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Abstract

In Catalan percolation, all nearest-neighbour edges {4, + 1} along Z are initially
occupied, and all other edges are open independently with probability p. Open
edges {i,j} are occupied if some pair of edges {i,k} and {k,j}, with i < k < j,
become occupied. This model was introduced by Gravner and the third author, in
the context of polluted graph bootstrap percolation. We prove that the critical p,
is strictly between that of oriented site percolation on Z? and the Catalan growth
rate 1/4. Our main result shows that an enhanced oriented percolation model, with
non-decaying, infinite-range dependency, has a strictly smaller critical parameter
than the classical model. This is reminiscent of the work of Duminil-Copin, Hilario,
Kozma and Sidoravicius on brochette percolation. Our proof differs, however, in
that we do not use Aizenman—Grimmett enhancements or differential inequalities.
Two key ingredients are the work of Hilario, S4, Sanchis and Teixeira on stretched
lattices, and the Russo—Seymour—Welsh result for oriented percolation by Duminil-
Copin, Tassion and Teixeira.
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1 Introduction
1.1 Catalan percolation

Catalan percolation stands at the crossroads of bootstrap percolation, oriented per-
colation and enumerative combinatorics. It is, in fact, a particular case of the transi-
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tive closure dynamics studied by Gravner and the third author [1] (cf. Karp [2] and
Korandi, Peled and Sudakov [3]).

The original motivation for the model comes from graph bootstrap percolation,
considered already by Bollobas [4] (cf. Balogh, Bollobas and Morris [5]), an early
work in the growing field of bootstrap percolation (see, e.g., Morris [6] for a recent
survey). More precisely, Catalan percolation is related to polluted bootstrap percola-
tion, beginning with Gravner and McDonald [7], which amounts to studying boot-
strap percolation on a supercritical percolation cluster. Roughly speaking, bootstrap
percolation is a monotone cellular automaton, modelling the spread of “infection” in
anetwork. Once a site becomes infected, it stays infected thereafter. In polluted boot-
strap percolation, however, some sites are “immune,” and so never become infected.

More specifically, the inspiration for [1] began with the final paragraph in [5, p.
439], which proposes a polluted version of H-bootstrap percolation. Catalan percola-
tion is associated with the case that H is a directed triangle. As is well known, triadic
closure plays an important role in, e.g., social networks. See, e.g., Granovetter’s [8]
work on “the strength of weak ties.” From this point of view, Catalan percolation (and
the transitive closure dynamics, more generally) aims to study the interplay between
the strength of such ties, and that of censorship. From a combinatorial perspective, as
discussed in [1], p. for Catalan percolation is also the point at which a product can be
computed at random, when brackets are available with probability p.

Let us now formally define the model. Fix a parameter p € [0, 1]. Consider
the complete graph with vertex set Z. We start by declaring each edge {i,j} with
Jj > i+ 2 open independently with probability p and closed otherwise. We denote
this probability measure by P,,. We next recursively define a set of occupied edges by
induction on the length of the edge. Firstly, all edges of the form {é,i + 1} fori € Z
are occupied. Secondly, each open edge {4, k} such that there exists j € (i, k) such
that {4, j} and {7, k} are both occupied is also occupied, while closed edges cannot
be occupied. For n > 2, we define

on(p) =P, ({0,n} is occupied | {0,n} is open), (1)
pe = inf {p : héglgf on(p) > O} , )

keeping in mind that ,, (p) is monotone in p, but not in n. For convenience, we also
set 1 (p) = 1/p for any p € (0, 1]. In view of Fig. 1, we expect that ¢,, converges to
the step function 1, , except possibly at p.. Note that in the related oriented perco-
lation setting, this convergence holds also at p., see Bezuidenhout and Grimmett [9].

In [1] (see Theorem 1.3), it is shown that Catalan percolation has a non-trivial
phase transition of constant order. (On the other hand, for the full transitive closure
dynamics, a transition occurs at (logn)~/2+°(1) 'see Theorems 1.1 and 1.2 in [1].)
More precisely, using connections with Catalan structures (binary trees) and oriented
percolation, it can be seen (as explained below) that

1/4 <pec <pg, 3)
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Fig. 1 Monte Carlo estimates of the conditional probabilities that {0, n} is occupied given that it is
open against p € [0, 1], plotted for n € {6,...,100}

Fig. 2 Illustration of the binary tree representation of Catalan percolation

where p¢ is the critical probability of oriented site percolation on Z2. We refer the
reader to Durrett’s classical review [10] on oriented percolation in two dimensions
(see also [11-13] for more recent and general accounts). For the reader’s conve-
nience, we recall that 0.6967 < p? < 0.7491 [14, 15] (also see [16] for a slightly
weaker upper bound). It is believed that pg ~ 0.7055 (see, e.g., [17]).

The key to (3) is the following “graphical representation” of the Catalan percola-
tion dynamics, used in [1], from which the connection to binary trees and oriented
percolation becomes clear. For each open or initially occupied edge {7, ;}, with
i < j, place a node v(i, j) at (( + j)/2,7 — i — 1) in the plane. Note that, since all
nearest-neighbour edges {i,7 + 1} are initially occupied, there are nodes v (i, + 1)
at height 0 (i.e., along the x-axis) between the integers. For all other nodes v(i, j), at
some height j — 7 — 1 > 0, we include edges from v(i, ;) to each pair of nodes v(i, k)
and v(k, ), with i < k < j.

Clearly, the edge {0,n} is occupied by the Catalan percolation dynamics if and
only if there exists a binary tree rooted at v(0, n), with leaves v(0, 1), ..., v(n — 1,n).

See Fig. 2. As is well known, the Catalan number C,, = n%_l < 2;: > < 4™ counts
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the number of such trees. Therefore, pp,, (p) < 4"p"~1, leading to the lower bound
in (3).

On the other hand, the upper bound in (3) comes from restricting the dynamics
in such a way that whenever a new edge {i, j} is occupied, due to some {4, k} and
{k, j}, it must be the case that at least one of {i, k} or {k, j} is an initially occupied,
nearest-neighbour edge. In other words, the process is forced to “nucleate,” in the
sense that the maximal length of an occupied edge can increase by at most 1 in each
time step. From the perspective of the graphical representation, the occupation of
{0,n}, via these restricted dynamics, corresponds to the presence of an open path
from v(0, n) to the x-axis in oriented site percolation. This leads to the upper bound in
(3). We also note that, from this viewpoint, oriented site percolation can be regarded
as the local version of Catalan percolation, in the sense of [18, 19].

The full Catalan percolation dynamics is richer than either of the two extremes
represented in (3). Indeed, our main result shows that p.. lies strictly between the two.

Theorem 1 The critical Catalan percolation threshold p. satisfies

1/4 < pc < pg,

where p? is the critical threshold for oriented site percolation on Z2.

In fact, we will prove a more detailed result, Theorem 2 below, which requires some
additional preparation.

As it is common in percolation (see Grimmett’s monograph [20] and, e.g., the
recent work of Duminil-Copin, Goswami, Rodriguez, Severo and Teixeira [21]), we
also introduce critical values of subcritical and supercritical exponential decay, as
follows:

_ . 1
pr = sup {p: limsup = log pn(p) < 0}, )
n—oo 1N
L. . 1
ps =inf < p:limsup —log(l — ¢, (p)) <0, . %)
n—oo T

Clearly, p. < p. < p! and it is natural to expect that equality holds, but proving this
in a model, such as Catalan percolation, with such intricate dependencies appears
quite challenging. Note that, as opposed to more standard percolation models, we
have above p_ that any long open edge is occupied with very high probability. With
this notation, the Catalan union bound above actually implies p_ > 1/4. Moreover,
in [1, Section 3], a Peierls argument was used to prove that

pd <1-27% (6)
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1.2 Strictinequalities and stretched lattices in percolation

In percolation (see [20] for background), once the occurrence of a non-trivial phase
transition is established, one of the most natural goals is to determine the critical
value p., or its proxies p_,pt. It is usually not reasonable to expect p. to have a
simple exact expression, so one seeks to estimate or bound this value. It is often the
case, as for Catalan percolation, that a simpler reference model (oriented site percola-
tion in our case) can be used to bound the model of interest. If one seeks to improve
on the corresponding inequality (the second one in (3)), the most classical and, essen-
tially the only, approach is the Aizenman—Grimmett essential enhancement method,
as pioneered in [22]. Roughly speaking, this method gives a precise meaning to the
intuition that if we add a non-trivial amount of connections to the reference model
(in a way that is not deterministically useless) then this strictly decreases the critical
parameter. This is the case when the enhancement is added in an independent way
[22] (cf. Balister, Bollobas and Riordan [23]). This method has also been influential
beyond the realm of percolation (see, e.g., Taggi [24]).

