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Correction

Question de cours. Soit K un corps fini. Montrer que |K| = p™ pour un
certain nombre premier p et un entier n > 1.

Comme K est fini, le morphisme d’anneaux Z — K, n+— 1 + ... + 1 n’est pas

[ ——
n fois

injectif. Notons pZ le noyau. Comme 1 ¢ pZ, p # +1, comme Z/pZ s'identifie
a un sous-anneau de K, Z/pZ est intégre donc p est un nombre premier. Donc
K est un Z/pZ—espace vectoriel. Sa dimension n est finie car K est finie. Alors
on a un isomorphisme de groupes (K, +) ~ ((Z/pZ)™,+) donc |K| = p™.

Exercice 1

Soient P = X3 - X —let Q= X3+ X%2-2X — 1€ Q[X].

(y/a) Montrer que P, @ sont irréductibles sur Q. Le polynéme P n’a pas de racine

dans 7Z car sinon ce serait un diviseur de 1 c¢-a-d +1 or P(1) = —1 #

0, P(—1) = —1 # 0. Comme P est unitaire a coefficients entiers, P n’a
pas non plus de racine dans @QQ car sinon ce serait un entier. Donc P est
irréductible sur Q. De méme @ est irréductible sur Q car Q(1) = —1 # 0
et Q(1) =1#0.

b) Soit y; une racine de @ (dans C). Montrer que ya = y7 — 2 est aussi racine
de Q. En déduire que Q(y;) est le corps de décomposition de @ sur @@ dans
C.
Q(y2) = yf =5y +6yf —1. Oryf = —y +2y1 +1 = yi =~y +2yf +y1 =
3y? —y1 — 1. Donc g9 = yiyi = 3yi —yf — i = 9yi — 5y — 4.
Ainsi, Q(y2) = 9y? — 15y2 + 6y —by1 +5y1 —4+5—1=0.
Comme Q est irréductible, y; est de degré 3 sur Q. En particulier, y; # 32 —2
car y; n’est pas annumé par un polynoéme de degré 2.
Si on note y3 la troisiéme racine de . On a y; + y2 + y3 = —1 (relations
coefficients-racines). Donc y3 = —1 —y; — 92 = 1 —y; — y>. Le corps de
décomposition de @ dans C est le corps Q(y1,y2,93) = Q(y1,y3 — 2,1 —
Y1 — y%) = Q).

q/ ¢) Soit y3 la troisiéme racine de Q. Calculer

1,11
vi ooy u3
On a:
11 1 y3ys iyl il
viooyd 3 yiy3y3
_ (e +y1ys +y2u3)° — 20193ys — 2yTyays — 217203
(y1y2y3)2
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5@

or,
Y1+ y2 +yzs = —1 yiyeys = 1, yiye + y1yz + ya2ys = —2
Donc
1 1 1 22-2(-1) .

vy u3 12

Soient x1, x9, x3 les racines de P dans C. Calculer

A = (21 — 22)* (32 — 23)* (21 — 13)°

et en déduire que P n’a qu’une seule racine réelle.
On a A = —P'(x1)P'(22)P'(z3) = —(32% — 1)(323 — 1)(322 — 1). Or Vi =
2

1,2,3, P(x;) =0=ua; =1+ % Donc
3
A=—J] e+3)== ]] @z+3)
i=1,2,3 Li i=1,2,3
car r1ror3 = 1. Donc
3 3
A=— = — 2
8 [I Gre)=8 ] (=5—=)
i=1,2,3 i=1,2,3
3
= 8P(—2
8P(~3)

car P(X) = (X — 21)(X — 22)(X — 23). Donc A = —23.
Soit K le corps de décomposition de P sur @ dans C. Déterminer [K : Q].
K = Q(x1,29,23) = Q(a1,22) car o1 + w2 + 23 = 0 = 23 = —11 — 2 €
Q(z1,72).
Comme P est irréductible sur Q, z1 est de degré 3 sur Q. Comme x5 est
annulé par le polynéme ﬁ € Q(x1)[X], 22 est de degré au plus 2 sur
Q(z1).
Donc 3|[K : Q] = [Q(z1)(z2) : Q(z1)][Q(z1) : Q] < 6. Donc [K : Q] =3
ou 6. Or 6 = (v — x2)(x1 — x3) (w2 — 23) € K et 62 = A = —23 donc § =
+i4/23 est de degré 2 sur Q. Donc 2 = [Q(5) : Q]|[K : Q] = [K : Q] = 6.
Montrer que Z[z1]/(2) et Z[y1]/(2) sont des corps finis. Déterminer leur
cardinal et donner un isomorphisme de corps Z[z1]/(2) ~ Z[y1]/(2).
On a:

Zlx1]/(2) ~ Z[X]/(X® — X — 1,2) ~ Z/2Z[X]/(X® + X + 1)

Zly:]/(2) ~ Z[X]/(X? + X? —2X — 1,2) ~ Z/2Z[X]/(X? + X* + 1)

Or, n’y ayant pas de racines, les polynémes X2+ X +1 et X3 + X2 + 1 sont
irréductibles sur le corps Z/27. Donc les anneaux quotients

Z27[X]/(X3 + X +1), Z)2Z[X]/(X® + X% + 1)

sont des corps de cardinal 2% = 8.
Posons T7 = x1 mod 2 € Z[x1]/(2) et 77 = y1 mod 2 € Z[y1]/(2).
On a Z[z1]/(2) = Z/27%[71) ~ Z/2Z[X]/(X3 + X +1).
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Le morphisme surjectif d’anneaux

727 X| — 7)27 (1], P(X)— P(yr + 1)
est bien défini et contient X® + X + 1 dans son noyau car dans Z/27Z[yz],
G+ + W+ )+l =7 + 3y + 3+ 1+ + 1+ 1 =3 + 712 + 1 = 0.
D’ott un morphisme surjectif de corps :

Z)27|77] — Z/27[y1], P(F1) — P(y1 + 1).

Ce morphisme surjectif est un isomorphisme car les deux corps sont finis de
méme cardinal (= 8).

Exercice 2

a)

Montrer que le polynome X2 + Y2 — 1 est irréductible dans C[X,Y].

Le polynome p = Y — 1 est irréductible dans C[Y]. Comme p|Y? — 1 et
p? Y2 — 1, d’aprés le critére d’Eisenstein, le polynome X2 + Y2 — 1 est
irréductible sur C(Y'). Comme son contenu est 1 (vu comme polyndéme a
coefficients dans C[Y]), il est irréductible sur C[Y] ¢-a-d dans C[X,Y].

Montrer que 'élément X +4Y” est inversible dans I’anneau quotient C[X, Y]/(X 2+

Y2 — 1) et déterminer son inverse. En déduire un isomorphisme d’anneaux
C[X,Y]/(X?+Y?-1)~C[T,T]

(le sous-anneau du corps C(T) des fractions rationnelles en une variable
engendré par C, T, T™1).

(X +iY)(X —iY) = X?+Y? = 1mod X?+Y?2—1. Donc dans I’anneau quo-
tient C[X,Y]/(X?4+Y?—1), X +iY est inversible d’inverse X —iY mod X2+
Y2 — 1. Posons = X mod X2 +Y? 1,y =Y mod X2+ Y? — 1. Comme
(x +iy)~! = x — iy dans C[X,Y]/X? + Y? — 1, le morphisme d’anneaux

¢: C[TH] > CIX,Y)/X?+Y2 =1, Y alf— > al@+iy”
ReZ fini kEZ fini
est bien défini. Pour trouver la réciproque (éventuelle), on résout :

T+7 , T-T!

T=o+iy, T =0 —iy o2’ = Y -
2 24

. , —1 _p—1
Le morphisme d’anneaux C[X,Y] — C[T*!], X — Ty  I=L

est bien défini et contient le polynéme X2 4+ Y2 — 1 dans son noyau car
T+T!

(= - 1.

)2+(T—T_1)2 TP+ T 42 TP+ T2
2i B 4 4
D’ott un morphisme d’anneaux v : C[X,Y]/(X?+Y?2 1) — C[T*], z —
7T+§71, Y — T_Zigfl. On vérifie facilement que ¢ o 1) = Id@[m’y], Yoo =
Idgr+1) donc ¢, sont des isomorphismes d’anneaux réciproques I'un de
l’autre.
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c)

7.
9

Montrer que 'anneau C[X,Y]/(X? + Y2 — 1) est principal.

D’aprés I'isomorphisme précédent il suffit de montrer que 'anneau C[7T+!]
est principal. Soit I < C[T*!] un idéal. L’idéal de C[T] : I n C[T] est
principal car C[T'] est un anneau principal. Soit p € C[T] tel que I nC[T] =
pC[T]. Alors I = (p). En effet, si f € I, il existe N € N tel que TV f € C[T].
Comme [ est un idéal dans C[T+!], T*f e I n C[T] = TV f = pq pour un
certain ¢ € C[T]. Donc f = p7& € (p). L'inclusion réciproge est évidente.
Comme de plus C[T*!] < C(T), l'anneau C[T*!] est aussi intégre donc
principal.

Montrer que 'anneau A = R[X,Y]/(X? 4+ Y2 — 1) est intégre.

