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Motivation : the parabolic-elliptic Keller-Segel system

Gradient flow interpretation. The system is the gradient flow in
Wo(R?) of the free energy

The Keller-Segel equation.

An aggregation-diffusion equation arising from mathematical biology
[KS], with many interesting mathematica features in connection with
functional inequalities and optimal transport:

F(o) = [ fpla)ds =5 [ [Vulo) Pz,

where f(p) = plogp (if d = 2) or f(p) = % (if d > 2). The critical
mass M. is the maximal mass such that ' is lower bounded on bounded
sets of W5(RY). For d > 2 this bound comes from (see [BCL]):

[ vl = [ pu < ol ol
R4 R4

The extremals in this inequality are radial functions p such that

(Op = Ap™ —div (pVu) in (0,00) x R
—Au=p in (0,00) x R

We take u = 1" * p where I' is the fundamental solution, —AI' = 9.
The critical exponent (object of this poster) is m =2 — = for d > 2.

The mass M = [p.p is preserved in time and for M small enough there I | - |
is global existence, while for large M there could be blow-up in finite A-p" ™ + p=0in B(0, R), with p = 0 outside B(0, R).
time. For d = 2 the critical mass is M. = 87 and all solutions with This condition is invariant by mass-preserving scaling, when we replace
M > 87 and [pa|z|*dpo(z) < +00 explode in finite time. Cowards points where the chemeattractant . prococed by p el s maximal p with py(z) == Xp(Ax).

Aronson—Bénilan estimates

5(t) = inf Av(t, ) Ipllix < C(M)[S

The equation can be written as 0;p = V - (pVv) for v = p — u,

o Computations show that we have We fix the mass M and argue by contradiction.
where p = f'(p) is the pressure / 2 | = Sequence. %Ap?—l + pp > 8, and || pall= > 1|6,
1 fm=1 (d=2) 0'(t) > 6°(t) — remainders. _ | . |
p =< 08 P i = = 4/ | | == Scaling. Consider 7,(z) = A\%p,(\,z) so that [pin, = M and choose A, in order to have
ol ifm> 1 (d > 2). !n-order to estimate the remalnder,- prove that Imallz = 1 (hence [6,[A% < 1). We then have
W . der Ap- it is smaller than 52, and deduce estimates on 0
€ Want to consider 2v. from estimates on §, we want to prove LAU?* + 1y, = )\z (Lﬁpn()\n.)m—l 4 pn()\n.)) > 5n)\7€i 0.
A’U:%Apm—l—l—p 05 m—l m—l
o < . 1S '
and prove bounds of the form " : fHP“‘]\Z _M’ | Compactness. Up to translations, the sequence 1,, converges to 17 = 0 such that
1 e expect this for M < M.. M A (meT] C >0 where / <M
Av(t, ) = =0 (E) Variant for M = M,.: for every compact set m — 1 ") = 0w = A%

_ , _ K C P(R?) not including Dirac masses We then obtain a subsolution of a Lane—Emden equation with mass < M. If we can exclude
a.nalogously to [AB] es’.umates for por?nus-medlum, fa?t diffu- the existence of subsolutions with this mass we have the L>° bound (note that global solutions
sion and heat equations 0;p = Ap™ = Ap =  (m—1+3)t 3¢ pe K= |lpllz= < C(1+0]). to this equation with this choice of exponents do not exist [GS], but p is a subsolution).

Subsolutions of the Lane—Emden equation Existence and positivity of the mass Inspiration from the case d = 2
m Problem. Find the minimal mass m The existence of an optimal i (or p) can be In dimension d =2 the question is the minimal possible mass when Alogp+ p > 0.
o m B obtained via variational arguments, after scal-  Set () = {p >t} and g(t) = th p. We use %fmt V| = th —Alog p < ¢g(t), then
M = int {/de 3 mA@m )+p=0,p>0,pF O} ing a minimizing sequence h,, so that h,(0) = —¢'(t) = tfmtﬁ and the isoperimetric inequality, so that we obtain:
1 - S : 1
d Lnaf:] fiﬁ dl _Tge condltlfn Ah, d_th 1 p.rotwdes 4|y < Per(ﬂt)Q < / - / Vol < —g'(t)g(t)
m Change of variables = cp™ !, ¢ = 4 0 e desired compactness and the existence 00, |V p| Jog,
of max h,. Since M = [ p = g(0) = [ |S%]|dt, integrating gives M > 8.
m What is the minimal LY norm of subsolutions of this Lane—Emden m | ower bounds on the mass: testing the equation C .. ) .. i
. = \\V/ I d th tivity of [, Alog p+ p for every t, and inequalities which are
equation? with h gives |[Vh]|7, < |R||%5),. Then use a e only used the positivity of Jo, Alog p+p for every f, and inequalities which ar

sharp for radial functions.