In the oriented setting, this essential enhancement method fails. Consequently,
even simple questions regarding monotonicity of critical values are either still open
or the subject of very recent interest. Andjel and Rolla [25] used a method corre-
sponding to Steps 2 and 3 in Sect. 2 below, in order to analyse the effect of boundary
enhancement of the one-dimensional contact process. This, mostly classical, part of
the argument can be used to tackle independent essential enhancements to oriented
models in 1 + 1 dimensions. This was indeed implemented for oriented percolation
enhanced by diagonal edges by Terra [26]. Strict monotonicity of the critical param-
eter with respect to dimension was considered by de Lima, Ungaretti and Vares [27],
using coupling arguments.

However, in models with long range dependency, proving such strict inequali-
ties between critical parameters is much more challenging. Indeed, the only such
result we are aware of, for a model with non-decaying correlations, is the work of
Duminil-Copin, Hilario, Kozma and Sidoravicius [28] on brochette percolation and
its recent extension to slabs by Castro, Sanchis and Silva [29]. This is achieved by
revisiting the Aizenman—Grimmett approach, based on a Russo formula and a partial
differential inequality, relating the derivatives of ,, with respect to the parameter p
and an enhancement parameter. Yet, the long range of correlations makes the proof
quite delicate. In addition to a quantitative version of the essential enhancement idea,
[28] relies on refined properties of critical (unoriented) bond percolation on the plane,
perhaps the best understood model of percolation [20], as well as a result of Kesten,
Sidoravicius and Vares [30] on oriented percolation in a random environment. In
terms of unoriented percolation, [28] uses Russo—Seymour—Welsh results in conjunc-
tion with a bound on the 4-arm critical exponent. A further renormalisation leads to
oriented percolation in a random environment, for which [30] establishes that, if the
disorder is sufficiently sparse, percolation is maintained.

The result of [30] is itself highly non-trivial, and should be put in context. It is
related to the celebrated work of Hoffman [31] on percolation on stretched lattices.
While there have been several works investigating what kind of (long-range) disorder
destroys percolation, the recent work of Hilario, S4, Sanchis and Teixeira [32] will
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be the most relevant in our current context. In this work, a simplified multi-scale
renormalisation approach is proposed, for proving that percolation withstands sparse
disorder, recovering the results of [30, 31]. We note that, in [32], a certain model of
oriented percolation with geometric defects proves instrumental.

1.3 Main results

Our overarching goal, in this work, is to further develop tools for proving strict
inequalities for critical percolation parameters. We will use Catalan percolation
as a study case, improving on all of the inequalities in (3) and (6). We recall that

po < pe < pt, as defined in (2), (4) and (5).

Theorem 2 For Catalan percolation, we have that

pe > 0.254, (7)
pe < pg, ®)
pe < DY ©)

In Sect. 3, we prove (7), via a generating functions approach, which accounts for cor-
relations that are omitted in the simple Catalan union bound, discussed above.

The inequality (8) requires only relatively standard oriented percolation results.
The short proof of this fact is presented in Sect. 4.

The proof of (9) is the most innovative part of our work. A detailed outline is
given in Sect. 2 below, but let us also make some brief remarks here. In Sect. 5, we
show that, to establish a strict inequality, it suffices to introduce only a small amount
of the additional Catalan percolation dynamics, namely, edges of length two. Per-
haps the most remarkable feature of our proof is that it does not use any form of the
Aizenman—Grimmett differential inequality approach to essential enhancements, as
opposed to [28]. We also avoid the use of critical exponent inequalities, which are
unavailable in our oriented setting. On the other hand, we still rely on Russo—Sey-
mour—Welsh theory at criticality, which was recently established by Duminil-Copin,
Tassion and Teixeira [33] in the oriented setting, as well as the oriented percolation
with geometric defects in [32]. Curiously, our proof of (9) is purely qualitative, and
does not yield a quantitative bound.

While percolation models with strong dependencies are difficult to tackle, we hope
that our approach will broaden the scope of models which are amenable to analysis.

1.4 Simulations

We supplement our rigorous results with numerical simulations in several direc-
tions. First, in Fig. 3, we provide the result of a direct Monte Carlo simulation of the
model, determining occupied edges by dynamic programming, using the standard
increasing coupling of P, for different values of p € [0, 1]. The results suggest that
pe € [0.39,0.41].

@ Springer



Catalan percolation

pc(n) against n with unit std-dev envelope
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Fig. 3 We use the standard percolation coupling: edge {¢, j} is assigned an i.i.d. u; ; ~ Unif(0, 1),
and is open if u;, ; < p. We condition that {0, n} is open. For a given realization, we define pc(n) to
be the minimal p such that {0, n} is occupied. The figure plots estimates of the average of pc(n), sur-
rounded by a one-standard-deviation envelope, estimated via 2000 Monte Carlo rounds

Fig.4 We oply p}ermit edge {i,7} B (L, n=2000) against L
to be occupied via (occupied) edges

{i,k} and {k,j} with |: — k| < L

or |j — k| < L. We call the result- 0751
ing threshold pg (L, n). Clearly,
Pe(n) < f)ﬁ(lj, n). We take

n = 2000, and perform 2000 Monte 0.65 1
Carlo estimates, and plot (in blue) the

0.70 A

mean with a one-standard-deviation 0.60 1
envelope. For comparison, we plot (in
. . . 0.55 A
red) a horizontal line of our estimate of
ﬁC(QOOO) ~ 04 0.50
0.45 A
0.40 A

0 10 20 30 40 50

In Fig. 4, we display a similar Monte Carlo simulation, for the Catalan percolation
model truncated as in the proof of (9), using only edges up to a certain length in the
oriented percolation representation. The results clearly suggest that the critical values
of these truncated models converge to p., as the truncation goes to infinity.

Concerning the lower bound, in Fig. 5, we perform a semi-rigorous study. Instead
of the exact values of ¢,, (p) for small n, as in the proof of (7), we use the Monte Carlo
estimates of o, (p), displayed in Fig. 1, and plug them into our rigorous lower bound.
In this case, the results suggest that our lower bound sequence does not converge to
Pe, as one takes higher levels of dependency into account. The reasons for this are
further discussed in Sect. 3.4 below.
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Fig.5 We simulate the functions ¢, for
small £ < 100 via 10 Monte Carlo
rounds, to precision 104, We plug
these into our rigorous lower bound de-
veloped in Sect. 3: the estimate P, (L)
uses these estimates for ¢ < L instead 0.28 -
of ¢y. Notice that the curve does not

seem to converge to pc ~ 0.40. See

Sect. 3.4 for more on this. For com- 0.27 1
parison, the real value p. (1) is 0.25,

the Catalan bound

pc (L) against L
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1.5 The expected out-degree

Let us close this introduction with some speculation and intrigue. Recall that pp,, (p)
is the probability that {0, n} is occupied. It would appear that the expected out-degree
of 0, given by the series

> pon(p) =1 +p+ 2p° + 4p° + 9p*
n=1

+21p° 4+ 52p5 +129p7 4+ 335p° + - - -,

has positive, integer-valued coefficients. If they were to have a combinatorial descrip-
tion, then perhaps one could actually locate the radius of convergence, and perhaps
then pe.

2 Outline of the proof thatp. < p?

In this section, we discuss the main ideas behind the proof that p. < p? carried out in
detail in Sect. 5. Several steps are involved, as outlined below.

Step 1 (Enhanced oriented percolation). We first introduce a model of oriented
percolation with edges (z,z + (1,0)), (x,z+ (0,1)) and (z,z + (0,2)), some-
what similar to the (unoriented) brochette percolation of Duminil-Copin, Hilario,
Kozma and Sidoravicius [28]. Sites are open with probability p and length 1 edges
are always open. For any n, the edges of the form ((z, 2n), (z,2n + 2)) are either all
closed or all open, the latter having probability g. For fixed g, we can define a critical
value p.(q). It then suffices to prove that for any ¢ > 0 we have p.(q) < p.(0) = p2.
Indeed, Catalan percolation with parameter p dominates this enhanced oriented per-
colation model with ¢ = p, so that p. < max(p, p.(p)) < p2 for any p € (0,p2). To
see this, we consider binary trees such that at each level either one of the children
is a leaf, or the second child has exactly two descendants (corresponding to length 2
edges).
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Step 2 (Edge speed). A classical object in 2-dimensional oriented percolation is
the edge of the process [10]. The right (resp. left) edge 2, (resp. loy,) is the larg-
est (resp. smallest) x such that {..., —1,0} x {0} (resp. {0,1,...} x {0}) is con-
nected to (x, 2n) via an open path. A subadditive theorem of Durrett [34] (also see
[12]) gives the existence of the right edge speed a(p,q) = lim,— oo 72, /(2n) and
similarly for the left edge speed B(p, q). It is a classical result of Griffeath [35] that
a(pc(0),0) = B(p:(0),0) = 1. Still by classical means [34], we prove that « is
strictly increasing and [ strictly decreasing in g. While this step requires some minor
adaptations, the proofs are essentially identical to the ones for the classical model
with ¢ = 0. This is achieved by choosing the correct direction, with respect to which
to define the edge speeds, so that dependencies are kept perpendicular to the (vertical)
time axis and independence in time is preserved.

