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Abstract
In Catalan percolation, all nearest-neighbour edges {i, i + 1} along Z are initially 
occupied, and all other edges are open independently with probability p. Open 
edges {i, j} are occupied if some pair of edges {i, k} and {k, j}, with i < k < j, 
become occupied. This model was introduced by Gravner and the third author, in 
the context of polluted graph bootstrap percolation. We prove that the critical pc 
is strictly between that of oriented site percolation on Z2 and the Catalan growth 
rate 1/4. Our main result shows that an enhanced oriented percolation model, with 
non-decaying, infinite-range dependency, has a strictly smaller critical parameter 
than the classical model. This is reminiscent of the work of Duminil-Copin, Hilário, 
Kozma and Sidoravicius on brochette percolation. Our proof differs, however, in 
that we do not use Aizenman–Grimmett enhancements or differential inequalities. 
Two key ingredients are the work of Hilário, Sá, Sanchis and Teixeira on stretched 
lattices, and the Russo–Seymour–Welsh result for oriented percolation by Duminil-
Copin, Tassion and Teixeira.

Keywords  Binary tree · Catalan numbers · Critical threshold · Essential 
enhancements · Generating function · Graph bootstrap percolation · Infinite-range 
dependency · Oriented percolation · Polluted bootstrap percolation

Mathematics Subject Classification  60K35 · 82B43 · 05A15

1  Introduction

1.1  Catalan percolation

Catalan percolation stands at the crossroads of bootstrap percolation, oriented per-
colation and enumerative combinatorics. It is, in fact, a particular case of the transi-
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tive closure dynamics studied by Gravner and the third author [1] (cf. Karp [2] and 
Korándi, Peled and Sudakov [3]).

The original motivation for the model comes from graph bootstrap percolation, 
considered already by Bollobás [4] (cf. Balogh, Bollobás and Morris [5]), an early 
work in the growing field of bootstrap percolation (see, e.g., Morris [6] for a recent 
survey). More precisely, Catalan percolation is related to polluted bootstrap percola-
tion, beginning with Gravner and McDonald [7], which amounts to studying boot-
strap percolation on a supercritical percolation cluster. Roughly speaking, bootstrap 
percolation is a monotone cellular automaton, modelling the spread of “infection” in 
a network. Once a site becomes infected, it stays infected thereafter. In polluted boot-
strap percolation, however, some sites are “immune,” and so never become infected.

More specifically, the inspiration for [1] began with the final paragraph in [5, p. 
439], which proposes a polluted version of H-bootstrap percolation. Catalan percola-
tion is associated with the case that H is a directed triangle. As is well known, triadic 
closure plays an important role in, e.g., social networks. See, e.g., Granovetter’s [8] 
work on “the strength of weak ties.” From this point of view, Catalan percolation (and 
the transitive closure dynamics, more generally) aims to study the interplay between 
the strength of such ties, and that of censorship. From a combinatorial perspective, as 
discussed in [1], pc for Catalan percolation is also the point at which a product can be 
computed at random, when brackets are available with probability p.

Let us now formally define the model. Fix a parameter p ∈ [0, 1]. Consider 
the complete graph with vertex set Z. We start by declaring each edge {i, j} with 
j ≥ i + 2 open independently with probability p and closed otherwise. We denote 
this probability measure by Pp. We next recursively define a set of occupied edges by 
induction on the length of the edge. Firstly, all edges of the form {i, i + 1} for i ∈ Z 
are occupied. Secondly, each open edge {i, k} such that there exists j ∈ (i, k) such 
that {i, j} and {j, k} are both occupied is also occupied, while closed edges cannot 
be occupied. For n ≥ 2, we define

	 φn(p) = Pp ({0, n} is occupied | {0, n} is open) , � (1)

	
pc = inf

{
p : lim inf

n→∞
φn(p) > 0

}
, � (2)

keeping in mind that φn(p) is monotone in p, but not in n. For convenience, we also 
set φ1(p) = 1/p for any p ∈ (0, 1]. In view of Fig. 1, we expect that φn converges to 
the step function 1p>pc , except possibly at pc. Note that in the related oriented perco-
lation setting, this convergence holds also at pc, see Bezuidenhout and Grimmett [9].

In [1] (see Theorem 1.3), it is shown that Catalan percolation has a non-trivial 
phase transition of constant order. (On the other hand, for the full transitive closure 
dynamics, a transition occurs at (log n)−1/2+o(1), see Theorems 1.1 and 1.2 in [1].) 
More precisely, using connections with Catalan structures (binary trees) and oriented 
percolation, it can be seen (as explained below) that

	 1/4 ≤ pc ≤ po
c ,� (3)
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where po
c  is the critical probability of oriented site percolation on Z2. We refer the 

reader to Durrett’s classical review [10] on oriented percolation in two dimensions 
(see also [11–13] for more recent and general accounts). For the reader’s conve-
nience, we recall that 0.6967 ≤ po

c ≤ 0.7491 [14, 15] (also see [16] for a slightly 
weaker upper bound). It is believed that po

c ≈ 0.7055 (see, e.g., [17]).
The key to (3) is the following “graphical representation” of the Catalan percola-

tion dynamics, used in [1], from which the connection to binary trees and oriented 
percolation becomes clear. For each open or initially occupied edge {i, j}, with 
i < j, place a node v(i, j) at ((i + j)/2, j − i − 1) in the plane. Note that, since all 
nearest-neighbour edges {i, i + 1} are initially occupied, there are nodes v(i, i + 1) 
at height 0 (i.e., along the x-axis) between the integers. For all other nodes v(i, j), at 
some height j − i − 1 > 0, we include edges from v(i, j) to each pair of nodes v(i, k) 
and v(k, j), with i < k < j.

Clearly, the edge {0, n} is occupied by the Catalan percolation dynamics if and 
only if there exists a binary tree rooted at v(0, n), with leaves v(0, 1), . . . , v(n − 1, n). 

See Fig. 2. As is well known, the Catalan number Cn = 1
n+1

(
2n
n

)
≤ 4n counts 

Fig. 2  Illustration of the binary tree representation of Catalan percolation

 

Fig. 1  Monte Carlo estimates of the conditional probabilities that {0, n} is occupied given that it is 
open against p ∈ [0, 1], plotted for n ∈ {6, . . . , 100}
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the number of such trees. Therefore, pφn(p) ≤ 4npn−1, leading to the lower bound 
in (3).

On the other hand, the upper bound in (3) comes from restricting the dynamics 
in such a way that whenever a new edge {i, j} is occupied, due to some {i, k} and 
{k, j}, it must be the case that at least one of {i, k} or {k, j} is an initially occupied, 
nearest-neighbour edge. In other words, the process is forced to “nucleate,” in the 
sense that the maximal length of an occupied edge can increase by at most 1 in each 
time step. From the perspective of the graphical representation, the occupation of 
{0, n}, via these restricted dynamics, corresponds to the presence of an open path 
from v(0, n) to the x-axis in oriented site percolation. This leads to the upper bound in 
(3). We also note that, from this viewpoint, oriented site percolation can be regarded 
as the local version of Catalan percolation, in the sense of [18, 19].

The full Catalan percolation dynamics is richer than either of the two extremes 
represented in (3). Indeed, our main result shows that pc lies strictly between the two.

Theorem 1  The critical Catalan percolation threshold pc satisfies

	 1/4 < pc < po
c ,

where po
c  is the critical threshold for oriented site percolation on Z2.

In fact, we will prove a more detailed result, Theorem 2 below, which requires some 
additional preparation.

As it is common in percolation (see Grimmett’s monograph [20] and, e.g., the 
recent work of Duminil-Copin, Goswami, Rodriguez, Severo and Teixeira [21]), we 
also introduce critical values of subcritical and supercritical exponential decay, as 
follows:

	
p−
c = sup

{
p : lim sup

n→∞

1
n

log φn(p) < 0
}

, � (4)

	
p+
c = inf

{
p : lim sup

n→∞

1
n

log(1 − φn(p)) < 0
}

. � (5)

Clearly, p−
c ≤ pc ≤ p+

c  and it is natural to expect that equality holds, but proving this 
in a model, such as Catalan percolation, with such intricate dependencies appears 
quite challenging. Note that, as opposed to more standard percolation models, we 
have above p+

c  that any long open edge is occupied with very high probability. With 
this notation, the Catalan union bound above actually implies p−

c ≥ 1/4. Moreover, 
in [1, Section 3], a Peierls argument was used to prove that

	 p+
c ≤ 1 − 2−32.� (6)
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1.2  Strict inequalities and stretched lattices in percolation

In percolation (see [20] for background), once the occurrence of a non-trivial phase 
transition is established, one of the most natural goals is to determine the critical 
value pc, or its proxies p−

c , p+
c . It is usually not reasonable to expect pc to have a 

simple exact expression, so one seeks to estimate or bound this value. It is often the 
case, as for Catalan percolation, that a simpler reference model (oriented site percola-
tion in our case) can be used to bound the model of interest. If one seeks to improve 
on the corresponding inequality (the second one in (3)), the most classical and, essen-
tially the only, approach is the Aizenman–Grimmett essential enhancement method, 
as pioneered in [22]. Roughly speaking, this method gives a precise meaning to the 
intuition that if we add a non-trivial amount of connections to the reference model 
(in a way that is not deterministically useless) then this strictly decreases the critical 
parameter. This is the case when the enhancement is added in an independent way 
[22] (cf. Balister, Bollobás and Riordan [23]). This method has also been influential 
beyond the realm of percolation (see, e.g., Taggi [24]).

