Remarques sur le partiel de théorie des groupes

1 Rappels sur les définitions

Un groupe G est simple si ses seuls sous-groupes distingués sont $\{e_G\}$ et G.

Un groupe simple G peut donc avoir des sous-groupes autre que $\{e_G\}$ et G. Ces sous-groupes ne sont juste pas distingués (voir Exemple 3).

Exemple 1 ($\mathbb{Z}/5\mathbb{Z}$ est simple). Si $G = \mathbb{Z}/5\mathbb{Z}$. On a vu (Lagrange) que si $H \leq G$ alors |H| divise |G| = 5. Donc $|H| \in \{1, 5\}$. Donc

- ou bien |H| = 1 et ainsi $H = \{0_{\mathbb{Z}/5\mathbb{Z}}\}$
- ou bien |H| = 5 et alors $H = \mathbb{Z}/5\mathbb{Z}$.

Donc $\mathbb{Z}/5\mathbb{Z}$ est simple. Remarque : Ceci est aussi vrai pour $G = \mathbb{Z}/p\mathbb{Z}$ avec p un nombre premier quelconque.

Exemple 2 (\mathfrak{A}_4 n'est pas simple). Soit \mathfrak{A}_4 le groupe alterné. On rappelle que \mathfrak{A}_4 contient : l'identité, les 3-cycles à support dans $\{1,2,3,4\}$ et les doubles-transpositions à support dans $\{1,2,3,4\}$, c'est-à-dire :

$$\mathfrak{A}_4 := \left\{ \mathrm{id}, (123), (132), (143), (134), (124), (142), (234), (243), (12)(34), (13)(24), (14)(23) \right\}$$

Soit $V_4 := \{id, (12)(34), (13)(24), (14)(23)\}$ le groupe des doubles transpositions ¹. Montrons que V_4 est distingué dans \mathfrak{A}_4 .

Soit $g \in \mathfrak{A}_4$ et x une double transposition de V_4 . Alors le type de x est (2,2). Or, la conjugaison préserve le type de la permutation. Donc le type de gxg^{-1} est (2,2), c'est-à-dire que gxg^{-1} est une double transposition et donc est contenue dans V_4 . Ainsi $gV_4g^{-1} = V_4$.

Donc \mathfrak{A}_4 contient un sous-groupe distingué V_4 qui n'est ni \mathfrak{A}_4 ni {id} et ainsi \mathfrak{A}_4 n'est pas simple.

Exemple 3 (\mathfrak{A}_5 est simple). Soit $G=\mathfrak{A}_5$ le groupe alterné de \mathfrak{S}_5 . Ainsi \mathfrak{A}_5 contient :

- l'identité,
- les 3-cycles à support dans {1, 2, 3, 4, 5},
- les doubles-transpositions à support dans {1, 2, 3, 4, 5}
- les 5-cycles à support dans {1,2,3,4,5}.

Vous avez vu dans le cours que \mathfrak{A}_5 est un groupe simple : ses seuls sous-groupes distingués sont {id} et \mathfrak{A}_5 . Cependant, \mathfrak{A}_5 admet d'autres sous-groupes. Ils ne sont juste pas distingués. Par exemple :

- Soit $(345) \in \mathfrak{A}_5$. Alors $\langle (345) \rangle = \{ id, (345), (354) \}$ est un sous-groupe (non-distingué) de \mathfrak{A}_5 .
- Soit $(32415) \in \mathfrak{A}_5$ un 5-cycle. Alors $\langle (32415) \rangle = \{ \mathrm{id}, (32415), (34521), (31254), (35142) \}$ est un sousgroupe (non-distingué) de \mathfrak{A}_5 .

Remarque 1 (Le cas de \mathfrak{A}_3). On a $\mathfrak{A}_3 := \{id, (123), (132)\} = \langle (123) \rangle$.

Donc $(\mathfrak{A}_3, \circ) \simeq (\mathbb{Z}/3\mathbb{Z}, +)$. En particulier \mathfrak{A}_3 est simple.

Soit $n \in \mathbb{N} \setminus \{0, 1\}$ et $\sigma \in \mathfrak{S}_n$.

— On appelle ordre de σ le plus petit entier k>0 tel que $\sigma^k=id$, ie.

$$ord(\sigma) := min\{k \in \mathbb{N}^* : \sigma^k = id\}.$$

^{1.} On appelle V_4 le groupe de Klein.