Step 3 (Crossing good times). We next show that, whenever a(p, ¢) # —oo, there
is a large probability to cross a very elongated parallelogram, whose long side has
slope a(p, ¢) and short side is horizontal, from bottom to top. The proof follows the
lines of Durrett [10] and applies also to 3(p, q), when S(p, q¢) # +00. We apply this
result for some ¢ > 0 fixed and p = p.(0), so that a(p,q) > 1 > B(p, q) by Step 2.
We call the resulting large parallelogram a (right or left) box. We next view the state
of length 2 edges as a random environment. The above yields that there is a high
probability “good” event on the random environment, on which (vertically) crossing
a box is likely.

Step 4 (Crossing bad times). If the environment were always good, we would
already be done by constructing a 1-dependent (renormalised) oriented bond percola-
tion out of left and right boxes. However, at some times the environment is bad. Let
us focus on an interval of bad times. If the interval is not longer than the height m of
a box, we can cross it with high probability via a path of slope 1 by Step 3 applied
to ¢ = 0. However, the bad interval could be much longer. In that case, we still ask
for a path of slope (approximately) 1 with fluctuations of order o(m) (see Fig. 9). In
order to lower bound the probability of such paths, we use the box crossing result of
Duminil-Copin, Tassion and Teixeira [33] applied at (p, ¢) = (p.(0),0). This yields
that in an interval of bad times, crossing a rectangle of width o(m) and height &m is at
least e* for some small ¢ > 0 independent of .

Step 5 (Oriented percolation with geometric defects). With the ingredients above,
we renormalise the enhanced oriented percolation model to oriented percolation with
geometric defects introduced and studied recently by Hilario, Sa, Sanchis and Teix-
eira [32], via multi-scale renormalisation. In this model, bonds of the oriented square
lattice at “level” i € Z are open independently with probability p'*¢:, where &; is a
sequence of i.i.d. geometric random variables. The result of [32] is that this model
percolates if the expectation of the geometric variables is sufficiently low and p is
sufficiently close to 1.

In the renormalisation, edges correspond to boxes at good times, while the vari-
ables ¢&; encode the lengths of bad time intervals. Indeed, Step 3 ensures that bad
times are rare and, at good times, boxes are likely to be crossed, while Step 4 gives
that bad intervals are crossed at a cost with an exponential tail, independently of the
renormalisation (and therefore independently of how likely the good environment
is). Furthermore, the renormalisation is performed carefully, so as to keep crossings
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of bad times for different renormalised vertices independent (disjoint), which allows
renormalised edges to be 1-dependent only at good times. Then, a classical result of
Liggett, Schonmann and Stacey [36] can be used to recover independence. Once this
renormalisation is complete, we are able to conclude, because the relevant crossing
probabilities are all continuous in p, and so we may decrease this parameter a little
and remain supercritical.

3 Strictlower bound, p; > 0.254

First, we will describe our general method for lower bounds in Sect. 3.1. In Sect. 3.2,
for the purpose of illustration, we use this method to prove that p, > 1/4. Finally, in
Sect. 3.3, we push the method further to show that p_; > 0.254.

Let 0,,(p) = ppn(p) be the probability that the edge {0, n} is occupied.

3.1 Method for lower bound

Ourstartingpointisexpressingp, intermsoftheradiusofconvergence ofapowerseries.

For a sequence {a, } (with either n > 0 or n > 1), let rad({a,, }) = 1/ lim sup ay/™

denote the radius of convergence of the power series ) | a,x". Then, recalling the
definition of p_” in (4), we have

pe = sup{p > 0:rad({0n(p)}) > 1}. (10)

Our strategy will be to find functions p — a.,(p), satisfying
an(p) = 0n(p), p€[0,1], (11)

and so that rad({a,(p)}) is easy to analyse (by studying the associated generating
function). Note that (11) gives rad({a,(p)}) < rad({0.(p)}), so

pe > sup{p > 0: rad({a,(p)}) > 1}. (12)

In order to find {a,(p)} satisfying (11), we will use the recurrence relation

n—1
0,(p) <P Ok(p)On—r(p), (13)
k=1

which follows from the definition of an edge being occupied and a union bound.

More specifically, for fixed ng > 1, we will define {a%ﬂo) (p)} by using the precise
probabilities ,,(p) for small n < ng, and the union bound for all larger n > ny.

Formally, we set
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(no)( ) { Gn(P% 1 <n <ng; (14)
@ = n— n n
10 (0)a) (), 0> no.

Comparing this with (13), and using induction, it follows that (11) holds.
3.2 Catalan bound, revisited

We first implement the above method with ng = 1 in (14).
Recall that the Catalan numbers are given by C,, = %-H ( 27? > for n € N, and

satisfy
Cn=3 CpCp1, n>1 (15)

Noting that agl) (p) = Cy = 1, comparing (14) and (15) and using induction, we see
that

aP(p)=p"1Chy, n>1.

n

In  particular, rad({a%l)(p)}) = %rad({C’n}). It is well known
that rad({C, }) = 1/4 (this can for instance be checked using C,, = %H ( 27,7 )
and Stirling’s formula). Hence, rad({a(l)( )}) = 1/(4p), and now p_ > 1/4 readily
follows from (12).

3.3 Beyond Catalan
Taking ng = 2 in (14) would not improve on the above, since a( )( )= (1)( ) =D,
and hence a; )( )= all ( ) for all # and p. Therefore, we take ng = 3. Note that
3
ai”(
3
as’(

p)=1=dP®), ) =p=a @),

(16)
p) =2p> — p* < 2p° = o (p).

We now study rad({ag) (p)}), which we abbreviate as 2:3(p). Define the power series

=Y
n=1

(p) (3)

suppressingthedependenceonp.Forn > 4 ,wehavea' (p)=pY 1 1 ak pa,” . (p).

Multiplying this by £, and summing over n > 4, gives
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C(a) — 0, (p)a — a5’ (p)a” — af” (p)a®
= p (C@)* — (@ ()% - 20 (p)af” (p)a*)

Then, using (16) and simplifying, we obtain
pC(x)? — C(z) + = — p*2® = 0.
In other words, the quadratic equation
pX?—X+az—-p23=0
is solved by X = C(x) for any < x3(p). The discriminant of this quadratic equa-
tion is
A(p,x) = 4p*z® — dpz + 1,
and (with p being fixed) the smallest positive value of x for which A(p,z) =0
is z = x3(p). See, e.g., Flajolet and Sedgewick [37, Lemma VIL.4] for general theo-
retical background.

The above considerations imply that the map p — x3(p) is continuous on (0, 1],
and that x3(p) — 23(0) = oo, as p — 0. It then follows that

sup{p > 0: z5(p) > 1} > inf{p > 0: z3(p) = 1}. 17)

The set of p >0 for which xz3(p) =1 is contained in the set of p >0 for
which A(p, z3(p)) = A(p, 1). Therefore, since A(p, z3(p)) = 0, the right-hand side
is larger than or equal to

inf{p > 0: A(p,z3(p)) = A(p,1)} = inf{p > 0: A(p,1) = 0}. (18)

Using these considerations, together with (12), we see that p_ is larger than the
smallest positive p satisfying 4p* — 4p + 1 = 0, which is larger than 0.254 > 1/4.

3.4 Further iterations

Of course, it is possible to obtain increasingly better bounds, by taking increasingly

larger ng in (14). Let p,, = sup{p > 0: rad({a%m) (p)}) > 1}, so that, by (13), we
have p_ > py, for any m. The sequence (p,,)m>1 is estimated in Fig. 5. In principle,
0, can be written down for arbitrarily large n, but it gets ever more complicated.
Instead, we used Monte Carlo to estimate .,,, and hence 6,,, for m < 100 to obtain
Fig. 5. It appears to converge to between 0.28 and 0.29, which is much less than our
numerical estimate p. ~ 0.4.

Roughly speaking, the reason for this is that our method accounts only for “micro-
scopic” dependencies. That is, even if we plug in the exact values of 8y, for all £ < ny,
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for some large ng, into the recursive upper bound (14) on 6,,, we then take n — oo,
with ng fixed, in the above analysis. As such, this method misses the effect of “mac-
roscopic” dependencies. For instance, note that, crucially, it does not account for the
fact that, for n > ng, the events that {0, n} and {1, n + 1} are occupied are far from
being disjoint.

