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Optimisation Convexe : Algorithmes et Applications en Apprentissage

Contrôle terminal. Durée : 2h. Tous les documents sont autorisés, mais pas les objets connectés et les moyens
de communication. Le barème dépasse largement 20, il est conseillé de ne pas traiter tous les exercices.
Dans tout le sujet ci-dessous, ||x|| désigne la norme euclidienne : ||x|| := (

∑
i |xi|2)1/2.

Exercice 1 (6 points). Soit f : R3 → R la fonction définie par

f(x1, x2, x3) := 1
4x

4
1 + 1

4(x2
2 + x2

3)2

Calculer f∗. Est-ce que f et/ou f∗ sont elliptiques ?

Solution : On a

f∗(y1, y2, y3) = sup
x1,x2,x3

y1x1 −
1
4x

4
1 + (y2x2 + y3x3)− 1

4(x2
2 + x2

3)2.

On remarque qu’il y a deux parties indépendantes. La première correpond à calculer la transformé de la
fonction x 7→ 1

4x
4 en dimension 1. Le calcul a déjà été fait en classe : on sait que pour p > 1 la transformé

de la fonction x 7→ 1
p |x|

p est y 7→ 1
q |y|

q où l’exposant q est caractérisé par 1
p + 1

q = 1. Ici on trouve donc
q = 4/3 et donc le premier sup donne 3

4 |y1|4/3.
La deuxième partie peut être exprimée, dans R2, comme la transformé de z 7→ 1

4 ||z||
4, à calculer en y′ =

(y2, y3). Dans la maximisation de z 7→ y′ · z − 1
4 ||z||

4 en dérivant on trouve y′ = ||z||2z donc y et z sont
alignés. Si y′ 6= 0 en écrivant z = ty/||y|| on retrouve la maximisation de t||y′|| − 1

4 t
4, ce qui nous permet

d’utiliser le résultat 1D précedent. On trouve donc 3
4 ||y

′||4/3, e la même formule vaut pour y′ = 0.

Le résultat est donc f∗(y) = 3
4 |y1|4/3 + 3

4(y2
2 + y2

3)2/3.
La fonction f n’est pas elliptique parce qu’on a f(x) = O(||x||4) près de x = 0. La fonction f∗ n’est pas
elliptique parce qu’on a f(y) ≤ C||y||4/3 � ||y||2 pour ||y|| → ∞.

Exercice 2 (6 points). Étant donné une matrice A =
(
a b
b c

)
définie positive, un point “cible” (x̄, ȳ) ∈ R2

et un point “départ” (x0, y0) ∈ R2, ainsi qu’un nombre τ > 0, considérer la suite (xk, yk) définie par
recurrence comme suit

xk+1 = min{1,max{−1, xk − τ(a(xk − x̄) + b(yk − ȳ))}}, (1)
yk+1 = (|yk − τ(b(xk − x̄) + c(yk − ȳ))| − τ)+signe(yk − τ(b(xk − x̄) + c(yk − ȳ)). (2)

1. S’agit-il de la suite obtenue en appliquant un algorithme connu pour résoudre un problème d’optimi-
sation ? lequel ?

2. Prouver que si τ est suffisamment petit alors la suite (xk, yk)k converge vers un point (x∞, y∞) et le
caractériser comme solution d’un problème d’optimisation.

3. Donner une estimation précise de la vitesse de convergence de la suite (xk, yk)k.

Solution :

1. Il s’agit-il de la suite obtenue en appliquant le gradient proximal pour la fonction F = f + g où

f(x, y) = 1
2a(x− x̄)2 + b(x− x̄)(y − ȳ) + 1

2c(y − ȳ)2, g(x, y) =
{
|y| si |x| ≤ 1,
+∞ sinon.

.



2. La fonction f étant quadratique, son gradient est Lipschitzien d’une constante L égale à la plus grande
valeur propre de la matrice A, donc l’algorithme converge dès que τ < 1

2L vers le point (x∞, y∞) qui
est l’unique minimseur de F (unique parce que f est strictement convexe).