Théorie des groupes Novembre 2024

Notons $\sigma = \sigma_1 \sigma_2 \cdots \sigma_m$ la décomposition de σ en produit de cycles à supports disjoints. Pour tout $i \in \{1, ..., k\}$, on note ℓ_i la longueur du cycle σ_i , ie. $\ell_i := |supp(\sigma_i)|$.

- On appelle type de σ le m-uplet $(l_1, l_2, ..., l_m)$.
- La signature de σ est notée $\varepsilon(\sigma)$ et elle vérifie :

$$\epsilon(\sigma) = \epsilon(\sigma_1) \cdot \epsilon(\sigma_2) \cdot \cdot \cdot \epsilon(\sigma_n) = (-1)^{l_1-1} (-1)^{l_2-1} \cdot \cdot \cdot (-1)^{l_m-1}.$$

En particulier $\varepsilon(\sigma) \in \{1, -1\}$.

Exemple 4. Si $\sigma = (123) \in \mathfrak{S}_3$. Alors $\operatorname{ord}(\sigma) = 3$, $\operatorname{type}(\sigma) = (3)$, $\varepsilon(\sigma) = 1$ Si $\sigma = (123)(57)(46) \in \mathfrak{S}_7$ alors : $\operatorname{ord}(\sigma) = \operatorname{ppcm}\{\operatorname{ord}(123), \operatorname{ord}(57), \operatorname{ord}(46)\} = \operatorname{ppcm}\{3, 2\} = 6$ $\operatorname{type}(\sigma) = (3, 2, 2)$ $\varepsilon(\sigma) = (-1)^{3-2}(-1)^{2-1}(-1)^{2-1} = 1$

2 Groupes quotient

Si (G, \times) est un groupe et $H \leq G$, alors

$$G/H = \{gH : g \in G\}$$

Et en notation additive : Si (G,+) est un groupe et $H \leq G$, alors $G/H = \{g+H : g \in G\}$.

Exemple 5. Si $G = \mathbb{Z}$ et $H = n\mathbb{Z}$, alors $G/H = \mathbb{Z}/n\mathbb{Z} = \{x + n\mathbb{Z} : x \in \mathbb{Z}\}$.

Exemple 6. Dans le cas où $G = \mathbb{C}$ et $H = \mathbb{R}$ on a

$$G/H = \mathbb{C}/\mathbb{R} = \{z + \mathbb{R} : z \in \mathbb{C}\}\$$

Remarque: Ici on ne précise pas la loi sur $\mathbb C$ mais il s'agit de la loi « + ». En effet, ni $\mathbb C$ ni $\mathbb R$ ne sont des groupes pour la multiplication.

Soit $(G/H, \times)$ un groupe quotient.

- 1. Soit gH une classe à qauche, il peut y avoir $g' \neq g$ dans G tel que gH = g'H.
- 2. Donc, quand on définit une application f sur G/H en utilisant un choix de représentant il faut vérifier que la définition de f ne dépend pas du représentant choisi, ie. que si $g_1,g_2\in G$ vérifient $g_1H=g_2H$, alors on a bien $f(g_1H)=f(g_2H)$.

Exemple 7. Soit $G/H = \mathbb{Z}/6\mathbb{Z}$. On a $G/H = \{x + 6\mathbb{Z} : x \in \mathbb{Z}\}$.

- 1. Étant donnée une classe $x+6\mathbb{Z}$, on a plusieurs choix de représentant x possibles. Par exemple : soit $x_1=3$ et $x_2=21$, alors $x_2=21\equiv 3$ [6]. Ainsi $3+6\mathbb{Z}=21+6\mathbb{Z}$.
- 2. Soit maintenant

$$f: \begin{cases} \mathbb{Z}/6\mathbb{Z} & \to \mathbb{Z}/6\mathbb{Z}, \\ x + 6\mathbb{Z} & \mapsto 2x + 6\mathbb{Z}. \end{cases}$$

Pour montrer que f est bien définie, on doit vérifier que si $x_1 + 6\mathbb{Z} = x_2 + 6\mathbb{Z}$, alors $f(x_1 + 6\mathbb{Z}) = f(x_2 + 6\mathbb{Z})$. C'est-à-dire montrer que $2x_2 + 6\mathbb{Z} = 2x_2 + 6\mathbb{Z}$.

