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Calculus of Variations and Elliptic PDEs

Resit examination

3h duration. All kind of documents (notes, books...) are authorized, but not communication de-
vices. The total number of points is much larger than 20, so attacking only some exercises could be
a reasonable option. The exercises are not necessarily ordered by difficulty.

Exercice 1 (7 points). Given an integer n and two numbers ¢i,c2 € R find the solution to the
optimization problem

min {/12 (t”“'ul(ztw +t”1|“(;)|2> dt - ue C([0,1]), u(l) =cp, u(2) = 02} :

Exercice 2 (8 points). Let & : R — R be the function given by h(s) = |s| + |s|> + £|s|* and
H :R? — R be given by H(v) = h(|v|). Compute h* and H* and find the dual of the optimization
problem

min{ WH(V(x))dx : V.v:f}

where T? is the d-dimensional torus, and f € W~13(T?) is a scalar distribution with zero average.
Prove that for every f an optimal v exists, is unique, and belongs to H'(T¢) if f € W13(T?).

Exercice 3 (5 points). Given two functions f,g € L},.(Q), let u € HJ,. be a weak solution of the
following PDE
V - ([2 4 arctan(f + u)|Vu) = arctan(g + u).

Prove that u is locally C%¢ for some exponent o > 0.
If moreover f,g € C*? prove that u is locally C*+25,

Exercice 4 (8 points). Let Ly, L : R? — R be the functions defined via Ly(2) := Sp_, |Zk!
L(z) = el?”. Let P be a polinomial in the variable s with z-dependent bounded coefficients, i.e.
P(x,s) := XM ap(x)s* for some natural number M and some bounded functions ay, : 2 — R, where

Q is a given bounded and smooth open subset of R?. Consider the functionals
Fy(u) = [ (L(Vu(e) = Plaue) de, F(w)i= [ (L(Va(r) = Pla,u(e) ds
Q Q

defined for v € X := H}(Q) N LM(Q) (these functionals can take the value +oo according to the
integrability of Vu).
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1. We endow X with the strong L' convergence. Prove that Fy I'-converges to I when N — oo
according to this convergence.

2. Prove that each functional Fy admits a minimizer on X, at least for large N.

3. Prove that, up to a subsequence, any sequence uy of minimizers of Fyy converges in L' to a
minimizer of F' over X.

4. Prove that at least a solution u of min{F'(u) : u € X} satisfies

/Q |Vu(z)|*L(Vu(z))dr < 400



