γ− lim inf is larger than G. But
the Γ− lim sup, using the constant sequence xn = x, is smaller than G. Hence, F = G on
the interior of D.