Soient donc $x_1, x_2 \in \mathbb{Z}$ tels que $x_1 + 6\mathbb{Z} = x_2 + 6\mathbb{Z}$. Alors il existe $k \in \mathbb{N}$ tel que $x_1 = x_2 + 6k$. Ainsi

$$2x_1 = 2(x_2 + 6k) = 2x_2 + 6(2k) \equiv 2x_2[6].$$

Donc $2x_1 + 6\mathbb{Z} = 2x_2 + 6\mathbb{Z}$. Et ainsi $f(x_1 + 6\mathbb{Z}) = f(x_2 + 6\mathbb{Z})$.

Exemple 8. On considère le groupe quotient $(\mathbb{C}/\mathbb{R},+)$

1. Soient $z_1 = 1 + 4i$ et $z_2 = 42 + 4i$. Alors ces deux nombres complexes vérifient $z_1 + \mathbb{R} = z_2 + \mathbb{R}$. En effet : soit $w \in z_1 + \mathbb{R}$, alors il existe $x \in \mathbb{R}$ tel que $w = z_1 + x$. Et alors :

$$w = z_1 + x = 1 + 4i + x = 42 + 1 + 4i + x - 42 = (42 + 4i) + (x - 41).$$

Comme $x \in \mathbb{R}$, on a $(x-41) \in \mathbb{R}$ et donc $w \in (42+4i)+\mathbb{R} = z_2+\mathbb{R}$. Ce qui montre $z_1+\mathbb{R} \subseteq z_2+\mathbb{R}$. De la même manière on montre que $z_2+\mathbb{R} \subseteq z_1+\mathbb{R}$. Et donc on a $z_1+\mathbb{R}=z_2+\mathbb{R}$

2. Donc si on définit

$$\mathsf{f}: \begin{cases} \mathbb{C}/\mathbb{R} = \{z+\mathbb{R} \ : \ z\in\mathbb{C}\} & \to \mathbb{R}, \\ z+\mathbb{R} & \mapsto \mathrm{Im}(z). \end{cases}$$

Il faut vérifier que si on a z_1, z_2 deux nombres complexes qui vérifient $z_1 + \mathbb{R} = z_2 + \mathbb{R}$ alors $f(z_1) = f(z_2)$, c'est-à-dire $Im(z_1) = Im(z_2)$.

Si $z_1 + \mathbb{R} = z_2 + \mathbb{R}$ alors il exsite $x \in \mathbb{R}$ tel que $z_2 = z_1 + x$. Alors

$$Im(z_2) = Im(z_1 + x) = Im(z_1) + Im(x) = Im(z_1).$$

Donc f est bien définie.

3 Groupes engendrés

Soit $S \subseteq G$ une partie finie d'un groupe G. Le sous-groupe engendré par S est :

$$\langle S \rangle := \left\{ x_1^{\epsilon_1} \cdots x_n^{\epsilon_n} \ : \ n \in \mathbb{N}, \ x_i \in S, \ \epsilon_i \in \{\pm 1\} \right\}.$$

Exemple 9 (Groupes cycliques). Si $G = \mathbb{Z}/6\mathbb{Z}$ on a :

- $(\bar{2}) = \{\bar{0}, \bar{2}, \bar{4}\} \simeq \mathbb{Z}/3\mathbb{Z};$
- $-\langle \bar{3}\rangle = \{\bar{0},\bar{3}\} \simeq \mathbb{Z}/2\mathbb{Z};$
- $-\langle \bar{1}\rangle = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{4}, \bar{5}\} = G.$

Exemple 10 (Groupes Diédraux). Soit $n \ge 3$ et D_{2n} le groupe des isométries du n-gone régulier. Alors $D_{2n} = \langle r, s \rangle$ où r est la rotation d'angle $2\pi/n$ et s une symétrie par rapport à un des axes du n-gone.

Exemple 11 (Groupes symétriques/alternés).

