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Optimisation Convexe : Algorithmes et Applications en Apprentissage

Controle terminal. Durée : 2h. Tous les documents sont autorisés, mais pas les objets connectés et les moyens
de communication. Le baréme dépasse largement 20, il est conseillé de ne pas traiter tous les exercices.

Dans tout le sujet ci-dessous, ||z|| désigne la norme euclidienne : ||z|| := (3=, |2:|?)*/2.

Exercice 1 (6 points). Soit f : R® — R la fonction définie par

1 1
f(x1,20,23) == 15”111 + Z(ZU% + 23)?

Calculer f*. Est-ce que f et/ou f* sont elliptiques ?
Solution : On a

1 1
ok . 4 o, P P2 p2)\2
i, y2,y3) = sup ey — oy + (yawe + ysws) — (25 +23)°
1,T2,T3 4 4
On remarque qu’il y a deux parties indépendantes. La premiere correpond a calculer la transformé de la
fonction x — %:LA en dimension 1. Le calcul a déja été fait en classe : on sait que pour p > 1 la transformé
de la fonction = +— %|x\p est y — %]y|q ou l'exposant ¢ est caractérisé par % + % = 1. Ici on trouve donc
q = 4/3 et donc le premier sup donne 3|y;|*/3.
La deuxiéme partie peut étre exprimée, dans R?, comme la transformé de z }L||z\|4, a calculer en y =
(y2,y3). Dans la maximisation de z + y' - 2 — }||2||* en dérivant on trouve y' = ||z]|2z donc y et z sont
alignés. Si y' # 0 en écrivant z = ty/||y|| on retrouve la maximisation de ¢|[y/|| — $t*, ce qui nous permet

d'utiliser le résultat 1D précedent. On trouve donc 3||y/||*/3, e la méme formule vaut pour y' = 0.
Le résultat est donc f*(y) = %\yl |4/3 4 g(yg + y§)2/3.
La fonction f n’est pas elliptique parce qu’on a f(x) = O(||z||*) prés de z = 0. La fonction f* n’est pas

elliptique parce qu'on a f(y) < CHyH4/3 < ||y|? pour ||y|| — oc.

a
b
et un point “départ” (x,70) € R?, ainsi qu'un nombre 7 > 0, considérer la suite (zg,y;) définie par
recurrence comme suit

: . . b oo s . . -
Exercice 2 (6 points). Etant donné une matrice A = ( . ) définie positive, un point “cible” (7, %) € R?

zpy1 = min{l, max{—1,zy — 7(a(zx — Z) + b(yr — ¥))}}, (1)

Yer1 = (lyp = 7(b(zr — &) + c(ye — §))| — 7)+signe(y, — 7(b(zr — @) + c(yr — ¥)). (2)

1. S’agit-il de la suite obtenue en appliquant un algorithme connu pour résoudre un probléme d’optimi-
sation ? lequel 7

2. Prouver que si 7 est suffisamment petit alors la suite (xg, yx)r converge vers un point (Zoo, Yoo) €t le
caractériser comme solution d’un probléme d’optimisation.

3. Donner une estimation précise de la vitesse de convergence de la suite (zg, yx ).

Solution :
1. Il s’agit-il de la suite obtenue en appliquant le gradient proximal pour la fonction F' = f + g ou

. 1 _ _ N 1 _ Y si|z] <1,
fey) = Saw— 2P £ b - Dy — ) + ey -5%  gley) =Y SEISL
2 2 +00  sinon.



2. La fonction f étant quadratique, son gradient est Lipschitzien d’une constante L égale a la plus grande
valeur propre de la matrice A, donc l'algorithme converge des que 7 < ﬁ vers le point (Zoo, Yoo) qui
est 'unique minimseur de F' (unique parce que f est strictement convexe).

3. La suite convege expenentiellement : ||(2x, Yr)—(Too, Yoo ) || < ||(70, ¥0) — (oo, Yoo )| [AF 01t A = min{7L—
1,1 —ar}, o a > 0 est la plus petite valeur propre de la matrice A.

Exercice 3 (6 points). Etant donnés une matrice A € R™*™ et un vecteur y € R™ on considére I’ensemble

K ={zx e R" : x >0, Az = b}, ou l'inégalité = > 0 est a prendre composant par composante. On suppose
par la suite que K est non-vide. Etant donnéun point y € R™ on considére

min{|[z —y[| : € K}.

1. Prouver que ce probleme admet une unique solution.

2. Décrire comment approcher la solution du probléme par ’algorihme d’Uzawa en donnant les étapes
de maniére explicite.

Solution :

1. L’ensemble K est onvexe et fermé et il s’agit de trouver la projection de y sur K. Cette projection
existe et est unique.

2. Au lieu de minimiser ||z — y|| on minimise ||z — y|?, ce qui est équivalent. On considére

1 2
nin — - 4+ s . A -

et on définit G(2) = inf,> 12||z —y||*+ 2 (Az—b). On a VG(2) = Az(z)—b ou z(z) est la solution de
ce probléme d’optimisation définissant G(z). Ce probleme peut se réécrire comme ming>g 3||z — (y —
At2)||? + C o la constant C' dépend de z,b et A mais pas de x. Le point 2(z) est donc la projection
de y — Alz sur l'ortant positif, donc z(z) = (y — A'z), ou la partie positive est & prendre composante
par composante. L’algorihme d’Uzawa correspond donc dans ce cas a

ap=(y—Azi)y, 211 = 2k + 7(Az — b).