3. La suite convege expenentiellement : ||(xk, yk)−(x∞, y∞)|| ≤ ||(x0, y0)−(x∞, y∞)||λk où λ = min{τL−
1, 1− ατ}, où α > 0 est la plus petite valeur propre de la matrice A.

Exercice 3 (6 points). Étant donnés une matrice A ∈ Rm×n et un vecteur y ∈ Rm on considère l’ensemble
K = {x ∈ Rn : x ≥ 0, Ax = b}, où l’inégalité x ≥ 0 est à prendre composant par composante. On suppose
par la suite que K est non-vide. Étant donnéun point y ∈ Rn on considère

min{||x− y|| : x ∈ K}.

1. Prouver que ce problème admet une unique solution.
2. Décrire comment approcher la solution du problème par l’algorihme d’Uzawa en donnant les étapes

de manière explicite.

Solution :

1. L’ensemble K est onvexe et fermé et il s’agit de trouver la projection de y sur K. Cette projection
existe et est unique.

2. Au lieu de minimiser ||x− y|| on minimise 1
2 ||x− y||

2, ce qui est équivalent. On considère

min
x≥0

1
2 ||x− y||

2 + sup
z∈Rm

z · (Ax− b)

et on définit G(z) = infx≥0 12||x−y||2 +z ·(Ax−b). On a ∇G(z) = Ax(z)−b où x(z) est la solution de
ce problème d’optimisation définissant G(z). Ce problème peut se réécrire comme minx≥0

1
2 ||x− (y−

Atz)||2 +C où la constant C dépend de z, b et A mais pas de x. Le point x(z) est donc la projection
de y−Atz sur l’ortant positif, donc x(z) = (y−Atz)+ où la partie positive est à prendre composante
par composante. L’algorihme d’Uzawa correspond donc dans ce cas à

xk = (y −Atzk)+, zk+1 = zk + τ(Axk − b).

Exercice 4 (9 points). 1. Prouver que pour tout p > 1 la fonction hp : R+ → R donnée par hp(s) =
(1 + sp)1/p est convexe et Lipschitzienne de constante 1.

2. On définit ensuite la fonction f : Rn → R par

f(x1, . . . , xn) =
n∑
i=1

hpi

(√
x2
i + x2

i+1

)
,

où on pose xn+1 = x1 et les exposants pi sont des exposants strictement plus grands que 1 et fixés.
Prouver que l’on a f(x) ≥

∑n
i=1 |xi|.

3. Étant donné un vecteur v ∈ Rn avec des composantes (vi)i telles que |vi| ≤ 1 pour tout i, on considère
le problème

(P ) min {f(x) + v · x : x ∈ Rn} .

Prouver que ce problème admet une unique solution.
4. Décrire comment approcher la solution du problème par l’algorithme de gradient stochastique et quel

type de convergence on obtient.
5. Peut-on améliorer la condition f(x) ≥

∑n
i=1 |xi| en obtenant en fait f(x) ≥

√
2
∑n
i=1 |xi| ? Que se

passe -t-il dans le problème (P ) si les composantes vi de v satisfont |vi| ≤
√

2 ?

Solution :

2



1. On calcule la dérivée de hp : on a h′p(s) = (1 + sp)
1
p
−1
sp−1, donc |h′p(s)| ≤ (sp)

1
p
−1
sp−1 = 1 donc hp

est Lipschitzienne de constante 1. Quant à sa convexité, on calcule h′′p et on obtient,

h′′p(s) = (p− 1)(1 + sp)
1
p
−1
sp−2 + (1

p
− 1)(1 + sp)

1
p
−2
psp−1sp−1

= (p− 1)(1 + sp)
1
p
−2
sp−2(1 + sp − sp) = (p− 1)(1 + sp)

1
p
−2
sp−2 ≥ 0,

donc hp est convexe. On observe aussi que h′′p(s) ne s’annule qu’en s = 0, donc h est strictement
convexe.