- \mathfrak{S}_n est engendré par les transpositions. Ainsi $\mathfrak{S}_n = \langle \tau | \tau \in \mathfrak{S}_n, | \operatorname{supp}(\tau) | = 2 \rangle$.
- \mathfrak{A}_n est engendré par les 3-cycles. Par exemple si n = 4 on a

$$\mathfrak{A}_4 := \langle (123), (132), (143), (134), (124), (142), (234), (243) \rangle.$$

Soit G est un groupe. On note $D(G):=\langle [g,h]:g\in G,h\in H\rangle$ le groupe dérivé de G. Autrement dit D(G) est le sous-groupe de G engendré par $S_{D(G)}$ où

$$S_{D(G)} := \{ghg^{-1}h^{-1} : g \in G, h \in G\}.$$

Si G n'est pas commutatif, il peut y avoir plein de valeurs possibles pour les commutateurs de G. Donc $\{ghg^{-1}h^{-1}:g\in G,h\in G\}$ peut contenir de nombreux éléments. En particulier D(G) n'a aucune raison d'être systématiquement un groupe cyclique.

Exemple 12 (Groupes abéliens). Si G est abélien, alors pour tous $g, h \in G$ on a

$$ghg^{-1}h^{-1} = gg^{-1}hh^{-1} = e_Ge_G = e_G.$$

Donc dans ce cas $S_{D(G)} = \{ghg^{-1}h^{-1} : g \in G, h \in G\} = \{e_G\} \text{ et donc } \boxed{D(G) = \{e_G\}}$.

Exemple 13 (Groupe dérivé du groupe symétrique).

- 1. Montrons d'abord que $D(\mathfrak{S}_n) \leq \mathfrak{A}_n$.
 - On a $\varepsilon_n : \mathfrak{S}_n \to \{1, -1\}$ qui vérifie :
 - $-\{1,-1\}$ est abélien;
 - $\ker(\varepsilon_n) = \mathfrak{A}_n.$

Donc 2 D(G) $\subseteq \mathfrak{A}_n$.

2. Montrons maintenant que $\mathfrak{A}_n \subseteq D(\mathfrak{S}_n)$.

On sait que \mathfrak{A}_n est engendré par les 3-cycles. Or, si (abc) est un trois cycle, il vérifie

$$(abc) = (ab)(ac)(ab)^{-1}(ac)^{-1}$$
.

Ainsi (abc) = [(ab), (ac)] est un commutateur.

Donc la partie génératrice de \mathfrak{A}_n est contenue dans la partie génératrice de $D(\mathfrak{S}_n)$.

Donc $\mathfrak{A}_n \leqslant D(G)$.

Conclusion : $D(\mathfrak{S}_n) = \mathfrak{A}_n$

4 Groupes symétriques : cas particuliers

Soit
$$n \ge 2$$
. On rappelle que $|\mathfrak{S}_n| = n! = 1 \times 2 \times 3 \times \cdots \times n$.

Exemple 14 (Groupes symétriques).

- Si n = 2 on $a |\mathfrak{S}_2| = 2$.
 - En fait $\mathfrak{S}_2 := \{ id, (12) \}$. Donc $(\mathfrak{S}_2, \circ) \simeq (\mathbb{Z}/2\mathbb{Z}, +)$.
- Si n = 3 on $a |\mathfrak{S}_3| = 2 \times 3 = 6$.

On a $\mathfrak{S}_3 := \{ id, (12), (13), (23), (123), (132) \}.$

Un théorème du cours dit « $\forall n \geqslant 5$, \mathfrak{A}_n est simple ». Mais ce théorème ne dit rien si $n \leqslant 4$. Pour $n \leqslant 4$, il faut en fait faire du cas par cas.

Exemple 15 (Groupes alternés).

- $-\mathfrak{A}_2 = \{id\}$. Il s'agit donc du groupe trivial (qui n'est pas simple, par convention).
- $-\mathfrak{A}_3 := \{id, (123), (132)\} = \langle (123) \rangle.$

Donc $(\mathfrak{A}_3, \circ) \simeq (\mathbb{Z}/3\mathbb{Z}, +)$.

Remarque. En particulier \mathfrak{A}_3 est abélien et simple.

— On a vu (Exemple 2) que \mathfrak{A}_4 n'est pas simple.

 $^{2. \ \ \}text{(Propriété universelle du groupe dérivé)} \ \text{Si A est abélien et } f:G \rightarrow A \ \text{est un morphisme, alors } D(G) \subseteq \ker(f).$