4 Upper bound, p < p°

Recall p from (5). In this section, we show that p! < p?.
4.1 Coupling with oriented percolation

We start by explaining the coupling with oriented percolation discussed in Sect. 1.1
in more detail. Let P, denote the probability measure such that each site (m,n) € Z?2
with m + n even is open independently with probability p. To define the Catalan
percolation configuration, for j > i 4 2, we declare the edge {4, j} C Z open, when-
ever the site (i + 7, |j — 4|) is open. Note that, we are, for convenience, considering a
slight modification (scaled and translated) of the coupling in Sect. 1.1. In particular,
we now have that sites at “level” k represent edges of length k. Let Ly, = Z x {k}
denote the set of vertices with y-coordinate .

For ¢/ < m and vy, € L,,, an open path from vy to L, is a sequence of open sites
V1,2, ... Um—g such that v; —v;_y € {(—1,—-1),(1,—1)} for all 1 < i < m. Note
that vy,—y € Lyy1,ifm # £. We denote by v — Ly the event that there exists an open
path from v to L,. Open paths therefore correspond to sequences of occupied edges,
growing in length one unit at each time step; see Fig. 6. In particular, if there is an
open path from the site (¢ + 7, |j — 4|) to the line L1, this implies that the edge {7, j}
is occupied in Catalan percolation.

Finally, we recall the critical threshold of oriented site percolation on Z?:

p¢ = inf {p >0 s liminf P, ((1,1) = L) > 0} ‘

Fig. 6 An example of the oriented percolation coupling, with n = 7. On the left: a series of occupied
edges, in which each is obtained by extending the one above it by one unit to the left or right. On the
right: the associated path in the oriented site percolation model. Note that the bottom left corner is
(1, 1) and the bottom right corner is (2n — 1, 1)
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4.2 Proof

We now give the proof of (8). The strategy is to show that there is a very high prob-
ability of finding an integer & such that the edges {0, k} and {k, n} are both occupied
in Catalan percolation. In the coupling with percolation, this corresponds to finding
a k such that the vertices (k, k) and (n + k,n — k) are both connected to the line L,
by an open path.

Let us note that the coupling, and the general strategy described above, are, in fact,
the same as in [1, Section 3]. However, our current proof leads to a stronger result. In
[11, (6) is proved using a Peierls argument. On the other hand, our current proof of (8)
rests on the following two, classical results from oriented (site) percolation.

Theorem 3 (Exponential death bound [38]) For any p > pg, there exists ¢ > 0 such
that, for any k < n, we have that

P, ((1,1) = L_y, (1,1) A L_,) < e <.

Theorem 4 (Large deviations of the density of the infinite cluster [39]) For any
p > p2, there exist £,¢ > 0 such that, for any integer n > 1 and finite set A C Z,
we have that

P, ({a€ A: (a,a) = L_,}| <elA|) < e—clAl

Strictly speaking, [39] proves this result with {(a, a) : a € A} replaced by an interval
of the form {(a,0) : a € {1,...,|A|}}, but the same proof works. As noted in [39],
the proof applies to oriented percolation, in addition to the contact process.

Proof of pt < p° Fix p > p¢ and a large enough integer n > 2. Define the random
sets

A= {a €ZN[Tn/16,9n/16] : (a,a) — L(Sn/g]},
B={ae€Zn[Tn/16,9n/16] : (n+a,n —a) = Lizn/s} -

Roughly speaking, these are the positions of the sites around the middle of the left

and right sides of the triangle in Fig. 7, with fairly long open paths to level 3x/8. By

Theorem 4 we have P,,(|A| < en) < e~ ", for suitable €, ¢ > 0, independent of n.
Notice that 4 and B are measurable with respect to the state of sites in

|9n/16]

T= |J {(k+20k):0<(<[9n/16] -k},
k=[3n/8]
|9n/16]

T'= |J {@n—k-20k):0<€<(9n/16] -k},
k=[3n/8]
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rrrrrrrrr D I e T R e SRR T I S R I R SR

(1,1) (Q.nf 1,1)

Fig.7 An example with n = 16. Note that 4 and B are measurable with respect to the sets of sites in T’
and T”, shaded in blue and red, respectively. Here a = 9n /16 realises the desired event

respectively, and that these two triangles are disjoint. See Fig. 7.
Therefore, by independence, symmetry and Theorem 4, we find that

P,(Ba € AN BJA) < el

Note that, we have, in fact, only used a weaker version of Theorem 4, going back to
[38] (see also [10, Section 9]).
Finally, applying Theorem 3 (see again Fig. 7), we obtain

P,({0,n} is open, but not occupied)
<pP,(Aa € ZN[Tn/16,9n/16] : {0,a} and {a,n} occupied)
<pP,(Aa € ZN[Tn/16,9n/16] : (a,a) = L1,(n+a,n —a) — Lq)
<P, (|A] <en) +P,(JA| > en, Aa € AN B)

+ P, (3(6,5) € TUT 2 j = 2,(i,5) — Lianss)s () # L)
< e 4 emeen | p2o—el(ln/16]-1)

Since 7 can be taken arbitrarily large, with ¢, ¢ > 0 fixed, this concludes the proof. [

5 Strict upper bound,p. < p?

As outlined in Sect. 2, the proof of (9) relies on a certain model of enhanced oriented
site percolation on Z2, which, roughly speaking, is the usual oriented site percola-
tion model, but with the possibility of opening some vertical edges of length two.
The interesting feature (and difficulty) of this model is that these additional edges
are strongly correlated. In fact, in each row, we will open all such edges with some
positive probability (or else they are all closed), independently of other rows. Our
main result is that, no matter how small this probability is, this strictly decreases the
critical parameter for the existence of an infinite, open path starting from the origin.
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5.1 Enhanced oriented percolation

In this subsection, we perform the first step of Sect. 2. Namely, we define our aux-
iliary model of interest more precisely and state our main result concerning its
behavior. Fix two parameters p, q € [0, 1]. All sites (x,n) € Z? are open with prob-
ability p, independently of each other, and all oriented edges ((x,n), (x 4+ 1,n)) and
((x,n), (x,n + 1)) of length one are open with probability 1. Additionally, inde-
pendently for each n € Z, all the oriented edges ((z,2n), (z,2n + 2)),ez of length
two are open (all at once) with probability g. Edges and sites which are not open are
closed.

A path is a sequence of vertices (z;,n;)%_, such that ((x;,n;), (zi—1,n;-1)) is
an edge for each 7 € {1,..., k} (regardless whether it is open or closed). The path
(zi,m:)F_, is open if all its edges ((z;,m;), (z;_1,mi—1))%_, are open and the sites
(z;,m;)F_, are open (if k = 0, the path is open by convention). In other words, a path
is open if all its edges and vertices are open, except possibly the first vertex. (We
allow this possibility for technical convenience, as then we can concatenate paths
independently.)

A path is called simple if it is open and if, whenever an edge of length two is used,
say ((z,2n), (z,2n + 2)), the vertex (x, 2n + 1) is closed. That is, length-two edges
are only used if necessary. Note that, given any two vertices, if there exists an open
path between them, there also exists a simple path between them, and so we can
restrict our attention to simple paths. This will be useful, as two simple paths cannot
cross without sharing at least one vertex.

We denote the law of this model by P, ,. Note that it can be seen as a probability

measure on {0,1}%" x {0,1}%. We write (z,n) — (y,m) for the event that there
exists an open path from (x, ) to (y, m). Likewise, (z,n) — oo denotes the event
that there exists an infinite open path starting from (x, n). Also, given A, B,C C Z2,
let A 25 C denote the event that some site in 4 is connected to some site in C by an
open path contained in B. In this notation, we omit B if it is equal to Z2. Given any
q € [0, 1], we define the critical parameter of this model as:

pe(q) = inf {p : P, 4((0,0) = o0) > 0}'

Note that, by definition, p.(0) = p¢ is the critical parameter for the classical model of
oriented site percolation. Our main result is the following.

Theorem 5 For any q > 0, we have that p.(q) < p.(0) = p2.

We will prove this result in the remaining subsections, but let us first deduce (9) of
Theorem 2 from Theorem 5.