In the oriented setting, this essential enhancement method fails. Consequently, 
even simple questions regarding monotonicity of critical values are either still open 
or the subject of very recent interest. Andjel and Rolla [25] used a method corre-
sponding to Steps 2 and 3 in Sect. 2 below, in order to analyse the effect of boundary 
enhancement of the one-dimensional contact process. This, mostly classical, part of 
the argument can be used to tackle independent essential enhancements to oriented 
models in 1 + 1 dimensions. This was indeed implemented for oriented percolation 
enhanced by diagonal edges by Terra [26]. Strict monotonicity of the critical param-
eter with respect to dimension was considered by de Lima, Ungaretti and Vares [27], 
using coupling arguments.

However, in models with long range dependency, proving such strict inequali-
ties between critical parameters is much more challenging. Indeed, the only such 
result we are aware of, for a model with non-decaying correlations, is the work of 
Duminil-Copin, Hilário, Kozma and Sidoravicius [28] on brochette percolation and 
its recent extension to slabs by Castro, Sanchis and Silva [29]. This is achieved by 
revisiting the Aizenman–Grimmett approach, based on a Russo formula and a partial 
differential inequality, relating the derivatives of φn with respect to the parameter p 
and an enhancement parameter. Yet, the long range of correlations makes the proof 
quite delicate. In addition to a quantitative version of the essential enhancement idea, 
[28] relies on refined properties of critical (unoriented) bond percolation on the plane, 
perhaps the best understood model of percolation [20], as well as a result of Kesten, 
Sidoravicius and Vares [30] on oriented percolation in a random environment. In 
terms of unoriented percolation, [28] uses Russo–Seymour–Welsh results in conjunc-
tion with a bound on the 4-arm critical exponent. A further renormalisation leads to 
oriented percolation in a random environment, for which [30] establishes that, if the 
disorder is sufficiently sparse, percolation is maintained.

The result of [30] is itself highly non-trivial, and should be put in context. It is 
related to the celebrated work of Hoffman [31] on percolation on stretched lattices. 
While there have been several works investigating what kind of (long-range) disorder 
destroys percolation, the recent work of Hilário, Sá, Sanchis and Teixeira [32] will 
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be the most relevant in our current context. In this work, a simplified multi-scale 
renormalisation approach is proposed, for proving that percolation withstands sparse 
disorder, recovering the results of [30, 31]. We note that, in [32], a certain model of 
oriented percolation with geometric defects proves instrumental.

1.3  Main results

Our overarching goal, in this work, is to further develop tools for proving strict 
inequalities for critical percolation parameters. We will use Catalan percolation 
as a study case, improving on all of the inequalities in (3) and (6). We recall that 
p−
c ≤ pc ≤ p+

c , as defined in (2), (4) and (5).

Theorem 2  For Catalan percolation, we have that

	 p−
c > 0.254, � (7)

	 p+
c ≤ po

c , � (8)

	 pc < po
c . � (9)

In Sect. 3, we prove (7), via a generating functions approach, which accounts for cor-
relations that are omitted in the simple Catalan union bound, discussed above.

The inequality (8) requires only relatively standard oriented percolation results. 
The short proof of this fact is presented in Sect. 4.

The proof of (9) is the most innovative part of our work. A detailed outline is 
given in Sect. 2 below, but let us also make some brief remarks here. In Sect. 5, we 
show that, to establish a strict inequality, it suffices to introduce only a small amount 
of the additional Catalan percolation dynamics, namely, edges of length two. Per-
haps the most remarkable feature of our proof is that it does not use any form of the 
Aizenman–Grimmett differential inequality approach to essential enhancements, as 
opposed to [28]. We also avoid the use of critical exponent inequalities, which are 
unavailable in our oriented setting. On the other hand, we still rely on Russo–Sey-
mour–Welsh theory at criticality, which was recently established by Duminil-Copin, 
Tassion and Teixeira [33] in the oriented setting, as well as the oriented percolation 
with geometric defects in [32]. Curiously, our proof of (9) is purely qualitative, and 
does not yield a quantitative bound.

While percolation models with strong dependencies are difficult to tackle, we hope 
that our approach will broaden the scope of models which are amenable to analysis.

1.4  Simulations

We supplement our rigorous results with numerical simulations in several direc-
tions. First, in Fig. 3, we provide the result of a direct Monte Carlo simulation of the 
model, determining occupied edges by dynamic programming, using the standard 
increasing coupling of Pp for different values of p ∈ [0, 1]. The results suggest that 
pc ∈ [0.39, 0.41].
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In Fig. 4, we display a similar Monte Carlo simulation, for the Catalan percolation 
model truncated as in the proof of (9), using only edges up to a certain length in the 
oriented percolation representation. The results clearly suggest that the critical values 
of these truncated models converge to pc, as the truncation goes to infinity.

Concerning the lower bound, in Fig. 5, we perform a semi-rigorous study. Instead 
of the exact values of φn(p) for small n, as in the proof of (7), we use the Monte Carlo 
estimates of φn(p), displayed in Fig. 1, and plug them into our rigorous lower bound. 
In this case, the results suggest that our lower bound sequence does not converge to 
pc, as one takes higher levels of dependency into account. The reasons for this are 
further discussed in Sect. 3.4 below.

Fig. 4  We only permit edge {i, j} 
to be occupied via (occupied) edges 
{i, k} and {k, j} with |i − k| ≤ L 
or |j − k| ≤ L. We call the result-
ing threshold p̃+

c (L, n). Clearly, 
p̃c(n) ≤ p̃+

c (L, n). We take 
n = 2000, and perform 2000 Monte 
Carlo estimates, and plot (in blue) the 
mean with a one-standard-deviation 
envelope. For comparison, we plot (in 
red) a horizontal line of our estimate of 
p̃c(2000) ≈ 0.4

 

Fig. 3  We use the standard percolation coupling: edge {i, j} is assigned an i.i.d. ui,j ∼ Unif(0, 1), 
and is open if ui,j ≤ p. We condition that {0, n} is open. For a given realization, we define p̃c(n) to 
be the minimal p such that {0, n} is occupied. The figure plots estimates of the average of p̃c(n), sur-
rounded by a one-standard-deviation envelope, estimated via 2000 Monte Carlo rounds
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1.5  The expected out-degree

Let us close this introduction with some speculation and intrigue. Recall that pφn(p) 
is the probability that {0, n} is occupied. It would appear that the expected out-degree 
of 0, given by the series

	

∞∑
n=1

pφn(p) =1 + p + 2p2 + 4p3 + 9p4

+ 21p5 + 52p6 + 129p7 + 335p8 + · · · ,

has positive, integer-valued coefficients. If they were to have a combinatorial descrip-
tion, then perhaps one could actually locate the radius of convergence, and perhaps 
then pc.

2  Outline of the proof that pc < po
c

In this section, we discuss the main ideas behind the proof that pc < po
c  carried out in 

detail in Sect. 5. Several steps are involved, as outlined below.
Step 1 (Enhanced oriented percolation). We first introduce a model of oriented 

percolation with edges (x, x + (1, 0)), (x, x + (0, 1)) and (x, x + (0, 2)), some-
what similar to the (unoriented) brochette percolation of Duminil-Copin, Hilário, 
Kozma and Sidoravicius [28]. Sites are open with probability p and length 1 edges 
are always open. For any n, the edges of the form ((x, 2n), (x, 2n + 2)) are either all 
closed or all open, the latter having probability q. For fixed q, we can define a critical 
value pc(q). It then suffices to prove that for any q > 0 we have pc(q) < pc(0) = po

c . 
Indeed, Catalan percolation with parameter p dominates this enhanced oriented per-
colation model with q = p, so that pc ≤ max(p, pc(p)) < po

c  for any p ∈ (0, po
c). To 

see this, we consider binary trees such that at each level either one of the children 
is a leaf, or the second child has exactly two descendants (corresponding to length 2 
edges).

Fig. 5  We simulate the functions φℓ for 
small ℓ ≤ 100 via 106 Monte Carlo 
rounds, to precision 10−4. We plug 
these into our rigorous lower bound de-
veloped in Sect. 3: the estimate p̃−

c (L) 
uses these estimates for ℓ ≤ L instead 
of φℓ. Notice that the curve does not 
seem to converge to pc ≈ 0.40. See 
Sect. 3.4 for more on this. For com-
parison, the real value p−

c (1) is 0.25, 
the Catalan bound
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Step 2 (Edge speed). A classical object in 2-dimensional oriented percolation is 
the edge of the process [10]. The right (resp. left) edge r2n (resp. l2n) is the larg-
est (resp. smallest) x such that {. . . , −1, 0} × {0} (resp. {0, 1, . . . } × {0}) is con-
nected to (x, 2n) via an open path. A subadditive theorem of Durrett [34] (also see 
[12]) gives the existence of the right edge speed α(p, q) = limn→∞ r2n/(2n) and 
similarly for the left edge speed β(p, q). It is a classical result of Griffeath [35] that 
α(pc(0), 0) = β(pc(0), 0) = 1. Still by classical means [34], we prove that α is 
strictly increasing and β strictly decreasing in q. While this step requires some minor 
adaptations, the proofs are essentially identical to the ones for the classical model 
with q = 0. This is achieved by choosing the correct direction, with respect to which 
to define the edge speeds, so that dependencies are kept perpendicular to the (vertical) 
time axis and independence in time is preserved.

Step 3 (Crossing good times). We next show that, whenever α(p, q) ̸= −∞, there 
is a large probability to cross a very elongated parallelogram, whose long side has 
slope α(p, q) and short side is horizontal, from bottom to top. The proof follows the 
lines of Durrett [10] and applies also to β(p, q), when β(p, q) ̸= +∞. We apply this 
result for some q > 0 fixed and p = pc(0), so that α(p, q) > 1 > β(p, q) by Step 2. 
We call the resulting large parallelogram a (right or left) box. We next view the state 
of length 2 edges as a random environment. The above yields that there is a high 
probability “good” event on the random environment, on which (vertically) crossing 
a box is likely.

