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Motivation : the parabolic-elliptic Keller-Segel system

The Keller–Segel equation.
An aggregation-diffusion equation arising from mathematical biology
[KS], with many interesting mathematica features in connection with
functional inequalities and optimal transport:{

∂tρ = ∆ρm − div (ρ∇u) in (0,∞)× Rd,

−∆u = ρ in (0,∞)× Rd.

We take u = Γ ∗ ρ where Γ is the fundamental solution, −∆Γ = δ0.
The critical exponent (object of this poster) is m = 2− 2

d for d ≥ 2.

The mass M =
∫
Rd ρ is preserved in time and for M small enough there

is global existence, while for large M there could be blow-up in finite
time. For d = 2 the critical mass is Mc = 8π and all solutions with
M > 8π and

∫
Rd |x|2dρ0(x) < +∞ explode in finite time. The density ρ undergoes diffusion but at the same time moves

towards points where the chemoattractant u, produced by ρ itself, is maximal

Gradient flow interpretation. The system is the gradient flow in
W2(Rd) of the free energy

F (ρ) =

∫
Rd
f (ρ(x))dx− 1

2

∫
Rd
|∇u(x)|2dx,

where f (ρ) = ρ log ρ (if d = 2) or f (ρ) = ρm

m−1 (if d > 2). The critical
mass Mc is the maximal mass such that F is lower bounded on bounded
sets of W2(Rd). For d > 2 this bound comes from (see [BCL]):∫

Rd
|∇u|2 =

∫
Rd
ρu ≤ C∗‖ρ‖mLm‖ρ‖2−m

L1 .

The extremals in this inequality are radial functions ρ̄ such that

∆ m
m−1ρ̄

m−1 + ρ̄ = 0 in B(0, R), with ρ̄ = 0 outside B(0, R).

This condition is invariant by mass-preserving scaling, when we replace
ρ̄ with ρ̄λ(x) := λdρ̄(λx).

Aronson–Bénilan estimates

The equation can be written as ∂tρ = ∇ · (ρ∇v) for v = p− u,
where p = f ′(ρ) is the pressure

p =

{
log ρ if m = 1 (d = 2),
m
m−1 ρ

m−1 if m > 1 (d > 2).

We want to consider ∆v:

∆v = m
m−1 ∆ρm−1 + ρ

and prove bounds of the form

∆v(t, ·) ≥ −O
(

1

t

)
analogously to [AB] estimates for porous-medium, fast diffu-
sion and heat equations ∂tρ = ∆ρm⇒ ∆p ≥ − 1

(m−1+2
d)t

.

δ(t) := inf ∆v(t, ·)

Computations show that we have

δ′(t) ≥ δ2(t)− remainders.

In order to estimate the remainder, prove that
it is smaller than δ2, and deduce estimates on ρ
from estimates on δ, we want to prove

‖ρ‖L∞ ≤ C|δ|.
We expect this for M < Mc.
Variant for M = Mc: for every compact set
K ⊂ P(Rd) not including Dirac masses

∃C : ρ ∈ K ⇒ ‖ρ‖L∞ ≤ C(1 + |δ|).

‖ρ‖L∞ ≤ C(M)|δ|

We fix the mass M and argue by contradiction.

+ Sequence. m
m−1∆ρm−1

n + ρn ≥ δn and ‖ρn‖L∞ ≥ n|δn|.
+ Scaling. Consider ηn(x) = λdnρn(λnx) so that

∫
Rd ηn = M and choose λn in order to have

‖ηn‖L∞ = 1 (hence |δn|λdn ≤ 1
n). We then have

m

m− 1
∆ηm−1

n + ηn = λdn

(
m

m− 1
∆ρn(λn·)m−1 + ρn(λn·)

)
≥ δnλ

d
n→ 0.

+ Compactness. Up to translations, the sequence ηn converges to η 6≡ 0 such that

m

m− 1
∆(ηm−1) + η ≥ 0 where

∫
η ≤M.

We then obtain a subsolution of a Lane–Emden equation with mass ≤M . If we can exclude
the existence of subsolutions with this mass we have the L∞ bound (note that global solutions
to this equation with this choice of exponents do not exist [GS], but ρ̄ is a subsolution).

Subsolutions of the Lane–Emden equation

Problem. Find the minimal mass

M∗
c = inf

{∫
Rd
ρ :

m

m− 1
∆(ρm−1) + ρ ≥ 0, ρ ≥ 0, ρ 6≡ 0

}
Change of variables h := cρm−1, q = d

d−2:

What is the minimal Lq norm of subsolutions of this Lane–Emden
equation?

inf

{∫
Rd
hq : h ∈ S\{0}

}
, S = {h∈ L∞, h≥0 : ∆h+hq ≥ 0}

Can we prove M∗
c = Mc? this means that the optimal h would be

the radial function h̄ solving ∆h̄ + h̄q = 0 on its support.

Existence and positivity of the mass

The existence of an optimal h (or ρ) can be
obtained via variational arguments, after scal-
ing a minimizing sequence hn so that hn(0) =
maxhn = 1. The condition ∆hn ≥ −1 provides
both the desired compactness and the existence
of maxhn.

Lower bounds on the mass: testing the equation
with h gives ‖∇h‖2

L2 ≤ ‖h‖q+1
Lq+1. Then use a

Gagliardo-Nirenberg inequality:

‖h‖Lq+1 ≤ CGN‖∇h‖
d−2
d−1
L2 ‖h‖

1
d−1
Lq

≤ CGN‖h‖Lq+1‖h‖
1

d−1
Lq .