Exercice 4 (9 points). 1. Prouver que pour tout p > 1 la fonction hy, : Ry — R donnée par hy(s) =
(1 + sP)1/P est convexe et Lipschitzienne de constante 1.

2. On définit ensuite la fonction f : R™ — R par

flxy,... ) = thi (\/x? —I—x?H) ,

=1
ol on pose Tn+1 = X1 et les exposants p; sont des exposants strictement plus grands que 1 et fixés.
Prouver que l'on a f(x) > Y1 |zil.
3. Etant donné un vecteur v € R™ avec des composantes (v;); telles que |v;| < 1 pour tout i, on considére
le probleme
(P) min{f(z)+v-z : z€R"}.
Prouver que ce probleme admet une unique solution.

4. Décrire comment approcher la solution du probleme par I'algorithme de gradient stochastique et quel
type de convergence on obtient.

5. Peut-on améliorer la condition f(z) > Y7, |z;| en obtenant en fait f(x) > V231 |z;| ? Que se
passe -t-il dans le probléeme (P) si les composantes v; de v satisfont |v;]| < /27

Solution :



1 1
. On calcule la dérivée de hy, : on a hy(s) = (1 + sP)p 5P~ donc |hy,(s)| < (sP)» 'sP~1 =1 donc hy
est Lipschitzienne de constante 1. Quant & sa convexité, on calcule th’ et on obtient,

1_ 1 1_
hy(s) = (p—1)(1 + sP)7 Tep=2 4 (5 —1)(1 4 sP)p 2psPlsPt

1
—(p—1)(1+s2)r 2P 21+ 5P — sP) = (p— 1)(1+ sP)7 272 > 0,

donc hy, est convexe. On observe aussi que hg(s) ne s’annule qu’en s = 0, donc h est strictement
convexe.

. On observe que l'on a hy(s) > s et /a2 + 22, > |z;], donc on a
n

flze, ... zn) = zn:hpi (\/:c? +x?+1> > Z\le

1=1 =1

. Supposons max; |v;| =c < 1. Alorson a f(z)+v-x > (1 —c¢) >, |zi|, ce qui montre que la fonction
a minimiser est coercive. Elle est aussi continue (parce que somme de fonctions Lipschitziennes) et
admet donc un minimiseur. Ce minimiseur est unique a cause de la stricte convexité des h,. En
effet, les fonctions h), sont strictement convexes et strictement croissantes sur Ry, donc z — hy(||z||)
est aussi convexe sur R? (par composition avec la norme, qui est convexe). Cette fonction est aussi
strictement convexe, parce que le seul cas d’égalité dans 'inégalité de convexité sur un segment [a, b]
demanderai en méme temps 1’égalité de la norme ||a|| = |Ib|| (parce que h,, est strictement convexe) et
a//b (parce que sinon on aurait une inégalité stricte dans I'inégalité de convexité de la norme), donc
a = b. On déduit que deux éventuels minimiseurs auraient toutes les composantes qui coincident.
Reste a voir le cas ¢ = 1, qui est en fait inclus dans la derniere question.

. On commence par Xg = 0. Etant donnée une variable aléatoire X} on tire au hasard, de maniere

indépendante de tous les tirages précédents, un indice i € {1,...,n}. On update ensuite Xj1 =
X — 1V fi(Xy) ou f; est la fonction @ +— hy, (/2? + 22, ) + viz;, donc
Xk,j Sij?éi,i-i-l,
i—2
Xpp1j = Xk — T (v + (I;r:ﬁz)ll/?’sz]) sij=1 ol n; = /x4 a7,
Xy — rkﬁﬁxm sij=i+1
pour une suite 7, — 0 fixée, notamment 7, = k=12 La suite X définie par v, = Z?:o 7; et
k
X, = % converge presque strement vers la seule solution du probleme et satisfait

ELf(Xx) — min f] < C*j;k

. Pour améliorer la condition f(z) > 3., |z;| en obtenant en fait f(x) > /23 % |z;| iol faut rem-

placer Vinégalité y/x? 4+ a2, > |x| par y/a? + 27, | > %(‘%’ + |zi+1]. Cela donne donc

1 n n
5 Y (il + |zl = V2 |-
i=1

i=1

flz1,...,xn) =>

S

On obtient donc la coercivité pour tout v tel que |v;| < ¢ < v/2. Le cas ¢ = /2 ne peut pas étre traité
de la méme maniére et en effet le minimum n’existe pas forcement, notamment si on prend v = —/2e
oune=(1,1,...,1). Dans ce cas on a quand méme f(x)+v-z > 0 pour tout  mais on peut prendre
x = te et on a lim;_, f(te) + v - (te) = 0. Pour voir cela, il suffit de considérer un seul terme de la
somme, donc hy, (t\/i) — t\/2 et, en posant s = t1/2 on observe que I'on a

lim (1+ s?)Y/? — s = lim s [(s_p +1)P — 1} = lim sO(s™?) =0.

S—»00 S5—00

§—00

On en déduit donc que I'infimum est 0 mais n’est pas atteint.