Step 4 (Crossing bad times). If the environment were always good, we would 
already be done by constructing a 1-dependent (renormalised) oriented bond percola-
tion out of left and right boxes. However, at some times the environment is bad. Let 
us focus on an interval of bad times. If the interval is not longer than the height m of 
a box, we can cross it with high probability via a path of slope 1 by Step 3 applied 
to q = 0. However, the bad interval could be much longer. In that case, we still ask 
for a path of slope (approximately) 1 with fluctuations of order o(m) (see Fig. 9). In 
order to lower bound the probability of such paths, we use the box crossing result of 
Duminil-Copin, Tassion and Teixeira [33] applied at (p, q) = (pc(0), 0). This yields 
that in an interval of bad times, crossing a rectangle of width o(m) and height km is at 
least εk for some small ε > 0 independent of m.

Step 5 (Oriented percolation with geometric defects). With the ingredients above, 
we renormalise the enhanced oriented percolation model to oriented percolation with 
geometric defects introduced and studied recently by Hilário, Sá, Sanchis and Teix-
eira [32], via multi-scale renormalisation. In this model, bonds of the oriented square 
lattice at “level” i ∈ Z are open independently with probability p1+ξi , where ξi is a 
sequence of i.i.d. geometric random variables. The result of [32] is that this model 
percolates if the expectation of the geometric variables is sufficiently low and p is 
sufficiently close to 1.

In the renormalisation, edges correspond to boxes at good times, while the vari-
ables ξi encode the lengths of bad time intervals. Indeed, Step 3 ensures that bad 
times are rare and, at good times, boxes are likely to be crossed, while Step 4 gives 
that bad intervals are crossed at a cost with an exponential tail, independently of the 
renormalisation (and therefore independently of how likely the good environment 
is). Furthermore, the renormalisation is performed carefully, so as to keep crossings 
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of bad times for different renormalised vertices independent (disjoint), which allows 
renormalised edges to be 1-dependent only at good times. Then, a classical result of 
Liggett, Schonmann and Stacey [36] can be used to recover independence. Once this 
renormalisation is complete, we are able to conclude, because the relevant crossing 
probabilities are all continuous in p, and so we may decrease this parameter a little 
and remain supercritical.

3  Strict lower bound, p−
c > 0.254

First, we will describe our general method for lower bounds in Sect. 3.1. In Sect. 3.2, 
for the purpose of illustration, we use this method to prove that p−

c ≥ 1/4. Finally, in 
Sect. 3.3, we push the method further to show that p−

c > 0.254.
Let θn(p) = pφn(p) be the probability that the edge {0, n} is occupied.

3.1  Method for lower bound

Our starting point is expressing p−
c  in terms of the radius of convergence of a power series. 

For a sequence {an} (with either n ≥ 0 or n ≥ 1), let rad({an}) = 1/ lim sup a
1/n
n  

denote the radius of convergence of the power series 
∑

n anxn. Then, recalling the 
definition of p−

c  in (4), we have

	 p−
c = sup{p > 0 : rad({θn(p)}) > 1}.� (10)

Our strategy will be to find functions p �→ an(p), satisfying

	 an(p) ≥ θn(p), p ∈ [0, 1],� (11)

and so that rad({an(p)}) is easy to analyse (by studying the associated generating 
function). Note that (11) gives rad({an(p)}) ≤ rad({θn(p)}), so

	 p−
c ≥ sup{p > 0 : rad({an(p)}) > 1}.� (12)

In order to find {an(p)} satisfying (11), we will use the recurrence relation

	
θn(p) ≤ p

n−1∑
k=1

θk(p)θn−k(p),� (13)

which follows from the definition of an edge being occupied and a union bound. 
More specifically, for fixed n0 ≥ 1, we will define {a

(n0)
n (p)} by using the precise 

probabilities θn(p) for small n ≤ n0, and the union bound for all larger n > n0. 
Formally, we set

1 3
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a(n0)

n (p) =

{
θn(p), 1 ≤ n ≤ n0;

p
∑n−1

k=1 a
(n0)
k (p)a(n0)

n−k(p), n > n0.
� (14)

Comparing this with (13), and using induction, it follows that (11) holds.

3.2  Catalan bound, revisited

We first implement the above method with n0 = 1 in (14).

Recall that the Catalan numbers are given by Cn = 1
n+1

(
2n
n

)
 for n ∈ N, and 

satisfy

	
Cn =

n−1∑
k=0

CkCn−k−1, n ≥ 1.� (15)

Noting that a(1)
1 (p) = C0 = 1, comparing (14) and (15) and using induction, we see 

that

	 a(1)
n (p) = pn−1Cn−1, n ≥ 1.

In particular,  rad({a
(1)
n (p)}) = 1

p rad({Cn}). It is well known 

that rad({Cn}) = 1/4 (this can for instance be checked using Cn = 1
n+1

(
2n
n

)
 

and Stirling’s formula). Hence, rad({a
(1)
n (p)}) = 1/(4p), and now p−

c ≥ 1/4 readily 
follows from (12).

3.3  Beyond Catalan

Taking n0 = 2 in (14) would not improve on the above, since a(2)
2 (p) = a

(1)
2 (p) = p, 

and hence a(2)
n (p) = a

(1)
n (p) for all n and p. Therefore, we take n0 = 3. Note that

	

a
(3)
1 (p) =1 = a

(2)
1 (p), a

(3)
2 (p) = p = a

(2)
2 (p),

a
(3)
3 (p) =2p2 − p3 < 2p2 = a

(2)
3 (p).

� (16)

We now study rad({a
(3)
n (p)}), which we abbreviate as x3(p). Define the power series

	
C(x) =

∞∑
n=1

a(3)
n (p)xn,

suppressing the dependence on p. For n ≥ 4, we have a(3)
n (p) = p

∑n−1
k=1 a

(3)
k (p)a(3)

n−k(p). 
Multiplying this by xn, and summing over n ≥ 4, gives
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C(x) − a
(3)
1 (p)x − a

(3)
2 (p)x2 − a

(3)
3 (p)x3

= p
(

C(x)2 − (a(3)
1 (p))2x2 − 2a

(3)
1 (p)a(3)

2 (p)x3
)

.

Then, using (16) and simplifying, we obtain

	 pC(x)2 − C(x) + x − p3x3 = 0.

In other words, the quadratic equation

	 pX2 − X + x − p3x3 = 0

is solved by X = C(x) for any x < x3(p). The discriminant of this quadratic equa-
tion is

	 ∆(p, x) = 4p4x3 − 4px + 1,

and (with  p being fixed) the smallest positive value of  x for which  ∆(p, x) = 0 
is x = x3(p). See, e.g., Flajolet and Sedgewick [37, Lemma VII.4] for general theo-
retical background.

The above considerations imply that the map p �→ x3(p) is continuous on (0, 1], 
and that x3(p) → x3(0) = ∞, as p → 0. It then follows that

	 sup{p > 0 : x3(p) > 1} ≥ inf{p > 0 : x3(p) = 1}.� (17)

The set of  p > 0 for which  x3(p) = 1 is contained in the set of  p > 0 for 
which ∆(p, x3(p)) = ∆(p, 1). Therefore, since ∆(p, x3(p)) = 0, the right-hand side 
is larger than or equal to

	 inf{p > 0 : ∆(p, x3(p)) = ∆(p, 1)} = inf{p > 0 : ∆(p, 1) = 0}.� (18)

Using these considerations, together with  (12), we see that  p−
c  is larger than the 

smallest positive p satisfying 4p4 − 4p + 1 = 0, which is larger than 0.254 > 1/4.

3.4  Further iterations

Of course, it is possible to obtain increasingly better bounds, by taking increasingly 
larger n0 in (14). Let pm = sup{p > 0 : rad({a

(m)
n (p)}) > 1}, so that, by (13), we 

have p−
c ≥ pm for any m. The sequence (pm)m≥1 is estimated in Fig. 5. In principle, 

θn can be written down for arbitrarily large n, but it gets ever more complicated. 
Instead, we used Monte Carlo to estimate φm, and hence θm, for m ≤ 100 to obtain 
Fig. 5. It appears to converge to between 0.28 and 0.29, which is much less than our 
numerical estimate pc ≈ 0.4.

Roughly speaking, the reason for this is that our method accounts only for “micro-
scopic” dependencies. That is, even if we plug in the exact values of θℓ, for all ℓ ≤ n0, 
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for some large n0, into the recursive upper bound (14) on θn, we then take n → ∞, 
with n0 fixed, in the above analysis. As such, this method misses the effect of “mac-
roscopic” dependencies. For instance, note that, crucially, it does not account for the 
fact that, for n ≥ n0, the events that {0, n} and {1, n + 1} are occupied are far from 
being disjoint.

4  Upper bound, p+
c ≤ po

c

Recall p+
c  from (5). In this section, we show that p+

c ≤ po
c .

4.1  Coupling with oriented percolation

We start by explaining the coupling with oriented percolation discussed in Sect. 1.1 
in more detail. Let Pp denote the probability measure such that each site (m, n) ∈ Z2 
with m + n even is open independently with probability p. To define the Catalan 
percolation configuration, for j ≥ i + 2, we declare the edge {i, j} ⊂ Z open, when-
ever the site (i + j, |j − i|) is open. Note that, we are, for convenience, considering a 
slight modification (scaled and translated) of the coupling in Sect. 1.1. In particular, 
we now have that sites at “level” k represent edges of length k. Let Lk = Z × {k} 
denote the set of vertices with y-coordinate k.

For ℓ ≤ m and v1 ∈ Lm, an open path from v1 to Lℓ is a sequence of open sites 
v1, v2, . . . vm−ℓ such that vi − vi−1 ∈ {(−1, −1), (1, −1)} for all 1 < i ≤ m. Note 
that vm−ℓ ∈ Lℓ+1, if m ̸= ℓ. We denote by v → Lℓ the event that there exists an open 
path from v to Lℓ. Open paths therefore correspond to sequences of occupied edges, 
growing in length one unit at each time step; see Fig. 6. In particular, if there is an 
open path from the site (i + j, |j − i|) to the line L1, this implies that the edge {i, j} 
is occupied in Catalan percolation.

