Corrigé de l'examen du 9 janvier 2025

1.		Soit G un groupe. Montrer que l'application $\phi\colon G\to G, \phi(g)=g^{-1}$ est un morphisme seulement si G est abélien.
	$h^{-1}g$	tion. Supposons d'abord que G est abélien. Alors pour tout $g,h \in G$, $\phi(gh) = (gh)^{-1} = g^{-1} = g^{-1}h^{-1} = \phi(g)\phi(h)$ et donc ϕ est un morphisme. Inversement, si ϕ est un morme, par le même calcul, $h^{-1}g^{-1} = g^{-1}h^{-1}$ pour tous g,h , ce qui implique que G est ien.
2.	(3p.)	Combien de morphismes différents $\mathbf{Z}/12\mathbf{Z} \to \mathbf{Z}/8\mathbf{Z}$ y a-t-il?
	déte	tion. Comme $\mathbb{Z}/12\mathbb{Z}$ est cyclique, un morphisme $\phi\colon \mathbb{Z}/12\mathbb{Z}\to \mathbb{Z}/8\mathbb{Z}$ est entièrement rminé par $\phi(\bar{1})$. Comme $\bar{1}\in\mathbb{Z}/12\mathbb{Z}$ est d'ordre 12, on doit avoir que $12\cdot\phi(\bar{1})=0$, i.e., $\phi(\bar{1})\mid 12$. Les possibilités dans $\mathbb{Z}/8\mathbb{Z}$ sont : $\bar{0},\bar{2},\bar{4},\bar{6}$, soit 4 morphismes en tout.
3.		Soit A un groupe abélien et soit $D = \{(a, a) : a \in A\}$. Montrer que D est un sous-groupe distingué de $A \times A$.
		<i>Solution.</i> D est un sous-groupe car si (a,a) , (b,b) ∈ D , alors $(a,a) - (b,b) = (a-b,a-b)$ ∈ D . Il est distingué puisque tout sous-groupe d'un groupe abélien est distingué. \Box
	(b)	Montrer que $(A \times A)/D \cong A$.
		Solution. Considérons le morphisme $\pi\colon A\times A\to A$ défini par $\pi(a,b)=a-b$. Il est surjectif car $\pi(a,0)=a$ pour tout $a\in A$ et $\ker\pi=D$. Par le premier théorème d'isomorphisme, $A\times A/D\cong A$.
4.	(4p.)	
	(a)	Montrer que les seuls éléments de S_8 d'ordre 8 sont les 8-cycles.
		Solution. On rappelle que l'ordre d'une permutation est égal au ppcm des longueurs des cycles dans sa décomposition. Comme 8 est une puissance d'un nombre premier, le fait que le ppcm d'un ensemble S d'entiers positifs soit égal à 8 entraı̂ne que S 0. Donc toute permutation d'ordre 8 doit avoir un cycle de longueur 8 et dans les éléments de S 8 il n'y a pas de place pour d'autres cycles.
	(b)	Soit σ le 8-cycle (1 2 3 4 5 6 7 8) \in S_8 . Pour quels entiers positifs n σ^n est aussi un 8-cycle?
		<i>Solution.</i> L'ordre de l'élément σ^n dans le groupe cyclique $\langle \sigma \rangle$ est égal à 8/pgcd(8, n). Donc, par (a), σ^n est un 8-cycle ssi n est impair.
	(c)	Trouver des représentants de toutes les classes de conjugaison d'éléments d'ordre 6 dans S_7 . Les quelles de ces classes sont dans le groupe alterné A_7 ?
		<i>Solution.</i> Les structures de cycles avec ppcm 6 dans S_7 sont les suivantes : $(3,2,1,1)$, $(3,2,2)$ et $(6,1)$ avec des représentants $(1\ 2\ 3)(4\ 5)$, $(1\ 2\ 3)(4\ 5)(6\ 7)$, $(1\ 2\ 3\ 4\ 5\ 6)$. Les signatures respectives sont -1 , 1 , -1 et seule la classe de $(1\ 2\ 3)(4\ 5)(6\ 7)$ est dans A_7 .

5.	_) Montrer qu'un groupe G d'ordre 312 a un p -Sylow distingué pour un nombre premier ii divise l'ordre de G .
		tion. Notons que $312 = 2^3 \times 3 \times 13$. Par le théorème de Sylow, $n_{13} \equiv 1 \mod 13$ et 24. Donc $n_{13} = 1$ et G admet un seul 13-Sylow qui doit être distingué.