Proof of (9) By Theorem 5, we can fix p <p® such that p.(p’) < p, with
p’ =1 — /T — p. We couple Catalan percolation with parameter p and our enhanced
oriented percolation model with parameters (p,p’) as follows, similarly to Sect.
4.1 (see Fig. 8). Fix n > 3. For Catalan percolation, we declare the edges {4, j} for
J =1+ 3 open independently with probability p. For enhanced oriented percolation,
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we declare site (i, j) for i > 0 and j € [0,n — 3 — 4] open if and only if the Catalan
edge {j,n — i} is open. We further consider independent Bernoulli random variables
§;,&; with parameter p’ for j € Z. For j € Z, the length two Catalan edge {j, j + 2}
is open if and only if §; + &} # 0, which has probability p = 1 — (1 — p’)*. For any
J € Z,toincorporate the enhancement, we further declare the edge ((¢, 2j), (7,25 + 2))
open for all + € Z if and only if {3; = 1.

It is not hard to check that, if (0,0) — (¢, 7) occurs with i + j € {n — 4,n — 3}

and {; = &7, 5 = 1, then {0, n} is occupied in Catalan percolation. Indeed, by induc-

tion, the Catalan edge corresponding to each site in the path from the origin to (i, j)
is occupied. Consider the event that the origin reaches ¢! distance at least n — 4 in

enhanced oriented percolation:

x=|J  {0,0-GH)

i+je{n—4,n—3}
By the above considerations, and independence, we have the uniform bound
P,({0,n} is occupied) > P, . (X)(p')*> > P, ((0,0) = oo)(p')* > 0.
Recalling (2), this yields (9), as desired. O
5.2 Edge speeds

The second step in the proof of Theorem 5 (see Sect. 2) is to show that if p = p? and
q > 0, then the open cluster of the origin spreads out at positive speed as the time (i.e.

(8,12)

L] L]
0 2 4 8 9 10 12 (0,12) (0,4)

Fig.8 An example of the coupling, with n = 12. On the lefi: A sequence of occupied edges. Each edge
of length greater than 4 is obtained by extending the edge underneath either by one in either direction
(using an initially occupied, nearest-neighbour edge of the form {7, + 1}), or by two to the left if its
left endpoint is even (using a length-two Catalan edge of the form {2i, 27 4+ 2}). The occupied edges
are drawn as solid lines. The Catalan edges {0, 2} and {2,4} are drawn as dashed lines. Note that
{2,4} allows {2,9} to become occupied after {4,9} becomes occupied. Similarly, {0,2} allows
{0, 10} to become occupied after {2, 10} becomes occupied. On the right: The coupled path in the
oriented site percolation model, along with the relevant values of €’.. The blue oriented path on the right
is a rotation of the blue dotted path on the left by 135 degrees. Each vertical, length-two edge along this
path corresponds to the use of a length-two Catalan edge. The final steps from an edge of length four
to two edges of length two are shown in black
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vertical) coordinate increases. This result is mostly classical, but we include its proof
in our setting in Appendix A for the reader’s convenience.

We start with some notation. Fixp € (0,1)andq € [0,1).For A C Zandm,n € Z
with m < n, define

Enn(A):={z € Z: Ax{m} — {(x,n)}}. (19)

In words, &, (A) is the set of x-coordinates of sites at level n that are accessible
from sites at level m, whose x-coordinates are in 4.
Forn > 0, we also write

En(A) :=¢on(A), 71, :=max&,(—N), [, :=min&,(N).
The following is a consequence of Liggett’s subadditive theorem (see Appendix A.1).

Lemma 6 (Existence of edge speeds) If pe€ (0,1) and q€]0,1), there
exist a(p, q) € [—00,00) and B(p,q) € (0, 00] such that almost surely under Py, 4,

T2n n—oo

lQn n—00
o o alpa), 5 B

5 D, q)-

The edge speeds o and [ from Lemma 6 satisfy the following strict inequalities
proved in Appendix A.1.

Lemma 7 (Strict inequalities for edge speeds) If ¢ > 0, then

Oé(pC(O),q) > 1, /B(pc(()),q) < 1.

5.3 Crossing boxes in the supercritical regime
The third step in the proof of Theorem 5 (see Sect. 2) is to establish that certain boxes
are likely to be crossed. For this we need some geometric notation.

Given two vectors u, v € R? with det(u,v) > 0, we denote by

R(u,v) = ([0, 1)u + [0, 1)v) N Z2

the parallelogram generated by u, v. For such a parallelogram R = R(u,v), we define

Co(R) ={[0,1)v B u+10,1)v}, Cy(R)={[0,1)uLv+][0,1)u},
Co(R) = {u+10,1)v L [0,1)v},

that is, the events that R is crossed in each of the three directions by an open path.
Note that here we use the convention that the start and end points of the crossing
paths are allowed to be at Euclidean distance smaller than one from the boundary of

@ Springer



Catalan percolation

R, as long as they are inside R. Also in the whole remainder of this section, we use the
convention that any inequality of the form P, ,(C+(R)) > 6, should be interpreted
as the fact that the probability to cross any translate of R in the upward direction is
larger than 6 (and similarly for crossings in the other directions — and «—). All proofs
will generally be done only for one instance of the parallelograms, and it should be
clear that, with minor modification in each case, they extend to any translate. The
next statement is proved in Appendix A.2 by classical means from [10].

Lemma 8 (Annealed box crossing) Let pe€ (0,1) and q€[0,1) be such
that 0 < B(p,q) < a(p, q) < co. Then, for any 6 > 0 and & > 0, the following holds
for n large enough. Letting

U = (571,0), U= (Oé(p, Q) "n, n)7 w = (B(p7 Q) "n, n)7 (20)

we have
Ppq(Cr(R(u,v))) > 1 =&, Ppg(Cr(R(u,w))) >1—e.

5.4 Crossing bad times: Russo-Seymour-Welsh theory

The fourth step in the proof of Theorem 5 (see Sect. 2) deals with bad times, that is,
time intervals when insufficiently many length-two edges are open. Since the length-
two edges fail to provide enough help, we will completely disregard them. As such,
this brings us to crossing estimates for the classical oriented site percolation model.
These are based on the following result, which summarises the main content of [33].

Theorem9 ([33, Theorem 1.3, Proposition 4.2, Remark 4.4]) There exists € > 0 such
that, for any m € N large enough, there exists w,, € [€m2/5, m =€ N Z such that

Ppo 0(C— (R(3u,v))
Ppe,0(Ce (R(3u,v)))

>e, Ppoo(Cr(R(u,3v))) >,
> ¢
withu = (W, —wy,) andv = (m, m).

Next, we will adapt the geometry of the crossings provided by Theorem 9 to suit our
needs.

Corollary 10 There exists € > 0, such that for any m € N large enough, there exists
an integer { € [em?/® m*—¢), for which

Ppe,0 (C+(R((£,0), (m —4€,m)))) > &, Ppo,o (C+(R((£,0), (m + 4¢,m)))) > e.
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Proof Let M = [Z5]. Recalling Theorem 9, set u = (war, —was), and v = (M, M).
For i € Z let R; = i(2v — 2u) + R(u,3v) and S; = i(2v — 2u) + R(3u,v). Con-
sider the event

9

A=) (C(R)NC(S:)),

=0

and note, as illustrated in Fig. 9, that
A C C(R((L,0),20(v — u))),

with L = 3M + wyy — 0(3M — wyy), and 0 = 31=2war.

By the Harris inequality [40] and Theorem 9, we have Ppo o(A) > ¢, for some
fixed € > 0, and any m large enough. Moreover,

L < 3M +wy — (3M — way) (1—2%‘4) < 8wy,

and

20(v — u) = 20(M 4+ war, M 4+ war) — 40(way, 0).

In particular, letting £ = 10wy, one has for m large enough, that

Ppe.o(C+(R((£,0), (m — 4€,m)))) ZPpe o(C+(R((L,0),20(v — u))))
ZPP270(A) Z E.

Similarly,

Ppo.0(C(R((,0), (m + 46,m)))) > e,
Fig. 9 If the three shaded rectangles of dimensions either
3wpr X M orwps X 3M are crossed in the appropri-

ate directions, then the thickened parallelogram is also
crossed
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which completes the proof. O
5.5 Oriented percolation in a random environment

Finally, we are ready to proceed to the final step in the proof of Theorem 5 (recall
Sect. 2).

Proposition 11 (Renormalisation) Let € >0 and 0 < f <1 < a be given. Let
p=pla,B) >0, be such that B+2p <1, a —2p > 1, and a« — 8 > 12p. Then
pm

there exist ' > 0, such that for any m > 1, any £ € [1, %5*], and any p, q € [0,1) the
following holds. If

PP#Z (CT (R((mp, O)’ (mav m))) N CT (R((mp, 0)7 (m/@a m)))) >1- €l7 (1)

and
]PZ?,O (CT (R((& 0), (m + 467 m))) N CT (R((& 0), (m - 457 m)))) > & (22)

then pc(q) < p.

Before proving Proposition 11, let us conclude the proof of the main result of this
section, Theorem 5.