Finally, we recall the critical threshold of oriented site percolation on Z2:

	
po
c = inf

{
p > 0 : lim inf

n→∞
Pp ((1, 1) → L−n) > 0

}
.

Fig. 6  An example of the oriented percolation coupling, with n = 7. On the left: a series of occupied 
edges, in which each is obtained by extending the one above it by one unit to the left or right. On the 
right: the associated path in the oriented site percolation model. Note that the bottom left corner is 
(1, 1) and the bottom right corner is (2n − 1, 1)
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4.2  Proof

We now give the proof of (8). The strategy is to show that there is a very high prob-
ability of finding an integer k such that the edges {0, k} and {k, n} are both occupied 
in Catalan percolation. In the coupling with percolation, this corresponds to finding 
a k such that the vertices (k, k) and (n + k, n − k) are both connected to the line L1 
by an open path.

Let us note that the coupling, and the general strategy described above, are, in fact, 
the same as in [1, Section 3]. However, our current proof leads to a stronger result. In 
[1], (6) is proved using a Peierls argument. On the other hand, our current proof of (8) 
rests on the following two, classical results from oriented (site) percolation.

Theorem 3  (Exponential death bound [38]) For any p > po
c , there exists c > 0 such 

that, for any k ≤ n, we have that

	 Pp ((1, 1) → L−k, (1, 1) ̸→ L−n) ≤ e−ck.

Theorem 4  (Large deviations of the density of the infinite cluster [39]) For any 
p > po

c , there exist ε, c > 0 such that, for any integer n ≥ 1 and finite set A ⊂ Z+, 
we have that

	 Pp (|{a ∈ A : (a, a) → L−n}| ≤ ε|A|) ≤ e−c|A|.

Strictly speaking, [39] proves this result with {(a, a) : a ∈ A} replaced by an interval 
of the form {(a, 0) : a ∈ {1, . . . , |A|}}, but the same proof works. As noted in [39], 
the proof applies to oriented percolation, in addition to the contact process.

Proof of p+
c ≤ po

c  Fix p > po
c  and a large enough integer n ≥ 2. Define the random 

sets

	

A =
{

a ∈ Z ∩ [7n/16, 9n/16] : (a, a) → L⌈3n/8⌉
}

,

B =
{

a ∈ Z ∩ [7n/16, 9n/16] : (n + a, n − a) → L⌈3n/8⌉
}

.

Roughly speaking, these are the positions of the sites around the middle of the left 
and right sides of the triangle in Fig. 7, with fairly long open paths to level 3n/8. By 
Theorem 4 we have Pp(|A| < εn) ≤ e−cn, for suitable ε, c > 0, independent of n.

Notice that A and B are measurable with respect to the state of sites in

	

T =
⌊9n/16⌋∪

k=⌈3n/8⌉

{(k + 2ℓ, k) : 0 ≤ ℓ ≤ ⌊9n/16⌋ − k} ,

T ′ =
⌊9n/16⌋∪

k=⌈3n/8⌉

{(2n − k − 2ℓ, k) : 0 ≤ ℓ ≤ ⌊9n/16⌋ − k} ,
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respectively, and that these two triangles are disjoint. See Fig. 7.
Therefore, by independence, symmetry and Theorem 4, we find that

	 Pp(̸ ∃a ∈ A ∩ B|A) ≤ e−c|A|.

Note that, we have, in fact, only used a weaker version of Theorem 4, going back to 
[38] (see also [10, Section 9]).

Finally, applying Theorem 3 (see again Fig. 7), we obtain

	

Pp({0, n} is open, but not occupied)
≤ pPp (̸ ∃a ∈ Z ∩ [7n/16, 9n/16] : {0, a} and {a, n} occupied)
≤ pPp (̸ ∃a ∈ Z ∩ [7n/16, 9n/16] : (a, a) → L1, (n + a, n − a) → L1)
≤ Pp (|A| < εn) + Pp (|A| ≥ εn, ̸ ∃a ∈ A ∩ B)

+ Pp

(
∃(i, j) ∈ T ∪ T ′ : j ≥ 7n

16 , (i, j) → L⌈3n/8⌉, (i, j) ̸→ L1
)

≤ e−cn + e−cεn + n2e−c(⌊n/16⌋−1).

Since n can be taken arbitrarily large, with c, ε > 0 fixed, this concludes the proof. □

5  Strict upper bound,pc < po
c

As outlined in Sect. 2, the proof of (9) relies on a certain model of enhanced oriented 
site percolation on Z2, which, roughly speaking, is the usual oriented site percola-
tion model, but with the possibility of opening some vertical edges of length two. 
The interesting feature (and difficulty) of this model is that these additional edges 
are strongly correlated. In fact, in each row, we will open all such edges with some 
positive probability (or else they are all closed), independently of other rows. Our 
main result is that, no matter how small this probability is, this strictly decreases the 
critical parameter for the existence of an infinite, open path starting from the origin.

Fig. 7  An example with n = 16. Note that A and B are measurable with respect to the sets of sites in T 
and T ′, shaded in blue and red, respectively. Here a = 9n/16 realises the desired event
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5.1  Enhanced oriented percolation

In this subsection, we perform the first step of Sect. 2. Namely, we define our aux-
iliary model of interest more precisely and state our main result concerning its 
behavior. Fix two parameters p, q ∈ [0, 1]. All sites (x, n) ∈ Z2 are open with prob-
ability p, independently of each other, and all oriented edges ((x, n), (x + 1, n)) and 
((x, n), (x, n + 1)) of length one are open with probability 1. Additionally, inde-
pendently for each n ∈ Z, all the oriented edges ((x, 2n), (x, 2n + 2))x∈Z of length 
two are open (all at once) with probability q. Edges and sites which are not open are 
closed.

A path is a sequence of vertices (xi, ni)k
i=0 such that ((xi, ni), (xi−1, ni−1)) is 

an edge for each i ∈ {1, . . . , k} (regardless whether it is open or closed). The path 
(xi, ni)k

i=0 is open if all its edges ((xi, ni), (xi−1, ni−1))k
i=1 are open and the sites 

(xi, ni)k
i=1 are open (if k = 0, the path is open by convention). In other words, a path 

is open if all its edges and vertices are open, except possibly the first vertex. (We 
allow this possibility for technical convenience, as then we can concatenate paths 
independently.)

A path is called simple if it is open and if, whenever an edge of length two is used, 
say ((x, 2n), (x, 2n + 2)), the vertex (x, 2n + 1) is closed. That is, length-two edges 
are only used if necessary. Note that, given any two vertices, if there exists an open 
path between them, there also exists a simple path between them, and so we can 
restrict our attention to simple paths. This will be useful, as two simple paths cannot 
cross without sharing at least one vertex.

We denote the law of this model by Pp,q. Note that it can be seen as a probability 
measure on {0, 1}Z2 × {0, 1}Z. We write (x, n) → (y, m) for the event that there 
exists an open path from (x, n) to (y, m). Likewise, (x, n) → ∞ denotes the event 
that there exists an infinite open path starting from (x, n). Also, given A, B, C ⊂ Z2, 
let A B−→ C denote the event that some site in A is connected to some site in C by an 
open path contained in B. In this notation, we omit B if it is equal to Z2. Given any 
q ∈ [0, 1], we define the critical parameter of this model as:

	 pc(q) = inf
{

p : Pp,q((0, 0) → ∞) > 0
}

.

Note that, by definition, pc(0) = po
c  is the critical parameter for the classical model of 

oriented site percolation. Our main result is the following.

Theorem 5  For any q > 0, we have that pc(q) < pc(0) = po
c .

We will prove this result in the remaining subsections, but let us first deduce (9) of 
Theorem 2 from Theorem 5.

Proof of (9)  By Theorem 5, we can fix p < po
c  such that pc(p′) < p, with 

p′ = 1 −
√

1 − p. We couple Catalan percolation with parameter p and our enhanced 
oriented percolation model with parameters (p, p′) as follows, similarly to Sect. 
4.1 (see Fig. 8). Fix n ≥ 3. For Catalan percolation, we declare the edges {i, j} for 
j ≥ i + 3 open independently with probability p. For enhanced oriented percolation, 
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we declare site (i, j) for i ≥ 0 and j ∈ [0, n − 3 − i] open if and only if the Catalan 
edge {j, n − i} is open. We further consider independent Bernoulli random variables 
ξj , ξ′

j  with parameter p′ for j ∈ Z. For j ∈ Z, the length two Catalan edge {j, j + 2} 
is open if and only if ξj + ξ′

j ̸= 0, which has probability p = 1 − (1 − p′)2. For any 
j ∈ Z, to incorporate the enhancement, we further declare the edge ((i, 2j), (i, 2j + 2)) 
open for all i ∈ Z if and only if ξ2j = 1.

It is not hard to check that, if (0, 0) → (i, j) occurs with i + j ∈ {n − 4, n − 3} 
and ξ′

j = ξ′
j+2 = 1, then {0, n} is occupied in Catalan percolation. Indeed, by induc-

tion, the Catalan edge corresponding to each site in the path from the origin to (i, j) 
is occupied. Consider the event that the origin reaches ℓ1 distance at least n − 4 in 
enhanced oriented percolation:

	
X =

∪
i+j∈{n−4,n−3}

{(0, 0) → (i, j)}.

By the above considerations, and independence, we have the uniform bound

	 Pp({0, n} is occupied) ≥ Pp,p′(X )(p′)2 ≥ Pp,p′((0, 0) → ∞)(p′)2 > 0.

Recalling (2), this yields (9), as desired. � □

5.2  Edge speeds

The second step in the proof of Theorem 5 (see Sect. 2) is to show that if p = po
c  and 

q > 0, then the open cluster of the origin spreads out at positive speed as the time (i.e. 