6.	men: que	Soit A un ensemble avec $ A \ge 2$ et soit G un groupe. L'action $G \curvearrowright A$ est dite <i>doublet transitive</i> si pour tout $(a_1,b_1), (a_2,b_2) \in A^2$ avec $a_1 \ne b_1$ et $a_2 \ne b_2$, il existe $g \in G$ tel $g \cdot a_1 = a_2$ et $g \cdot b_1 = b_2$. Montrer que l'action $G \curvearrowright A$ est doublement transitive si et seulement si elle est transitive et pour tout $a \in A$, le stabilisateur G_a agit transitivement sur $A \setminus \{a\}$.
		Solution. Supposons d'abord que l'action est doublement transitive. Il est clair qu'elle est transitive. Soient maintenant $a \in A$ et $b,c \in A \setminus \{a\}$. Alors il existe $g \in G$ qui envoie (a,b) sur (a,c) : ceci est un élément de G_a qui envoie b sur c et l'action de G_a sur $A \setminus \{a\}$ est donc transitive. Pour l'autre sens, soit $(a_1,b_1), (a_2,b_2) \in A^2$ avec $a_i \neq b_i$. Par la transitivité de l'action $G \curvearrowright A$, il existe $g_1 \in G$ tel que $g_1 \cdot a_1 = a_2$. De plus $b_2 \neq a_2$ et $g_1 \cdot b_1 \neq g_1 \cdot a_1 = a_2$ et par la deuxième hypothèse, il existe $g_2 \in G_{a_2}$ tel que $g_2 \cdot (g_1 \cdot b_1) = b_2$. Alors $(g_2g_1) \cdot (a_1,b_1) = (a_2,b_2)$.
	(b)	Montrer que pour $n \ge 4$, l'action du groupe alterné $A_n \curvearrowright [n]$ est doublement transitive.
		<i>Solution.</i> D'abord l'action $A_n \curvearrowright [n]$ est transitive pour tout $n \ge 3$: si a,b,c sont trois éléments distincts de $[n]$, alors $(a\ b\ c) \cdot a = b$. Soit maintenant $n \ge 4$, $G = A_n$ et soient a,b_1,b_2,c 4 éléments distincts de $[n]$. Alors $(b_1\ b_2\ c) \in G_a$ et $(b_1\ b_2\ c) \cdot b_1 = b_2$.
7. (5p.) On note par Aff(\mathbf{R}) l'ensemble des transformations affines de \mathbf{R} , i.e., les app $f_{a,b} \colon \mathbf{R} \to \mathbf{R}$, où $f_{a,b}(x) = ax + b$ avec $a \in \mathbf{R}^{\times}$ et $b \in \mathbf{R}$.		
	(a)	Montrer que ${\rm Aff}({\bf R})$, muni de l'opération de composition, est un groupe (il s'appelle le groupe affine de ${\bf R})$.
		Solution. On a que $a_1(a_2x + b_2) + b_1 = a_1a_2x + a_1b_2 + b_1$, i.e.,
		$f_{a_1,b_1} \circ f_{a_2,b_2} = f_{a_1,a_2,a_1,b_2+b_1} \tag{1}$
		pour tout $a \in \mathbf{R}^{\times}$, $b \in \mathbf{R}$. Ceci montre que $\mathrm{Aff}(\mathbf{R})$ est clos par composition et c'est un groupe avec identité $f_{1,0}$ et inverse $f_{a,b}^{-1} = f_{a^{-1},-a^{-1}b}$.
	(b)	Montrer que $\mathrm{Aff}(\mathbf{R})$ est isomorphe à un produit semi-direct $\mathbf{R}\rtimes_{\phi}\mathbf{R}^{\times}$, où \mathbf{R} est le groupe additif et \mathbf{R}^{\times} est le groupe multiplicatif du corps des réels. Quelle est l'action $\mathbf{R}^{\times} \curvearrowright^{\phi} \mathbf{R}$ qui définit ce produit semi-direct?
		<i>Solution.</i> La loi du produit semi-direct $\mathbf{R} \rtimes_{\phi} \mathbf{R}^{\times}$ est donnée par : $(b_1, a_1)(b_2, a_2) = (b_1 + \phi(a_1)(b_2), a_1 a_2)$. En comparant avec (1), on voit que si l'on définit $\phi(a)(b) = ab$, l'application $\mathbf{R} \rtimes_{\phi} \mathbf{R}^{\times} \to \mathrm{Aff}(\mathbf{R})$, $(b, a) \mapsto f_{a,b}$ est un isomorphisme de groupes.
	(c)	Montrer que l'action naturelle $Aff(\mathbf{R}) \curvearrowright \mathbf{R}$, définie par $f_{a,b} \cdot x = f_{a,b}(x)$ pour $f_{a,b} \in Aff(\mathbf{R})$, $x \in \mathbf{R}$, est doublement transitive.