Proof of Theorem 5 Fix p=p? and ¢ > 0. By Lemmas 7 and 6, we have
0<fB<1<a<oo,settinga = a(p,q) and 5 = B(p, q). Fix &’ provided by Prop-
osition 11 for & given by (£)2, where & is the value of & provided by Corollary 10. It
then suffices to find m > 1 and ¢ € [1, ] so that (21) and (22) hold. By Lemma 8
and a union bound, (21) is satisfied for any m large enough. Finally, by Corollary 10
and the Harris inequality [40], for any m large enough we can choose £ € [1, %] so
that (22) holds. O

The proof of Proposition 11 relies on the recent result [32, Theorem 8.2].

Theorem 12 (Oriented percolation with geometric defects, [32]) Let
p,0 € (0,1) and £ = (&)ien be a sequence of independent random variables
with P(¢ = k) = (1 — 6)6* for k € N. Endow N? with the oriented edge set
E={((i,n),(i,n+1)),((i,n), (i +1,n+1)): (i,n) € N*}. Conditionally on
the environment &, we declare each edge from (i, n) to be open independently with
probability p*»+! for all (i,n) € N2. Denoting the law of this process by IP’f), the fol-
lowing holds. There exists € > 0 such that if 6 < e and p > 1 — ¢, then for almost
every environment £, under IF’%, there is an infinite open path starting at the origin
with positive probability.
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Proof of Proposition 11 Let 0<f<l<a, pée (0,min((a—p)/12,
(@a—=1)/2,(1-p)/2)),1/2>¢€,&' >0, m > 1, £ € [1, %] and p, ¢ be given, so
that (21) and (22) are satisfied. The value of ¢’ is assumed small enough so that some
conditions imposed later in the proof hold. Let

R* = R((mp, O)’ (mavm))’ R’ = R((mp, O)’ (mﬁ,m)) (23)

First note that it suffices to show that the probability that the origin is connected to
infinity by an open path is positive under P, 4, since then by continuity of the prob-
abilities in (21) and (22) as functions of p, this would remain true for a smaller value
of p.

The strategy is to compare our model with the model of oriented bond percolation
in random environment considered in Theorem 12. Here the role of the random envi-
ronment is played by the state of all length-two edges, whose associated sigma-field
is denoted by £. Declare an integer n > 0 good if

P, (cT ((0.%%) + r*)ner ((0.%5°) + 77 | 5) >1-Ve, (24)

and call it bad otherwise. Denoting by Q, the law of all length-two edges and using
(21), one has

> 11— nm o nm B
oz 1om,, (e (07) ) e (075) + )
> Qq(n is bad) x Ve,
from which we infer that for any n € N,
Qq(n is good) > 1 — Ve

It follows that the random variables (1{n is good}),>o, form a sequence of
1-dependent identically distributed Bernoulli random variables, with mean larger
than 1 — v/2’. Thus, by the Liggett—Schonmann—Stacey theorem [36, Theorem 0.0],
one can ensure the existence of independent Bernoulli random variables (X, ), >0,
with mean 1 — 4, such that for alln € N,

1{n is good} > X,,,

where 0 > 0 can be taken arbitrarily close to 0, by choosing &’ small enough. We also
set X_1 = 1. We further assume (X, ),,>0 to be constructed on the probability space
of P, 4 in such a way that they are independent of the sigma-algebra generated by the
set of open sites of Z2.

Next, we identify the intervals of good times, by defining the sequence
(T : » > —1) inductively, by 7_; = —1, and
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Tn=nf{lk>7,1+1: X =1}, & =70 — Tno1 — 1,

for n € N. By construction the (§,,),>0 are independent random variables with com-
mon law given by

P(¢&, = k) =8"(1—4), forall k> 0. (25)

Now we define a renormalized lattice, similarly to [10, Section 9], at least on good
rows (corresponding to integers n such that X,, = 1), and using also a notion of
stretched bonds, to accommodate the crossing of consecutive bad rows.

We define inductively the new vertices (i, )i>0,n>0 (in [0, 00)?) of our renormal-
ized lattice as follows (see Fig. 11). First

20 = im - (oz2;ﬂ pr,O)7 for ¢ > 0,

and note that by definition of p, one has %ﬂ — 2p > 4p. Next, givenn > 0, we start
by defining for ¢ > 0,

mén

2

' (1’ 1);

Zi,n = Zin +

and then let

~ m
St = B + - (2p+ B 1), (26)

Now we consider a new lattice N2, with edge set E from Theorem 12. For any
n > 0 and 7 > 0, we declare the vertex (i, n) open if either &, = 0 (in which case
Zin = Zin), OF, When &, > 1, if the following two events hold without using any
length-two edge (see Fig. 11):

En—1
ﬂ Cr(2inj + R((£,0), (m + 4(—1)7¢,m))), 27)
j=0
and
En—1
ﬂ Cr (2 i + R((£,0), (m + 4(=1)7T2,m))), (28)
j=0

where for all 7 > 0,

) +3¢-14j is odd} - (1,0),

/m m
Zimj = Zin + (pm —£,0) + j (57 5
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and

/

Zi,n,j = Zin + (me, 0) +.7 <

%, ) —30-1{j is odd} - (1,0).

NE

Furthermore, we say that the edge ((¢,n), (i + 1,n + 1)) is open, if the following
event holds

CT(gi,n + RQ) n CT(zi,n + (mev O) + R((mp7 0)7 (mﬁ/Q’ m/2)))7 (29)

and similarly we say that the edge ((i,n), (¢,n + 1)) is open if the following event
holds

C1(Zim + R((mp,0), (ma/2,m/2)) N C4(Zin + (20m,0) + R?).  (30)

An open path in the new lattice is a sequence (i1,m1),. .., (ix,ng) (possibly with
k = c0), such that for each 1 < j < k, (i;,n;) is open and ((i;,n;), (¢j+1,7j+1))
is an open edge.

The proof of Proposition 11 is complete if we prove the following two lemmas. [J

Lemma 13 For almost every realization of the environment and the (X,)n>o0
variables, whose sigma-algebra is denoted FX, the following holds. Under
P,.q(-|E, FX), the origin is in an infinite open path in the renormalized lattice with
positive probability.

Lemma 14 If there exists an infinite open path in the renormalized lattice, then there
is an infinite open path in the original lattice.

Proof of Lemma 13 For i,n > 0, define the random variables
Y:n = 1{(¢,n) is open}. 31)
For an edge e = (a,b) € E, we define

7z, — { %{e isopen} ifY,=Y,=1 (32)

otherwise.

Let 7Y be the sigma-algebra generated by (V5 5, ) (i, n)enz. Set P = P, o (-|€, FX, FY)
and note that P, ,(- | £, FX) identifies with the product Bernoulli measure with

parameter p on {0, 1}22. Note that by the Harris inequality and the definition of a
good integer (recall (24)), for any edge e = (a,b) € E, one almost surely has

P(Z.=1)=1{Y, Y, =0} +1{Y, Y, =1} ‘P, (Z. =1 | &, FX, Y, =Y, = 1)
> Y,y =0} +1{Y,Y, =1} Py (Ze = 1| &, F¥) > 1 Vel
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Moreover, we claim that, almost surely under P, the random variables (Z.).cg are
1-dependent. In fact, under P, 4 (-|€, ), the variables (Y; ) (in)enz and (Ze)ee s
are jointly 1-dependent. Indeed, for Vi, V> C N2 and E;, E> C E with Eq, V; not
incident with Es, V5, the vectors (Y, Ze)vevy ecr, and (Yy, Ze)vevs ec B, are inde-
pendent, because they depend on open sites (we have conditioned on &) in deter-
ministic disjoint regions in space. In particular, (Y,),cn2 are independent under
PP7Q('|57]:X)'

By I-dependence of (Z.).c g under P and [36, Theorem 0.0], the following holds,
for arbitrarily small ¢’ > 0, provided &’ > 0 is small enough. We can find indepen-
dent Bernoulli random variables (Z.).c r with parameter 1 — &', such that

Z.>Ze, (33)

for all e € E. Since their law does not depend on £, FX, FY | they are independent
of these sigma-fields.

As we already established, (Y; ,,)i nen are independent and, by (22) and the Harris
inequality, P, o(Yi,, = 1 | £, FX) > &%= Consequently one can define a sequence
of independent Bernoulli random variables (W, )ec g, so that for each i,n > 0, if e
and f are the two edges emanating from (i, ), then W, and W have mean ¢, and
satisfy

Y, > max(W,, Wy). (34)

Indeed, z > 1 — (1 —2?)* forall z € [0,1/2] U {1} and * < 1/2.
We now declare an edge e € E to be good if W, = Z. = 1, which by indepen-
dence between W, and Z. holds with probability

gl (1 -0, (3%5)

independently for each edge e. Forgetting about the states of vertices, we end up with
a new model of oriented bond percolation, which almost fits the setting of Theorem
12. More precisely, we would be able to apply Theorem 12, if the factor £* in (35)
were replaced by 1 — §’. However, one can easily recover the exact setting of Theo-
rem 12 as follows. Fix M such that £*/™ > 1 — §’. Then simply observe, recall-
ing (25), that M&,, is stochastically dominated by a geometric random variable with
mean that can be chosen arbitrarily close to zero by taking smaller ¢’ if necessary
(while still fixing ¢’ and M).