Fig. 8  An example of the coupling, with n = 12. On the left: A sequence of occupied edges. Each edge 
of length greater than 4 is obtained by extending the edge underneath either by one in either direction 
(using an initially occupied, nearest-neighbour edge of the form {i, i + 1}), or by two to the left if its 
left endpoint is even (using a length-two Catalan edge of the form {2i, 2i + 2}). The occupied edges 
are drawn as solid lines. The Catalan edges {0, 2} and {2, 4} are drawn as dashed lines. Note that 
{2, 4} allows {2, 9} to become occupied after {4, 9} becomes occupied. Similarly, {0, 2} allows 
{0, 10} to become occupied after {2, 10} becomes occupied. On the right: The coupled path in the 
oriented site percolation model, along with the relevant values of ξ′

j . The blue oriented path on the right 
is a rotation of the blue dotted path on the left by 135 degrees. Each vertical, length-two edge along this 
path corresponds to the use of a length-two Catalan edge. The final steps from an edge of length four 
to two edges of length two are shown in black
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vertical) coordinate increases. This result is mostly classical, but we include its proof 
in our setting in Appendix A for the reader’s convenience.

We start with some notation. Fix p ∈ (0, 1) and q ∈ [0, 1). For A ⊂ Z and m, n ∈ Z 
with m ≤ n, define

	 ξm,n(A) := {x ∈ Z : A × {m} → {(x, n)}} .� (19)

In words, ξm,n(A) is the set of x-coordinates of sites at level n that are accessible 
from sites at level m, whose x-coordinates are in A.

For n ≥ 0, we also write

	 ξn(A) := ξ0,n(A), rn := max ξn(−N), ln := min ξn(N).

The following is a consequence of Liggett’s subadditive theorem (see Appendix A.1).

Lemma 6  (Existence of edge speeds) If  p ∈ (0, 1) and  q ∈ [0, 1), there 
exist α(p, q) ∈ [−∞, ∞) and β(p, q) ∈ (0, ∞] such that almost surely under Pp,q,

	
r2n

2n

n→∞−−−−→ α(p, q), l2n

2n

n→∞−−−−→ β(p, q).

The edge speeds α and β from Lemma 6 satisfy the following strict inequalities 
proved in Appendix A.1.

Lemma 7  (Strict inequalities for edge speeds) If q > 0, then

	 α(pc(0), q) > 1, β(pc(0), q) < 1.

5.3  Crossing boxes in the supercritical regime

The third step in the proof of Theorem 5 (see Sect. 2) is to establish that certain boxes 
are likely to be crossed. For this we need some geometric notation.

Given two vectors u, v ∈ R2 with det(u, v) > 0, we denote by

	 R(u, v) = ([0, 1)u + [0, 1)v) ∩ Z2

the parallelogram generated by u, v. For such a parallelogram R = R(u, v), we define

	

C→(R) = {[0, 1)v R−→ u + [0, 1)v}, C↑(R) = {[0, 1)u R−→ v + [0, 1)u},

C←(R) = {u + [0, 1)v R−→ [0, 1)v},

that is, the events that R is crossed in each of the three directions by an open path. 
Note that here we use the convention that the start and end points of the crossing 
paths are allowed to be at Euclidean distance smaller than one from the boundary of 
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R, as long as they are inside R. Also in the whole remainder of this section, we use the 
convention that any inequality of the form Pp,q(C↑(R)) > θ, should be interpreted 
as the fact that the probability to cross any translate of R in the upward direction is 
larger than θ (and similarly for crossings in the other directions → and ←). All proofs 
will generally be done only for one instance of the parallelograms, and it should be 
clear that, with minor modification in each case, they extend to any translate. The 
next statement is proved in Appendix A.2 by classical means from [10].

Lemma 8  (Annealed box crossing) Let  p ∈ (0, 1) and  q ∈ [0, 1) be such 
that 0 < β(p, q) ≤ α(p, q) < ∞. Then, for any δ > 0 and ε > 0, the following holds 
for n large enough. Letting

	 u = (δn, 0), v = (α(p, q) · n, n), w = (β(p, q) · n, n),� (20)

we have

	 Pp,q(C↑(R(u, v))) > 1 − ε, Pp,q(C↑(R(u, w))) > 1 − ε.

5.4  Crossing bad times: Russo–Seymour–Welsh theory

The fourth step in the proof of Theorem 5 (see Sect. 2) deals with bad times, that is, 
time intervals when insufficiently many length-two edges are open. Since the length-
two edges fail to provide enough help, we will completely disregard them. As such, 
this brings us to crossing estimates for the classical oriented site percolation model. 
These are based on the following result, which summarises the main content of [33].

Theorem 9  ([33, Theorem 1.3, Proposition 4.2, Remark 4.4]) There exists ε > 0 such 
that, for any m ∈ N large enough, there exists wm ∈ [εm2/5, m1−ε] ∩ Z such that

	

Ppo
c ,0(C→(R(3u, v)) ≥ ε, Ppo

c ,0(C↑(R(u, 3v))) ≥ ε,

Ppo
c ,0(C←(R(3u, v))) ≥ ε

with u = (wm, −wm) and v = (m, m).

Next, we will adapt the geometry of the crossings provided by Theorem 9 to suit our 
needs.

Corollary 10  There exists ε > 0, such that for any m ∈ N large enough, there exists 
an integer ℓ ∈ [εm2/5, m1−ε], for which

	Ppo
c ,0 (C↑(R((ℓ, 0), (m − 4ℓ, m)))) ≥ ε, Ppo

c ,0 (C↑(R((ℓ, 0), (m + 4ℓ, m)))) ≥ ε.
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Proof  Let M = ⌈ m
20 ⌉. Recalling Theorem 9, set u = (wM , −wM ), and v = (M, M). 

For i ∈ Z let Ri = i(2v − 2u) + R(u, 3v) and Si = i(2v − 2u) + R(3u, v). Con-
sider the event

	
A =

9∩
i=0

(C↑(Ri) ∩ C←(Si)) ,

and note, as illustrated in Fig. 9, that

	 A ⊂ C↑(R((L, 0), 20(v − u))),

with L = 3M + wM − θ(3M − wM ), and θ = 2 M−2wM

2 M+2wM
.

By the Harris inequality [40] and Theorem 9, we have Ppo
c ,0(A) ≥ ε, for some 

fixed ε > 0, and any m large enough. Moreover,

	
L ≤ 3M + wM − (3M − wM )

(
1 − 2wM

M

)
≤ 8wM ,

and

	 20(v − u) = 20(M + wM , M + wM ) − 40(wM , 0).

In particular, letting ℓ = 10wM , one has for m large enough, that

	

Ppo
c ,0(C↑(R((ℓ, 0), (m − 4ℓ, m)))) ≥Ppo

c ,0(C↑(R((L, 0), 20(v − u))))
≥Ppo

c ,0(A) ≥ ε.

Similarly,

	 Pp0
c ,0

(
C↑(R((ℓ, 0), (m + 4ℓ, m)))

)
≥ ε,

Fig. 9  If the three shaded rectangles of dimensions either 
3wM × M  or wM × 3M  are crossed in the appropri-
ate directions, then the thickened parallelogram is also 
crossed
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which completes the proof. � □

5.5  Oriented percolation in a random environment

Finally, we are ready to proceed to the final step in the proof of Theorem 5 (recall 
Sect. 2).

Proposition 11  (Renormalisation) Let ε > 0 and 0 < β < 1 < α be given. Let 
ρ = ρ(α, β) > 0, be such that β + 2ρ < 1, α − 2ρ > 1, and α − β ≥ 12ρ. Then 
there exist ε′ > 0, such that for any m ≥ 1, any ℓ ∈ [1, ρm

2 ], and any p, q ∈ [0, 1) the 
following holds. If

	 Pp,q (C↑ (R((mρ, 0), (mα, m))) ∩ C↑ (R((mρ, 0), (mβ, m)))) > 1 − ε′, � (21)

and

	 Pp,0 (C↑ (R((ℓ, 0), (m + 4ℓ, m))) ∩ C↑ (R((ℓ, 0), (m − 4ℓ, m)))) > ε, � (22)

then pc(q) < p.

Before proving Proposition 11, let us conclude the proof of the main result of this 
section, Theorem 5.

Proof of Theorem 5  Fix p = po
c  and q > 0. By Lemmas 7 and 6, we have 

0 < β < 1 < α < ∞, setting α = α(p, q) and β = β(p, q). Fix ε′ provided by Prop-
osition 11 for ε given by (ε̃)2, where ε̃ is the value of ε provided by Corollary 10. It 
then suffices to find m ≥ 1 and ℓ ∈ [1, ρm

2 ] so that (21) and (22) hold. By Lemma 8 
and a union bound, (21) is satisfied for any m large enough. Finally, by Corollary 10 
and the Harris inequality [40], for any m large enough we can choose ℓ ∈ [1, ρm

2 ] so 
that (22) holds. � □

The proof of Proposition 11 relies on the recent result [32, Theorem 8.2].