2. On observe que l’on a hp(s) ≥ s et
√
x2
i + x2

i+1 ≥ |xi|, donc on a

f(x1, . . . , xn) =
n∑
i=1

hpi

(√
x2
i + x2

i+1

)
≥

n∑
i=1
|xi|.

3. Supposons maxi |vi| = c < 1. Alors on a f(x) + v ·x ≥ (1− c)
∑n
i=1 |xi|, ce qui montre que la fonction

à minimiser est coercive. Elle est aussi continue (parce que somme de fonctions Lipschitziennes) et
admet donc un minimiseur. Ce minimiseur est unique à cause de la stricte convexité des hp. En
effet, les fonctions hp sont strictement convexes et strictement croissantes sur R+, donc x 7→ hp(||x||)
est aussi convexe sur R2 (par composition avec la norme, qui est convexe). Cette fonction est aussi
strictement convexe, parce que le seul cas d’égalité dans l’inégalité de convexité sur un segment [a, b]
demanderai en même temps l’égalité de la norme ||a|| = |lb|| (parce que hp est strictement convexe) et
a//b (parce que sinon on aurait une inégalité stricte dans l’inégalité de convexité de la norme), donc
a = b. On déduit que deux éventuels minimiseurs auraient toutes les composantes qui coïncident.
Reste à voir le cas c = 1, qui est en fait inclus dans la dernière question.

4. On commence par X0 = 0. Étant donnée une variable aléatoire Xk on tire au hasard, de manière
indépendante de tous les tirages précédents, un indice i ∈ {1, . . . , n}. On update ensuite Xk+1 =
Xk − τk∇fi(Xk) où fi est la fonction x 7→ hpi(

√
x2
i + x2

i+1) + vixi, donc

Xk+1,j =


Xk,j si j 6= i, i+ 1,

Xk,j − τk(vi + n
pi−2
i

(1+npi
i )1−1/pi

Xk,j) si j = i

Xk,j − τk
n

pi−2
i

(1+npi
i )1−1/pi

Xk,j sij = i+ 1

où ni =
√
x2
i + x2

i+1,

pour une suite τk → 0 fixée, notamment τk = k−1/2. La suite X̃k définie par γk :=
∑k
j=0 τj et

X̃k :=
∑k

j=0 τjXj

γk
converge presque sûrement vers la seule solution du problème et satisfait

E[f(X̃k)−min f ] ≤ C + log k√
k

.

5. Pour améliorer la condition f(x) ≥
∑n
i=1 |xi| en obtenant en fait f(x) ≥

√
2
∑n
i=1 |xi| iol faut rem-

placer l’inégalité
√
x2
i + x2

i+1 ≥ |xi| par
√
x2
i + x2

i+1 ≥ 1√
2(|xi|+ |xi+1|. Cela donne donc

f(x1, . . . , xn) =≥ 1√
2

n∑
i=1

(|xi|+ |xi+1| =
√

2
n∑
i=1
|xi|.

On obtient donc la coercivité pour tout v tel que |vi| ≤ c <
√

2. Le cas c =
√

2 ne peut pas être traité
de la même manière et en effet le minimum n’existe pas forcement, notamment si on prend v = −

√
2e

où e = (1, 1, . . . , 1). Dans ce cas on a quand même f(x) + v · x ≥ 0 pour tout x mais on peut prendre
x = te et on a limt→∞ f(te) + v · (te) = 0. Pour voir cela, il suffit de considérer un seul terme de la
somme, donc hpi(t

√
2)− t

√
2 et, en posant s = t

√
2 on observe que l’on a

lim
s→∞

(1 + sp)1/p − s = lim
s→∞

s
[
(s−p + 1)1/p − 1

]
= lim

s→∞
sO(s−p) = 0.

On en déduit donc que l’infimum est 0 mais n’est pas atteint.

3