Inspiration from the case d = 2

In dimension d = 2 the question is the minimal possible mass when ∆ log ρ + ρ ≥ 0.
Set Ωt = {ρ > t} and g(t) =

∫
Ωt
ρ. We use 1

t

∫
∂Ωt
|∇ρ| =

∫
Ωt
−∆ log ρ ≤ g(t), then

−g′(t) = t
∫
∂Ωt

1
|∇ρ| and the isoperimetric inequality, so that we obtain:

4π|Ωt| ≤ Per(Ωt)
2 ≤

∫
∂Ωt

1

|∇ρ|

∫
∂Ωt

|∇ρ| ≤ −g′(t)g(t).

Since M =
∫
ρ = g(0) =

∫
|Ωt|dt, integrating gives M ≥ 8π.

+ We only used the positivity of
∫

Ωt
∆ log ρ+ρ for every t, and inequalities which are

sharp for radial functions.
+ Also for d > 2 we could do the same and extend the problem to a new class S ′.

S ′ =

{
h ∈ L∞(Rd) ∩ Lq(Rd) ∩H1

loc(Rd), h ≥ 0,

∫
{h>t}

∆h + hq ≥ 0 for every t

}
.

Moving to radial functions

We want now to solve inf {
∫
Rd hq : h ∈ S ′ \ {0}} .

Belonging to the class S ′ can be characterized via
∫
∇h ·∇φ ≤

∫
hqφ for every φ ≥ 0 which is

a non-decreasing function of h, and as such this condition is invariant by radial rearrangement
(Pólya-Szegő inequality).

After scaling so that h(0) = maxh = 1, the problem becomes

min

{∫ R0

0
rd−1f (r)qdr : f (0) = 1, f is nonincreasing and x 7→ f (|x|) belongs to S ′

}
.

For radially decreasing functions f , the level sets are centered balls. Hence,

“x 7→ f (|x|) in S ′ ” means “Rd−1f ′(R) ≥ −M(R) for M(R) :=

∫ R

0
rd−1f (r)qdr ”.

An optimal control problem

Problem. We consider trajectories (f,M) : [0, R0]→ R2 satisfying
rd−1f ′(r) = −M(r) + α(r),

M ′(r) = rd−1f q(r),

f (0) = 1, M(0) = 0,

where α : [0, R0]→ R+ is a measurable control, subject to the state-dependent constraint α(r) ∈ [0,M(r)].
ã We want to minimize M(R0), where R0 is the final horizon.
ã The condition α ≤M imposes f ′ ≤ 0 and provides suitable bounds to obtain existence of a minimizer.
ã The control α does not represent of ∆h + hq, but only of its cumulated mass.
ã We should a priori take R0 = +∞, but we will a posteriori prove that for R0 large enough the optimal f will
be compactly supported, thus making the choice of large R0 irrelevant.

The Pontryagin’s Principle

There exists a pair (p1, p2) of dual variables such that{
p′1(r) = −qp2(r)r

d−1f+(r)q−1, p1(R0) = 0,

p′2(r) = −(p1(r))−r
1−d, p2(R0) = −1,

and the optimality implies

p1 > 0⇒ α = M ; p1 < 0⇒ α = 0.

Analyzing the above ODE system we obtain the existence
of R1 ≤ R0 and γ ∈ [0, R1) such that p1 > 0 on (0, γ),
then p1 < 0 on (γ,R1), then f = 0 on [R1, R0].

Hence, the optimal f is of the form fγ, for γ ≥ 0, given
by fγ = 1 on a plateau [0, γ] and then

f ′′γ (r) +
d− 1

r
f ′γ(r) + f q(r) = 0, fγ(γ) = 1, f ′γ(γ) = −γ

d
,

on an interval (γ,R(γ)) defined by fγ(R(γ)) = 0.

We want to prove that γ = 0 minimizes the function

γ 7→ M(γ) :=

∫ R(γ)

0
rd−1f qγ(r)dr.

Optimal length of the plateau

Consider w =
∂fγ
∂γ on (γ,R(γ)), which solves

w′′(r) +
d− 1

r
w′(r) + qf q−1(r)w(r) = 0 w(γ) =

γ

d
, w′(γ) = 0.

Moreover, we have

M′(γ) = −R(γ)d−1w′(R(γ)).

At the optimal γ we have Neumann b.c. on both sides and∫
rd−1|w′(r)|2dr = q

∫
rd−1f q−1(r)|w(r)|2dr.

The density r 7→ rd−1f q−1(r) is log-concave and a Brascamp-Lieb-
type inequality proves, when d = q = 3, that the only case of equality
above is w = 0, hence γ = 0. For d = 3 we only have numerics on M(γ)

Plot of M(γ) w.r.t. γ ∈ [10−6, 1] in d = 4 and zooming on γ ∈ [10−6, 10−3].The graph seems increasing.

Conclusions and open problems

ã For d = 2 the minimal mass of the subsolutions of the Liouville equation
∆h + eh ≥ 0 is

∫
ρ =

∫
eh = 8π.

ã For d = 3 the minimal mass of the subsolutions of the Lane-Emden
equation ∆h + h3 ≥ 0 is realized by the radial function h̄ which solves
∆h̄ + h̄3 = 0 in the ball. Both for d = 2 and d = 3 we have M∗

c = Mc.
ã For d > 3 the question is open, and the minimal mass in S ′ could a priori
be attained by a function fγ, γ > 0, which does not belong to S.
ã Numerics suggest on the other hand that the optimal γ is 0, i.e. M∗

c = Mc

for higher d as well.
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