Theorem 12  (Oriented percolation with geometric defects, [32]) Let 
p, δ ∈ (0, 1) and ξ = (ξi)i∈N be a sequence of independent random variables 
with P(ξ = k) = (1 − δ)δk for k ∈ N. Endow N2 with the oriented edge set 
E = {((i, n), (i, n + 1)), ((i, n), (i + 1, n + 1)) : (i, n) ∈ N2}. Conditionally on 
the environment ξ, we declare each edge from (i, n) to be open independently with 
probability pξn+1 for all (i, n) ∈ N2. Denoting the law of this process by Pξ

p, the fol-
lowing holds. There exists ε > 0 such that if δ ≤ ε and p ≥ 1 − ε, then for almost 
every environment ξ, under Pξ

p, there is an infinite open path starting at the origin 
with positive probability.
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Proof of Proposition 11  Let 0 < β < 1 < α, ρ ∈ (0, min((α − β)/12, 
(α − 1)/2, (1 − β)/2)), 1/2 ≥ ε, ε′ > 0, m ≥ 1, ℓ ∈ [1, ρm

2 ] and p, q be given, so 
that (21) and (22) are satisfied. The value of ε′ is assumed small enough so that some 
conditions imposed later in the proof hold. Let

	 Rα = R((mρ, 0), (mα, m)), Rβ = R((mρ, 0), (mβ, m)). � (23)

First note that it suffices to show that the probability that the origin is connected to 
infinity by an open path is positive under Pp,q, since then by continuity of the prob-
abilities in (21) and (22) as functions of p, this would remain true for a smaller value 
of p.

The strategy is to compare our model with the model of oriented bond percolation 
in random environment considered in Theorem 12. Here the role of the random envi-
ronment is played by the state of all length-two edges, whose associated sigma-field 
is denoted by E . Declare an integer n ≥ 0 good if

	
Pp,q

(
C↑

((
0,

nm

2

)
+ Rα

)
∩ C↑

((
0,

nm

2

)
+ Rβ

) ∣∣∣ E

)
≥ 1 −

√
ε′,� (24)

and call it bad otherwise. Denoting by Qq the law of all length-two edges and using 
(21), one has

	

ε′ ≥ 1 − Pp,q

(
C↑

((
0,

nm

2

)
+ Rα

)
∩ C↑

((
0,

nm

2

)
+ Rβ

) )

≥ Qq(n is bad) ×
√

ε′,

from which we infer that for any n ∈ N,

	 Qq(n is good) ≥ 1 −
√

ε′.

It follows that the random variables (1{n is good})n≥0, form a sequence of 
1-dependent identically distributed Bernoulli random variables, with mean larger 
than 1 −

√
ε′. Thus, by the Liggett–Schonmann–Stacey theorem [36, Theorem 0.0], 

one can ensure the existence of independent Bernoulli random variables (Xn)n≥0, 
with mean 1 − δ, such that for all n ∈ N,

	 1{n is good} ≥ Xn,

where δ > 0 can be taken arbitrarily close to 0, by choosing ε′ small enough. We also 
set X−1 = 1. We further assume (Xn)n≥0 to be constructed on the probability space 
of Pp,q in such a way that they are independent of the sigma-algebra generated by the 
set of open sites of Z2.

Next, we identify the intervals of good times, by defining the sequence 
(τn : n ≥ −1) inductively, by τ−1 = −1, and
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	 τn = inf{k ≥ τn−1 + 1 : Xk = 1}, ξn = τn − τn−1 − 1,

for n ∈ N. By construction the (ξn)n≥0 are independent random variables with com-
mon law given by

	 P (ξn = k) = δk(1 − δ), for all k ≥ 0.� (25)

Now we define a renormalized lattice, similarly to [10, Section 9], at least on good 
rows (corresponding to integers n such that Xn = 1), and using also a notion of 
stretched bonds, to accommodate the crossing of consecutive bad rows.

We define inductively the new vertices (zi,n)i≥0,n≥0 (in [0, ∞)2) of our renormal-
ized lattice as follows (see Fig. 11). First

	
zi,0 = im ·

(α − β

2
− 2ρ, 0

)
, for i ≥ 0,

and note that by definition of ρ, one has α−β
2 − 2ρ ≥ 4ρ. Next, given n ≥ 0, we start 

by defining for i ≥ 0,

	
z̃i,n = zi,n + mξn

2
· (1, 1),

and then let

	
zi,n+1 = z̃i,n + m

2
· (2ρ + β, 1).� (26)

Now we consider a new lattice N2, with edge set E from Theorem 12. For any 
n ≥ 0 and i ≥ 0, we declare the vertex (i, n) open if either ξn = 0 (in which case 
zi,n = z̃i,n), or, when ξn ≥ 1, if the following two events hold without using any 
length-two edge (see Fig. 11):

	

ξn−1∩
j=0

C↑
(
zi,n,j + R((ℓ, 0), (m + 4(−1)jℓ, m))

)
,� (27)

and

	

ξn−1∩
j=0

C↑
(
z′

i,n,j + R((ℓ, 0), (m + 4(−1)j+1ℓ, m))
)
,� (28)

where for all j ≥ 0,

	
zi,n,j = zi,n + (ρm − ℓ, 0) + j

(m

2
,

m

2

)
+ 3ℓ · 1{j is odd} · (1, 0),
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and

	
z′

i,n,j = zi,n + (2ρm, 0) + j
(m

2
,

m

2

)
− 3ℓ · 1{j is odd} · (1, 0).

Furthermore, we say that the edge ((i, n), (i + 1, n + 1)) is open, if the following 
event holds

	 C↑(z̃i,n + Rα) ∩ C↑(z̃i,n + (2ρm, 0) + R((mρ, 0), (mβ/2, m/2))),� (29)

and similarly we say that the edge ((i, n), (i, n + 1)) is open if the following event 
holds

	 C↑(z̃i,n + R((mρ, 0), (mα/2, m/2)) ∩ C↑(z̃i,n + (2ρm, 0) + Rβ).� (30)

An open path in the new lattice is a sequence (i1, n1), . . . , (ik, nk) (possibly with 
k = ∞), such that for each 1 ≤ j < k, (ij , nj) is open and ((ij , nj), (ij+1, nj+1)) 
is an open edge.

The proof of Proposition 11 is complete if we prove the following two lemmas. □

Lemma 13  For almost every realization of the environment and the (Xn)n≥0 
variables, whose sigma-algebra is denoted FX , the following holds. Under 
Pp,q(·|E , FX), the origin is in an infinite open path in the renormalized lattice with 
positive probability.

Lemma 14  If there exists an infinite open path in the renormalized lattice, then there 
is an infinite open path in the original lattice.

Proof of Lemma 13  For i, n ≥ 0, define the random variables

	 Yi,n = 1{(i, n) is open}.� (31)

For an edge e = (a, b) ∈ E, we define

	
Ze =

{
1{e is open} if Ya = Yb = 1
1 otherwise. � (32)

Let FY  be the sigma-algebra generated by (Yi,n)(i,n)∈N2 . Set P = Pp,q(·|E , FX , FY ) 
and note that Pp,q(· | E , FX) identifies with the product Bernoulli measure with 
parameter p on {0, 1}Z2

. Note that by the Harris inequality and the definition of a 
good integer (recall (24)), for any edge e = (a, b) ∈ E, one almost surely has

	

P(Ze = 1) = 1{YaYb = 0} + 1{YaYb = 1} · Pp,q(Ze = 1 | E , FX , Ya = Yb = 1)
≥ 1{YaYb = 0} + 1{YaYb = 1} · Pp,q(Ze = 1 | E , FX) ≥ 1 −

√
ε′.
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Moreover, we claim that, almost surely under P, the random variables (Ze)e∈E  are 
1-dependent. In fact, under Pp,q(·|E , FX), the variables (Yi,n)(i,n)∈N2  and (Ze)e∈E  
are jointly 1-dependent. Indeed, for V1, V2 ⊂ N2 and E1, E2 ⊂ E with E1, V1 not 
incident with E2, V2, the vectors (Yv, Ze)v∈V1,e∈E1  and (Yv, Ze)v∈V2,e∈E2  are inde-
pendent, because they depend on open sites (we have conditioned on E) in deter-
ministic disjoint regions in space. In particular, (Yv)v∈N2  are independent under 
Pp,q(·|E , FX).

By 1-dependence of (Ze)e∈E  under P and [36, Theorem 0.0], the following holds, 
for arbitrarily small δ′ > 0, provided ε′ > 0 is small enough. We can find indepen-
dent Bernoulli random variables (Ze)e∈E  with parameter 1 − δ′, such that

	 Ze ≥ Ze,� (33)

for all e ∈ E. Since their law does not depend on E , FX , FY , they are independent 
of these sigma-fields.

As we already established, (Yi,n)i,n∈N are independent and, by (22) and the Harris 
inequality, Pp,q(Yi,n = 1 | E , FX) ≥ ε2ξn . Consequently one can define a sequence 
of independent Bernoulli random variables (We)e∈E , so that for each i, n ≥ 0, if e 
and f are the two edges emanating from (i, n), then We and Wf  have mean ε4ξn , and 
satisfy

	 Yi,n ≥ max(We, Wf ).� (34)

Indeed, x ≥ 1 − (1 − x2)2 for all x ∈ [0, 1/2] ∪ {1} and ε2 ≤ 1/2.
We now declare an edge e ∈ E to be good if We = Ze = 1, which by indepen-

dence between We and Ze holds with probability

	 ε4ξn(1 − δ′),� (35)

independently for each edge e. Forgetting about the states of vertices, we end up with 
a new model of oriented bond percolation, which almost fits the setting of Theorem 
12. More precisely, we would be able to apply Theorem 12, if the factor ε4 in (35) 
were replaced by 1 − δ′. However, one can easily recover the exact setting of Theo-
rem 12 as follows. Fix M such that ε4/M ≥ 1 − δ′. Then simply observe, recall-
ing (25), that Mξn is stochastically dominated by a geometric random variable with 
mean that can be chosen arbitrarily close to zero by taking smaller ε′ if necessary 
(while still fixing δ′ and M).