D’aprés le critére d’Eisenstein, le polynome X2 +Y?2—1 est irréductible dans
R[X,Y]. Comme 'anneau R[X, Y] est factoriel, le quotient R[X,Y]/(X?+
Y? — 1) est alors intégre.

Justifier que pour tout P(X,Y) € R[X,Y], il existe un unique couple
(a(X),b(X)) € R[X]? tels que

P(X,Y) =a(X) +b(X)Y mod X? +Y? — 1.

Unicité. Si a(X) +b(X)Y = ¢(X) = d(X)Y mod X2 + Y? — 1 pour certains
a,b,c,d € R[X], alors

X2 +Y? —1|(a(X) = b(X)) + (¢(X) —d(X))Y

mais pour des raisons de degrés en Y on a alors (a(X) — b(X)) + (¢(X) —
d(X))Y =0 dans R[X,Y donc a(X) = b(X) et ¢(X) = d(X).

Existence. Soit P(X,Y) € R[X,Y]. Comme X2+Y?—1 est unitaire de degré
2 dans R[X][Y], on peut faire la division euclidienne de P par X? +Y? —1
en restant dans R[X][Y]. Le reste est de degré < 1 en Y donc de la forme
voulue.

Montrer que 'application
N:A—-R[X], a(X)+b(X)Y mod X?+Y?—1— a(X)?—b(X)*+X?b(X)?

est multiplicative. En déduire les inversibles de I'anneau A.
Soient a,b,c¢,d € R[X]. On a :

N@X) + b(X)Y .e(X) + d(X)Y) = N(a(X)e(X) + b(X)d(X)Y2 + (a(X)d(X) + b(X)c(X))Y)

orY2=1—-X%2mod X2+ Y2 -1 donc

N@X) 1 0(X)Y . c(X) + d(X)Y) =

N(a(X)e(X) +b(X)d(X)(1 — X2) + (a(X)d(X) + b(X)c(X))Y)
= ((ac + bd(1 — X?))? — (ad + bc)* + X?(ad + be)?
= (a’ A +b*d* — (ad+bc)? 4+ 2abed + X (—20%d* + (ad +be)* — 2abed) + X 1 b? d?
= (a?c + V2d® — aPd® — b?c?) + X2 (aPd® + b*? — 2b%d%) + X*b2d?)
= (a® — V¥ + 1*X?)(? — d* + d*X?)
= N(a+bY)N(c+dY).
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Et N(1) = 1. En particulier si a + bY mod X2 + Y2 — 1 est inversible, alors
a? —b? + X2 € R[X]* = R*. Il existe donc une constante ¢ € R* telle
que a? = ¢+ (—X?2 + 1)b2. Si on compare les coefficients dominants, on voit
que b? = 0 (sinon le coefficient dominant du terme de droite est strictement
négatif alors que celui du terme de gauche est positif) et a est constant.

Donc A* < R*. L’inclusion réciproque est évidente donc A* = R*.
Montrer que X mod X2 +Y2?—1,1—-Y mod X2+Y?2—1,1+Y mod X2+
Y2 — 1 sont irréductibles dans A. L’anneau A est-il factoriel ?

Soit # = X mod X2 + Y2 — 1. Alors N(z) = X2. Si = a3 avec a, 3 € A,
alors N(z) = X? = N(a)N(B) dans R[X]. Or I'équation N(a) = tX, t €
R* n’a pas de solution dans A. En effet, si « = a+bY mod X2+Y?—1, a,be
R[X], alors :

N(a)=tX e a®> -0+ X2 =tX < a® = tX + (- X? + 1)p*.

Sib # 0, le terme de droite a un coefficient dominant < 0 ce qui est im-
possible pour le terme de gauche. Donc b = 0. Donc a? = tX = dega = %
impssible !

Donc N(a) ou N(8) € R* donc a ou 3 € A* donc X est irréductible dans
A. Posons y = Y mod X2 +Y?2 — 1. Alors N(1 —y) = N(1 +y) = X? donc
de méme que x, 1 + y sont irréductibles dans A. Or, 22 = (1 — y)(1 + y) et
x,1 — y ne sont pas associés dans A car il n’esxiste pas de ¢ € R* tel que
x = ¢(1 —y). Donc A n’est pas factoriel.

Trouver un idéal maximal de A contenant X mod X2 +Y? — 1.

L’idéal m = (z,1 — y) < A contient z et est maximal car
A/m ~R[X,Y]/(Xr+Y2—1,X,1-Y) =R[X,YV]/(X,1-Y)
car X2+Y?-1=X2+(1-Y)1+Y)e(X,1-Y)
~R

par I'évaluation en X =0,Y = 1.
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