Gagliardo-Nirenberg inequality: = Also for d > 2 we could do the same and extend the problem to a new class S'.

inf{/dhq he 5\{0}}, S = {he L h>0: Ah+h? > 0)
R

d—2 1
d—1 d—1
m Can we prove M = M.,? this means that the optimal i would be [zt < Conl| VANl Hh”iq S = {h e L°RHYNLYRYHYNHL (RY, h >0, Ah + h1 > 0 for every t} .
the radial function A solving Ah + h? = 0 on its support. < Cen||h||enl| Pz {h>t}
Moving to radial functions An optimal control problem
m We want now to solve inf{ [p.h?: h e S\ {0}}. Problem. We consider trajectories (f, M) : [0, Ry] — R? satisfying
m Belonging to the class S’ can be characterized via [ Vh-V¢ < [ hi¢ for every ¢ > 0 which is Q1 et/ N
. . . T . re = f'(r) = —=M(r) + a(r),
a non-decreasing function of i, and as such this condition is invariant by radial rearrangement / o
(Pdélya-Szego inequality). M'(r) =7 fi(r),
m After scaling so that A(0) = maxh = 1, the problem becomes f0)=1, M(0)=0,
| Bo 0 | | | / where a : |0, Ry] — R is a measurable control, subject to the state-dependent constraint a(r) € [0, M (7)].
i {/0 r " f(r)¥dr : f(0) =1, f is nonincreasing and = — f(|z|) belongs to & } : > We want to minimize M (R,), where Ry is the final horizon.

> The condition o« < M imposes f’ < 0 and provides suitable bounds to obtain existence of a minimizer.
> The control o does not represent of Ah + h?, but only of its cumulated mass.

R
‘v — f(|z]) in 8" means “R*'f'(R) > —M(R) for M(R) = / r4= () adr > We should a priori take Ry = +00, but we will a posteriori prove that for R large enough the optimal f will
0 be compactly supported, thus making the choice of large R irrelevant.

For radially decreasing functions f, the level sets are centered balls. Hence,

The Pontryagin’s Principle Optimal length of the plateau Conclusions and open problems
There exists a pair (p1, p2) of dual variables such that Consider w = %—];7 on (v, R(7)), which solves > For d = 2 the minimal mass of the subsolutions of the Liouville equation
h : h
TR i1 -1 P =0 d— 1 ) y Ah+e">0is [ p= [e"=8nr.
{p/l(v“) ap2(r)r 1;]";(7') - pilf) ’ w’(r) + T w'(r) + ¢f 1 (Nw(r) =0 w(y) = 7’ w'(y) = 0. > For d = 3 the minimal mass of the subsolutions of the Lane-Emden
po(r) = —(pi(r))-r"5 pa(Fo) = —1, equation Ah + h® > 0 is realized by the radial function i which solves
S Moreover, we have et
and the optimality implies M'(7) = —R(\)* ! (R(+)). Ah + h® = 0 in the ball. Both for d =2 and d = 3 we have M = M..

> For d > 3 the question is open, and the minimal mass in S’ could a priori

be attained by a function f.,~ > 0, which does not belong to S.

/rd_l\w’(r)\er — g / Td—lfq—l(r)‘w(f,a)ﬁdr. > Numerics suggest on the other hand that the optimal v is 0, i.e. M = M,
for higher d as well.

n>0=a=M p<0=a=0 At the optimal v we have Neumann b.c. on both sides and

Analyzing the above ODE system we obtain the existence
of Ry < Ry and v € |0, R;) such that p; > 0 on (0,7),

then pi <0 on (v, ), then f =0 on [R;, Ry|. The density © +— 7971 f4=1(r) is log-concave and a Brascamp-Lieb-

Hence, the optimal f is of the form f., for v > 0, given type inequality proves, when d = g = 3, that the only case of equality
by, — 1 on  plateau 0] and then above s 1 = ), hence + = 0. For d = 3 we only have numericson (3
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0 Plot of M() w.r.t. 7 € [107%, 1] in d = 4 and zooming on 7y & [107°, 107*].The graph seems increasing. Aronson-Bénilan approach for the Keller-Segel system with critical exponent ***
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