Hence, by Theorem 12, with positive probability, under P(·|E , FX), there is an 
infinite oriented path of good edges. Putting (31), (32), (33) and (34) together, we 
obtain that any such path yields an open path, concluding the proof of Lemma 13. �□

Proof of Lemma 14  It is useful to note first that, for any i, n ≥ 0, one has

	 zi,n = z0,n + im ·
(

α−β
2 − 2ρ, 0

)
,� (36)

which is immediate by induction on n. Also, recalling (23), for each (i, n) ∈ N2, let
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	 R1
i,n := z̃i,n + Rα, R2

i,n := z̃i,n + 2(ρm, 0) + Rβ ,

and notice that these two parallelograms completely cross each other before reaching 
the level of zi,n+1, in the sense that, at this level, the left-most point of R1

i,n is on the 
right of the right-most point of R2

i,n (since 3ρm + βm
2 ≤ αm

2 , by the definition of ρ).

Next, assume that an edge emanating from (i, n) ∈ N2 is open, say 
((i, n), (i, n + 1)).

Case 1 (assume ξn+1 = 0). We need to verify that if any of the two edges emanat-
ing from (i, n + 1) is open, then any vertical crossing of R2

i,n may be glued to the 
crossings of R1

i,n+1 and R2
i,n+1, before they reach the level of zi,n+2. This can be 

checked using the following fact, see also Fig. 10.

Denoting by z1 the horizontal coordinate of a point z ∈ R2, by (26), one has

	
z̃1

i,n + 2ρm + βm

2
= z1

i,n+1 + ρm,

so that at the level of zi,n+1, the parallelogram R2
i,n passes exactly in between R1

i,n+1 
and R2

i,n+1, allowing all crossing paths to be glued together, see Fig. 10.
Moreover, the same reasoning applies if an edge emanating from (i + 1, n + 1) 

is open, since

	
z̃1

i,n + αm

2
= z1

i,n+1 + (α − β)m
2

− ρm = z1
i+1,n+1 + ρm,

where the first equality follows from (26), and the second from (36). Thus, here again 
the parallelogram R1

i,n passes exactly between the R1
i+1,n+1 and R2

i+1,n+1, when 
arriving at the level of zi+1,n+1 (see Fig. 10).

Case 2: (assume ξn+1 ≥ 1). First, we note that it may be seen that any vertical 
crossing of R1

i,n or R2
i,n can be glued to the crossings in (27) or (28) (with n + 1 

instead of n). In the case of R2
i,n, one can check that the first parallelogram in (27),

	 r1 = zi,n+1 + (ρm − ℓ, 0) + R((ℓ, 0), (m + 4ℓ, m)),

crosses R2
i,n before reaching the higher level, using that βm

2 + ρm ≤ m
2 + ℓ. Thus, 

at the level of zi,n+2, the right-most point of R2
i,n is on the left of the left-most point 

of r1. Moreover, the fact that all crossings in (27) can be glued together is immediate 
by construction, see Fig. 11.

Likewise, the fact that the first parallelogram in (28) (with i and n replaced respec-
tively by i + 1 and n + 1) intersects any vertical crossing of R1

i,n before reaching the 
higher level is guaranteed by the fact that αm

2 ≥ ρm + m
2 − ℓ, and thus, for the same 

reasons as before, all crossings in (28) can be glued together.
Therefore, it only remains to see that in case when a vertex, say (i, n), is open and 

any of the two edges emanating from it is also open, the last crossings in (27) and (28) 

1 3



Catalan percolation

Fig. 10  Illustration of how the crossings of different parallelograms may be glued together, when 
ξn+1 = 0. In this example the two edges emanating from both (i, n) and (i, n + 1) are open since 
the corresponding parallelograms are crossed vertically (by blue paths)

 

Fig. 11  Illustration of the definitions in (27) and (28). In this example ξn = 2, and (i, n) is open, since 
the corresponding parallelograms are crossed vertically (by blue paths). It is also apparent that the last 
parallelograms pass between z̃i,n + (ρm, 0) and z̃i,n + 2(ρm, 0), which are marked by red dots

 

1 3



E. Archer et al.

may be glued to the crossings of R1
i,n or R2

i,n. To see this, assume for concreteness 
that the edge ((i, n), (i, n + 1)) is open (the reasoning for ((i, n), (i + 1, n + 1)) 
being analogous).

Consider a crossing γ1 of R2
i,n and a crossing γ2 of the first half of R1

i,n, whose 
existence is guaranteed by (30). Since R2

i,n and the first half of R1
i,n cross before 

reaching the level of zi,n+1, the paths γ1 and γ2 also intersect before reaching this 
level. Thus, it can be seen, regardless of the parity of ξn, and since ℓ ≤ ρm/2, that 
the last parallelograms in  (27) and  (28) always pass between z̃i,n + (ρm, 0) and 
z̃i,n + (2ρm, 0) (see Fig. 11). In particular, when arriving at the level of z̃i,n, any 
crossing of these parallelograms, say γ3, passes between the starting points of γ1 and 
γ2. Since γ1 and γ2 intersect before reaching the level of zi,n+1, γ3 has to intersect 
either γ1 or γ2 before they intersect for the first time, implying that open paths can be 
glued together. � □

Appendix A: Classical oriented percolation theory

A.1. Edge speeds

Proof of Lemma 6  We claim that Ep,q[rn] < ∞. To see this, let (r′
n)n≥0 be defined by

	

r′
0 := inf{x ≥ 0 : (x + 1, 0) is closed},

r′
n := inf{x ≥ r′

n−1 : (x + 1, n) is closed}, n ≥ 1.

We clearly have rn ≤ r′
n for all n, and r′

n ∼
∑n

j=0 Yj , where Y0, Y1, . . . are indepen-
dent, Geometric(1 − p) random variables. The claim readily follows. We can now 
define

	
α(p, q) := inf

n≥1

Ep,q[r2n]
2n

∈ [−∞, ∞).� (37)

The process (r2n − r′
0)n∈N has the properties required to apply Liggett’s subadditive 

ergodic theorem [12, Theorem VI.2.6] to conclude that  r2n

2n

n→∞−−−−→ α(p, q) almost 
surely.

The treatment of the second statement is similar, only simpler. Since ln ≥ 0 and 
equality is not almost sure, we can directly define

	
β(p, q) := sup

n≥1

Ep,q[l2n]
2n

∈ [0, ∞].

The subadditive ergodic theorem then gives  l2n

2n

n→∞−−−−→ β(p, q)> 0 almost surely. �□

We next turn to proving Lemma 7, which requires some preparation.
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Lemma 15  1.	 If p satisfies α(p, 0) > −∞, then for any q > 0, 

	 α(p, q) − α(p, 0) ≥ qp(1 − p)2.� (38)

2.	 If p satisfies β(p, 0) < ∞, then for any q > 0, 

	 β(p, q) − β(p, 0) ≤ qp(1 − p)2.� (39)

Proof  To prove (38), we fix any p such that α(p, 0) > −∞, and for q ≥ 0 we let rq
n 

denote the random variable rn under Pp,q. The proof will follow a similar strategy 
as that used to prove [10, Equation (12)], proceeding in three main steps as follows. 

1.	 We first show that for any infinite sets A, B ⊂ Z with A ⊂ B and max B > max A, 
and for any m ≤ n, we have 

	 Ep,q[max ξm,n(B) − max ξm,n(A)] ≥ 1.� (40)

2.	 We then couple Pp,q with Pp,q′  where q′ > q ≥ 0 under a common law P and 
use (40) to show that 

	 E[rq′

2n − rq
2n] ≥ 1 − (1 − (q′ − q)p(1 − p)2)n.� (41)

3.	 We then tie this together to prove (38).We start with Step 1 For concreteness, we 
take 0 = m ≤ n (the proof is the same for 0 < m ≤ n). We proceed as in [10, 
Equation (13)]. By the assumptions that  A ⊂ B and  x∗ := max B > max A, 
and by monotonicity of ξn(·) with respect to set inclusion, we have

	 max ξn(B) − max ξn(A) ≥ max ξn(B) − max ξn(B\{x∗}).

Using the definition of ξn(·), we have

	Ep,q[max ξn(B) − max ξn(B\{x∗})] = Ep,q

[
(max ξn({x∗}) − max ξn(B\{x∗}))+

]
.

By monotonicity and translation invariance, the right-hand side is larger than

	Ep,q

[
(max ξn({0}) − max ξn(−N \ {0}))+

]
= Ep,q[max ξn(−N) − max ξn(−N \ {0})];

by translation invariance, the right-hand side equals 1. This proves (40).
We now turn to Step 2 We couple Pp,q with Pp,q′  under a common law P in the 

natural way: we first sample a site percolation configuration under Pp,0, then for 
each set of vertical edges joining height 2n to 2n + 2 we independently sample 
Un ∼ Uniform[0, 1], and add the corresponding vertical edges under Pp,q (respec-
tively Pp,q′ ) precisely when Un ≤ q (respectively Un ≤ q′). In the coupled model, we 

1 3



E. Archer et al.

write (ξq
n(A))n≥1 for the process with parameters (p, q) and (ξq′

n )n≥1 for the process 
with parameters (p, q′). In particular, rq

n = max ξq
n(−N) and rq′

n = max ξq′

n (−N).

We now set

	 τ = inf{n ∈ 2N : rq
n < rq′

n }

For all m ∈ 2N, on the event {τ = m} we have

	 ξq
m(−N) ⊂ ξq′

m(−N) and max ξq′

m(−N) = rq′

m > rq
m = max ξq

m(−N).� (42)

Let (Fm)m≥0 denote the filtration generated by the percolation configuration: for 
each m, Fm is the σ-algebra generated by the percolation configuration (including 
the uniform random variables) up to (and including) height m. On the event {τ ≤ n} 
we bound

	

E[rq′

n − rq
n | Fτ ] = E[max ξq′

τ,n(ξq′

τ (−N)) − max ξq
τ,n(ξq

τ (−N)) | Fτ ]

≥ E[max ξq
τ,n(ξq′

τ (−N)) − max ξq
τ,n(ξq

τ (−N)) | Fτ ] ≥ 1,

where the last inequality follows from (40), whose assumptions have been verified 
in (42). We have thus proved:

	 E[rq′

n − rq
n] ≥ E[E[rq′

n − rq
n | Fτ ] · 1{τ ≤ n}] ≥ P(τ ≤ n).