Hence, by Theorem 12, with positive probability, under P(-|€, FX), there is an
infinite oriented path of good edges. Putting (31), (32), (33) and (34) together, we
obtain that any such path yields an open path, concluding the proof of Lemma 13. [J

Proof of Lemma 14 1t is useful to note first that, for any ¢,n > 0, one has
Zin = Zon + im - (QT_B - 2/)3 0)7 (36)

which is immediate by induction on n. Also, recalling (23), for each (i,n) € N2, let
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Ri" = z” + Ra7 R2 = Ei,n + 2(pm,0) + Rﬁv

i,n

and notice that these two parallelograms completely cross each other before reaching
the level of z; 5,11, in the sense that, at this level, the left-most point of Rlln is on the

right of the right-most point of Rin (since 3pm + ﬁTm < =37, by the definition of p).

Next, assume that an edge emanating from (i,n) € N?> is open, say
((i,n), (i,n 4+ 1)).

Case 1 (assume &, +1 = 0). We need to verify that if any of the two edges emanat-
ing from (é,n + 1) is open, then any vertical crossing of R%n may be glued to the
crossings of R}n 41 and R?’n 11, before they reach the level of 2; ;2. This can be
checked using the following fact, see also Fig. 10.

Denoting by z! the horizontal coordinate of a point z € R2, by (26), one has

~ m
Zil,n + 2pm + % = Zvll,n+1 =+ pm,

so that at the level of 2; 41, the parallelogram Rin passes exactly in between R},n 11
and R?’n 1 1-> allowing all crossing paths to be glued together, see Fig. 10.

Moreover, the same reasoning applies if an edge emanating from (i + 1,n + 1)
is open, since

~ am (a—B)m
TR G

1
2 T PM =2 n41 + pm,

where the first equality follows from (26), and the second from (36). Thus, here again
the parallelogram R;n passes exactly between the R} 41,41 and R? +1,n+1> When
arriving at the level of ;11 41 (see Fig. 10).

Case 2: (assume &,4+1 > 1). First, we note that it may be seen that any vertical

crossing of Rilyn or Rin can be glued to the crossings in (27) or (28) (with n 4 1

2
i,m

instead of n). In the case of R, , one can check that the first parallelogram in (27),

T = Zint+1 + (pm — £,0) + R((¢,0), (m + 4¢,m)),
Crosses R%n before reaching the higher level, using that ﬁTm + pm < + L. Thus,
at the level of 2; , 42, the right-most point of R, is on the left of the left-most point
of r1. Moreover, the fact that all crossings in (27) can be glued together is immediate
by construction, see Fig. 11.

Likewise, the fact that the first parallelogram in (28) (with i and n replaced respec-
tively by ¢ + 1 and n + 1) intersects any vertical crossing of Rl{n before reaching the
higher level is guaranteed by the fact that °3* > pm + 3 — £, and thus, for the same
reasons as before, all crossings in (28) can be glued together.

Therefore, it only remains to see that in case when a vertex, say (i, n), is open and
any of the two edges emanating from it is also open, the last crossings in (27) and (28)

@ Springer



Catalan percolation

Fig. 10 Illustration of how the crossings of different parallelograms may be glued together, when
§n+1 = (). In this example the two edges emanating from both (i, #) and (i, n+ 1) are open since
the corresponding parallelograms are crossed vertically (by blue paths)

pm

L]
Zin Zi,n,0 Zin,0 Zin+1

Fig. 11 Tllustration of the definitions in (27) and (28). In this example &,, = 2, and (i, n) is open, since
the corresponding parallelograms are crossed vertically (by blue paths). It is also apparent that the last
parallelograms pass between 2; p, + (pm, 0) and Zin + 2(pm, 0), which are marked by red dots
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may be glued to the crossings of R}yn or an To see this, assume for concreteness
that the edge ((i,n), (i,n 4+ 1)) is open (the reasoning for ((¢,n), (i + 1,n + 1))
being analogous).

Consider a crossing 1 of R?, and a crossing 7, of the first half of R}

i,m

whose
existence is guaranteed by (30). Since R}, and the first half of R}, cross before

reaching the level of 2; 41, the paths ; and 7, also intersect before reaching this
level. Thus, it can be seen, regardless of the parity of £,,, and since ¢ < pm/2, that
the last parallelograms in (27) and (28) always pass between Z; ,, + (pm,0) and
Zin + (2pm,0) (see Fig. 11). In particular, when arriving at the level of z; ,,, any
crossing of these parallelograms, say 73, passes between the starting points of v; and
2. Since 7y; and ~y, intersect before reaching the level of z; ,,11, 3 has to intersect
either 1 or 7y, before they intersect for the first time, implying that open paths can be
glued together. |

Appendix A: Classical oriented percolation theory

A.1. Edge speeds

ProofofLemma 6 We claim that E,, ,[r,,] < oco. To see this, let (7],),,>0 be defined by

ry:=inf{z > 0: (x+1,0) is closed},
rio=inf{zx >/ _,: (z+1,n) is closed}, n > 1.

n -

We clearly have r,, < r/ foralln,andr] ~ Z?:o Y;, where Yy, Y7, . .. are indepen-

dent, Geometric(1 — p) random variables. The claim readily follows. We can now
define

E n
o(p.q) = inf “2al’2]

= € [—00,00). 37)

The process (12, — () nen has the properties required to apply Liggett’s subadditive

n—oo

ergodic theorem [12, Theorem VI1.2.6] to conclude that 2= —— a(p, q) almost
surely.

The treatment of the second statement is similar, only simpler. Since /,, > 0 and
equality is not almost sure, we can directly define

6(p7 q) i= sup M

€ |0, 00|.
S o [0, o0

The subadditive ergodic theorem then gives l;—;; 222 B(p,q)> 0 almost surely. (I

We next turn to proving Lemma 7, which requires some preparation.
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Lemma 15 1.  Ifp satisfies a(p,0) > —oo, then for any q > 0,
a(p,q) — a(p,0) > gp(1 - p)*. (38)
2. Ifp satisfies B(p,0) < oo, then for any q > 0,

B(p,q) — B(p,0) < qp(1 —p)*. (39)

Proof To prove (38), we fix any p such that a(p,0) > —oo, and for ¢ > 0 we let rd
denote the random variable r,, under P, ,. The proof will follow a similar strategy
as that used to prove [10, Equation (12)], proceeding in three main steps as follows.

1. Wefirstshowthat forany infinitesets A, B C Zwith A C Bandmax B > max A,
and for any m < n, we have

E, qimax &, »(B) — max &y, »(A)] > 1. (40)

2. We then couple P, , with P, ,» where ¢’ > ¢ > 0 under a common law P and
use (40) to show that

/

E[rd, — 3] >1—(1— (¢ —q)p(l —p)*)". (41)

3. We then tie this together to prove (38).We start with Step 1 For concreteness, we
take 0 = m < n (the proof is the same for 0 < m < n). We proceed as in [10,
Equation (13)]. By the assumptions that A C B and x* := max B > max A,
and by monotonicity of &, (-) with respect to set inclusion, we have

max &, (B) — max §,(A) > max &, (B) — max &, (B\{z"}).
Using the definition of &,,(+), we have

Ep.gfmax & (B) — max &u(B\{e"})] = By, | (max & ({a*}) — max & (B\{z"}) |

By monotonicity and translation invariance, the right-hand side is larger than

By (max &,({0}) — max (=N \ {0})*] = B g lmax £ (~N) — max &, (-N\ {0})];

by translation invariance, the right-hand side equals 1. This proves (40).