To bound this latter probability, note that at each time m ∈ 2N there is a probability 
at least (q′ − q)p(1 − p)2 that the vertical edge leading from rq

m to rq
m + (0, 2) is 

open under Pp,q′  but not under Pp,q, that the site rq
m + (0, 2) is also open, but that the 

two sites corresponding to rq
m + (0, 1) and rq

m + (−1, 2) are closed, in which case 
rq

m+2 < rq′

m+2. Hence,

	 P(τ > n) ≤ (1 − (q′ − q)p(1 − p)2)⌊n/2⌋,� (43)

from which the statement of (41) follows.
For Step 3, we again follow the strategy of Durrett, take a large integer M, 

set δ = q
M  and write

	

1
n
E

[
rq

2n − r0
2n

]
= 1

n

Mn∑
m=1

E
[
r

mδ
n

2n − r
(m−1)δ

n
2n

]
≥ M

(
1 −

(
1 − δp(1 − p)2

n

)n)
.

Taking n → ∞ and then M → ∞ we get

	
lim

n→∞

1
n
E

[
rq

2n − r0
2n

]
≥ lim

M→∞
M

(
1 − exp

{
−qp(1 − p)2

M

})
= qp(1 − p)2,
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which is the desired statement.
The proof of (39) goes in the exact same way; note in particular that we can get the 

same expression in the bound (43). � □

Lemma 16  If p > pc(0), then β(p, 0)−1 = α(p, 0) ≥ 1.

Proof  We write  C0 := {(x, n)∈ Z2 : x ∈ ξn({0})} for the cluster of the origin. 
Fix p > pc(0), so that Pp,0(|C0| = ∞) > 0. Throughout this proof, we abbrevi-
ate α = α(p, 0) and β = β(p, 0).

Note that for any n ∈ N

	 max ξn({0}) ≤ rn, min ξn({0}) ≥ ln

and on the event |C0| = ∞, for all n ∈ N,

	 ln = min ξn({0}) ≤ max ξn({0}) = rn,� (44)

using the non-crossing property of simple paths. Taken together with  l2n

2n

n→∞−−−−→ β 
and  r2n

2n

n→∞−−−−→ α, (44) implies that β ≤ α.

For a > 0, we write

	V−(a) := {(v, n) ∈ Z × 2N : v ≤ an}, V+(a) := {(v, n) ∈ Z × 2N : v ≥ an}.

We claim that

	 α = inf{a > 0 : Pp,0(|C0 ∩ V+(a)| < ∞) = 1}.� (45)

To see this, first take a > α. Since max ξn({0}) ≤ rn ∀n and  r2n

2n

n→∞−−−−→ α, we see 
that almost surely there are only finitely many n ∈ 2N such that max ξn({0}) ≥ an, 
so there are almost surely only finitely many points in C0 ∩ V+(a). On the other hand, 
if a < α, we have

	

Pp,0(|C0 ∩ V+(a)| = ∞) ≥ Pp,0(max ξn({0}) ≥ an for infinitely many n ∈ 2N)
≥ Pp,0(|C0| = ∞) > 0,

where the second inequality follows from (44) and  r2n

2n

n→∞−−−−→ α. This concludes the 
proof of (45). Similarly, we have

	 β = sup{b > 0 : Pp,0(|C0 ∩ V−(b)| < ∞) = 1}.� (46)

Let Φ : R2 → R2 be the reflection about the diagonal y = x, that is, Φ(x, y) = (y, x). 

Since we are taking q = 0, our model has the symmetry C0
(law)= Φ(C0). In particular, 

for any a > 0,
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	 Pp,0(|C0 ∩ V−(1/a)| < ∞) = Pp,0(|C0 ∩ V+(a)| < ∞).

Together with  (45) and  (46), this gives  β = 1/α. We already had  β ≤ α, so we 
obtain β ≤ 1 and α ≥ 1. � □

Corollary 17  We have α(pc(0), 0) ≥ 1 and β(pc(0), 0) ≤ 1.

Proof  The function  p �→ α(p, 0) is non-decreasing, and it is the decreasing limit 
of the continuous functions p �→ infm≤n(Ep,0[rm]/m), as n → ∞. From this, it is 
easy to deduce that p �→ α(p, 0) is right continuous, so it follows from Lemma 16 
that α(pc(0), 0) ≥ 1. An analogous argument applies to β. � □

Proof of Lemma 7  This follows from combining Lemma 15 and Corollary 17. � □

A.2  Supercritical box crossing

Our next goal is to prove Lemma 8 following [10]. We start by proving an upper tail 
bound for the right edge rm.

Lemma 18  For any p ∈ (0, 1), q ∈ [0, 1) and δ > 0 there exist c > 0 and n0 ∈ N 
such that for all n ≥ n0,

	 Pp,q (∃m ≤ n : rm > α(p, q) · m + δn) < e−cn, � (47)

	 Pp,q (∃m ∈ {1, . . . , n} : max ξ1,m(−N) > α(p, q) · m + δn) < e−cn, � (48)

	

Pp,q (∃m ≤ n : lm < β(p, q) · m − δn) < e−cn,

Pp,q (∃m ∈ {1, . . . , n} : min ξ1,m(N) < β(p, q) · m − δn) < e−cn.

Proof  We will only prove the first two bounds, as the other two are treated in the same 
way. Fix p, q, δ as in the statement. We abbreviate α = α(p, q). The desired inequali-
ties are trivial in case α = −∞, so we assume that α ∈ (−∞, ∞).

Using the definition of α in (37), we choose M ∈ 2N such that

	
Ep,q[rM − αM ] <

δ

4
M.� (49)

We bound the left-hand side of (47) by

	
Pp,q

(
∃k ≤ n

M
: rMk > αMk + δ

2
n

)
� (50)
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+ Pp,q

(
∃k ≤ n

M
, j ∈ {0, . . . , M − 1} : rMk+j − rMk > αj+δ

2
n

)
. �(51)

The probability in (50) is smaller than

	

Pp,q

(
∃k ≤ n

M
: rMk > αMk + δ

4
Mk + δ

4
n

)

≤ Pp,q


∃k ≤ n

M
:

k∑
j=0

Xj >
δ

4
n


 ,

where  X1, X2, . . . are independent random variables, with the distribution 
of  rM − (α + δ

4 )M . These random variables have negative expectation by  (49). 
They also have some finite exponential moment; this can be seen using the domina-
tion by geometric random variables, as in the proof of Lemma 6. By a large deviation 
bound (see for instance [41, Corollary A.2.7]), the probability on the right-hand side 
above is bounded by e−c0n, for some c0 > 0 (depending on M) and n large enough.

Next, bounding min0≤j≤M−1(αj + δ
2 n) > δ

4 n for n large, and using the stochas-
tic domination described in the proof of Lemma 6, we bound the probability in (51) 
by

	

n

M
· Pp,q

(
max

0≤j<M
rj >

δ

4
n

)
≤ n

M
· Pp,q




M−1∑
j=0

Yj >
δ

4
n


 ,

where Y0, . . . , YM−1 are independent Geometric(1 − p). The right-hand side above 
is again bounded by e−c1n for some constant c1 > 0 (depending on M) and n large 
enough. This concludes the proof of (47).

For (48), we first write, for any m ≥ 2,

	 max ξ1,m(−N) = max ξ2,m(ξ1,2(−N)) ≤ max ξ2,m((−∞, max ξ1,2(−N))).

The right-hand side is stochastically dominated by Z + r′
m−2, where

	 Z(distr)= max ξ1,2(−N), (r′
m)m≥0

(distr)= (rm)m≥0,

and Z , (r′
m)m≥0 are independent. Then, the left-hand side of (48) is smaller than

	
Pp,q

(
Z >

δ

2
n

)
+ Pp,q

(
∃m≤ n : r′

m > α · (m + 2) + δ

2
n

)
.

The first probability above can be bounded using domination by geometric random 
variables as before, and the second probability can be bounded using (47). � □

1 3



E. Archer et al.

Proof of Lemma 8  Since the two inequalities are proved in the same way, we will only 
prove the first. Let p, q, δ and ε be as in the statement and write α = α(p, q).

We let R := (− δ
2 n, 0) + R(u, v), that is, R is the parallelogram with vertices

	
(
− δ

2 n, 0
)

,
(

δ
2 n, 0

)
,

(
−

(
δ
2 + α

)
n, n

)
,

((
δ
2 + α

)
n, n

)
.

From  r2n

2n

n→∞−−−−→ α, it readily follows that Pp,q(An) n→∞−−−−→ 1, where

	
An :=

{
−δ

4
n + αm ≤ rm ≤ δ

4
n + αm for all m ≤ n, m even

}
.

On this event, there is an open path  γ = ((x0, n0), . . . , (xk, nk)) such 
that n0 = 0, x0 ≤ 0, nk = n, xk = rn ≥ (α − δ/4)n and

	
xj≤δ

4
n + αnj for all j for which nj is even.

If multiple such paths γ exist, we choose one using some arbitrary procedure. In 
order to prove that γ is entirely contained in R′ with high probability, we only need 
to prove that the following two situations are unlikely: 
1.	 An occurs, but xj ≥ δ

2 n + αnj  for some j for which nj  is odd;
2.	 An occurs, but xj ≤ − δ

2 n + αnj  for some j.

The occurrence of 1. would imply rm+1 − rm > δ
4 n for some m ∈ 2N, m < n. 

To rule this out, we bound this difference by a Geometric(1 − p) random variable, 
and use a union bound over the choice of m.

The occurrence of 2. would imply that, for some m < n,

	
max ξm,n

((
−∞, −δ

2
n + αm

])
≥

(
α − δ

4

)
n

To rule this out, we use Lemma 18 and a union bound over the choices of m. � □
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