We now turn to Step 2 We couple P, , with P, ;- under a common law PP in the
natural way: we first sample a site percolation configuration under IP,, o, then for
each set of vertical edges joining height 2n to 2n + 2 we independently sample
U,, ~ Uniform[0, 1], and add the corresponding vertical edges under P, , (respec-
tively P, /) precisely when U,, < ¢ (respectively U,, < ¢'). In the coupled model, we
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write (£2(A)),> for the process with parameters (p, ¢) and (€2 ),,> for the process

with parameters (p, ¢'). In particular, r¢ = max £2(—N) and 7? = max £Z (—N).
We now set
r=inf{n€2N: 7% <77}
For all m € 2N, on the event {T = m} we have
€(-N) C€(-N) and  max &l (—N) =rf, > rf, = max £l (—N). (42)

Let (Fon)m>0 denote the filtration generated by the percolation configuration: for
each m, F,, is the o-algebra generated by the percolation configuration (including
the uniform random variables) up to (and including) height m. On the event {7 < n}
we bound

E[rd —r8 | F,] = Elmax £, (69 (—-N)) — max £, (£4(—N)) | F]

T T

> E[max &2, (62 (—N)) — max &, (§4(-N)) | F7] > 1,

T

where the last inequality follows from (40), whose assumptions have been verified
in (42). We have thus proved:

E[rd —rd] > E[E[¢

n

rd | Fr]-1{r <n}] >P(r <n).

To bound this latter probability, note that at each time m & 2N there is a probability
at least (¢’ — q)p(1 — p)? that the vertical edge leading from r% to 7% + (0,2) is

m m

open under P, .~ but not under P, ,, that the site rZ, + (0, 2) is also open, but that the

two sites corresponding to 7%, + (0,1) and rZ, + (—1,2) are closed, in which case
g < rf’,;H. Hence,

P(r>n) < (1= (¢ = q)p(1 = p)*) "%, (43)
from which the statement of (41) follows.

For Step 3, we again follow the strategy of Durrett, take a large integer M,
set § = - and write

Mn n
1 1 ms  (m-1s op(1 — p)?
“E[rd, =10 == ) E|ry —rp,m | >M(1-(1-——) ).
" [TZn 7‘2n} nm:1 [TQn Ton :|— < ( n

Taking n — oo and then M — oo we get

1 1 —p)?
lim —E [r§, —r9,] > N}im M (1 — exp {M}> = gp(1 — p)?,

n—oo N — 00 M
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which is the desired statement.
The proof of (39) goes in the exact same way; note in particular that we can get the
same expression in the bound (43). O

Lemma 16 If'p > p.(0), then B(p,0)~! = a(p,0) > 1.

Proof We write Co := {(z,n)€ Z* : z € £,({0})} for the cluster of the origin.
Fix p > pc(0), so that P, o(|Co| = 00) > 0. Throughout this proof, we abbrevi-

ate « = «a(p,0) and 8 = 5(p,0).
Note that for any n € N

max §7l({0}) S Tn, min fn({o}) Z ln

and on the event |Cy| = oo, foralln € N,

I, =min&,({0}) <max&,({0}) = ry, (44)
using the non-crossing property of simple paths. Taken together with 122—;; a7, Ié]

and 2 27 @, (44) implies that 8 < a.

For a > 0, we write

V_(a) :={(v,n) €Zx2N: v<an}, Vi(a):={(v,n) €Zx2N: v>an}.

We claim that

a=inf{a>0: P,o(|CoNVi(a)|] < c0) =1}. (45)

To see this, first take a > «. Since max &, ({0}) < 7, Vn and 2= 27 , we see

that almost surely there are only finitely many n € 2N such that max &, ({0}) > an,
so there are almost surely only finitely many points in Cy N V. (a). On the other hand,
if a < «, we have

P,.0(|Co N Vi(a)| = o0) (max &, ({0}) > an for infinitely many n € 2N)

Z IF)p,O
2 Ppo(|Co| = o0) > 0,
where the second inequality follows from (44) and 5= 2% o This concludes the

proof of (45). Similarly, we have
B=sup{b>0: P,o(|CoNV_(b)| < c0) =1}. (46)

Let ® : R? — R? be the reflection about the diagonal y = =, that is, ®(z,y) = (y, ).

Since we are taking ¢ = 0, our model has the symmetry Co(lzv)q)(co). In particular,

for any a > 0,
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Ppo([CoNV_(1/a)| < o0) =Ppo(|Co N Vi(a)| < o0).

Together with (45) and (46), this gives § = 1/a. We already had 8 < a, so we
obtain # < land o > 1. O

Corollary 17 We have a(p.(0),0) > 1 and B(p.(0),0) < 1.

Proof The function p — a(p,0) is non-decreasing, and it is the decreasing limit
of the continuous functions p — inf,,<,(E, o[r:m]/m), as n — co. From this, it is
easy to deduce that p — «a(p, 0) is right continuous, so it follows from Lemma 16
that a(p.(0),0) > 1. An analogous argument applies to 3. O
Proof of Lemma 7 This follows from combining Lemma 15 and Corollary 17. O

A.2 Supercritical box crossing

Our next goal is to prove Lemma 8 following [10]. We start by proving an upper tail
bound for the right edge r,.

Lemma 18 For any p € (0,1), ¢ € [0,1) and § > 0 there exist ¢ > 0 and ng € N
such that for all n > ny,

Ppg(Gm<n: r,>alp,q) -m+on) <e ", 47
Py (Gme{l,...,n}: max& m(—N) > a(p,q¢)-m+dn) <e ", (48)

Ppq(@m<n: by <B(p,q)-m—dn) <e™ ",
Ppq(@Fme{l,...,n}: min& ,(N) < B(p,q) - m —on) <e "

Proof We will only prove the first two bounds, as the other two are treated in the same
way. Fix p, g, d as in the statement. We abbreviate « = «a(p, ¢). The desired inequali-
ties are trivial in case @« = —o0, so we assume that @ € (—o00, 00).

Using the definition of « in (37), we choose M € 2N such that

0
E, olrm — aM] < ZM' (49)
We bound the left-hand side of (47) by

5
P, <3k < % L ek > oMk 4 2n> (50)
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n )
+]P>p,q <E|k§M, jE{O,...,M*l}: er_‘_erk>aj+2n>. (51)
The probability in (50) is smaller than

n 0 19
Py (3k < U D rype > oMk + ZMk+ n)

4
n k )
<Ppg | F< 570 Zszn ,
7=0
where X;,X5,... are independent random variables, with the distribution

of ryy — (a+ %)M . These random variables have negative expectation by (49).

They also have some finite exponential moment; this can be seen using the domina-
tion by geometric random variables, as in the proof of Lemma 6. By a large deviation
bound (see for instance [41, Corollary A.2.7]), the probability on the right-hand side
above is bounded by e~ “", for some ¢y > 0 (depending on M) and n large enough.

Next, bounding ming<;<ar—1 (aj + %n) > %n for n large, and using the stochas-
tic domination described in the proof of Lemma 6, we bound the probability in (51)
by

Dp S0 <mp Aily->5
MU\ T ") = e & Tt
p

where Yy, ..., Yy 1 are independent Geometric(1 — p). The right-hand side above
is again bounded by e~ ™ for some constant ¢; > 0 (depending on M) and n large
enough. This concludes the proof of (47).

For (48), we first write, for any m > 2,

max &1, (—N) = max £ ,, (§1,2(—N)) < max &, ((—o0, max &1 2(—N))).
The right-hand side is stochastically dominated by Z + r/,,_,, where

distr distr
2 max €10 (-N), () )ms0' 2 (om0,

and Z, (r!,)m>o0 are independent. Then, the left-hand side of (48) is smaller than
0 L 5
Pp,q Z>§7’L -‘F]P)p,q Elmgn.rm>a.(m+2)+§n )

The first probability above can be bounded using domination by geometric random
variables as before, and the second probability can be bounded using (47). O
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Proofof Lemma 8 Since the two inequalities are proved in the same way, we will only
prove the first. Let p, ¢, § and € be as in the statement and write & = a(p, q).

We let R := (—2n,0) + R(u,v), that is, R is the parallelogram with vertices

(=31.0), (5n,0). (= (5 +a)n.n), ((5+a)n.n).

From 2= "% @, it readily follows that P, 4 (A,) “——> 1, where

0 0
A, = 71n+am§rm§inJramforallmgn, m even ;.

On this event, there is an open path ~ = ((zg,n0),...,(xk,ng)) such
thatng = 0,29 < 0,ng = n, xx =1, > (@ — §/4)n and

xjgin -+ an; for all j for which n; is even.

If multiple such paths  exist, we choose one using some arbitrary procedure. In
order to prove that - is entirely contained in R’ with high probability, we only need
to prove that the following two situations are unlikely:

1. A, occurs, but z; > $n + an; for some j for which n; is odd;

2. A, occurs, but z; < —$n + an; for some,.

The occurrence of 1. would imply r,,4+1 — 7y, > %n for some m € 2N, m < n.

To rule this out, we bound this difference by a Geometric(1 — p) random variable,
and use a union bound over the choice of m.

The occurrence of 2. would imply that, for some m < n,

max £ ((—oo —6n—|—am}) > (oz—(s)n
e T2 - 4

To rule this out, we use Lemma 18 and a union bound over the choices of m. O
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