

Jonsson hybrids and their similarities

Nazerke Mussina

*Karaganda Buketov University
Karagandy, Kazakhstan*

7me colloque franco-kazakh

15 November 2022, Lyon, France

- Introduction to Jonsson Theories features
- Existence of semantic model
- Perfectness
- Jonsson spectrum
- Notation for features of the Jonsson spectrum
- The syntactic similarity of complete theories
- The syntactic and semantic similarity of Jonsson theories
- The hybrids of Jonsson theories
- Examples of hybrids of Jonsson theories
- Main results

- ① Yeshkeyev A.R., Kasymetova M.T. *Jonsson theories and their classes of models*, Karaganda: Izdatelstvo KarGU, 2016. - P. 370. [in Russian]
- ② Yeshkeyev A.R., Ulbrikht O.I. *JSp-cosemanticness and JSB property of Abelian groups*, Siberian Electronic Mathematical Reports, Vol. 13 (2016), -P. 861–874.
- ③ Yeshkeyev A.R., Mussina N.M. *Properties of hybrids of Jonsson theories*, Bulletin of the Karaganda university, Mathematics series **92:4** (2018), 99-104.

Definition 1. [1]

A theory T is Jonsson if:

- 1) Theory T has infinite models;
- 2) Theory T is inductive;
- 3) Theory T admits the joint embedding property (*JEP*);
- 4) Theory T admits the property of amalgam (*AP*).

Examples of Jonsson theories are:

- 1) Group Theory,
- 2) Theory of Abelian groups,
- 3) Theory of fields of fixed characteristics,
- 4) Theory of Boolean algebras,
- 5) Theory of polygons over a fixed monoid,
- 6) Theory of modules over a fixed ring,
- 7) Theory of linear order.

Definition 2. [1]

Let $\kappa \geq \omega$. Model M of theory T is called

- **κ -universal** for T , if each model T with the power strictly less κ isomorphically imbedded in M ;
- **κ -homogeneous** for T , if for any two models A and A_1 of theory T , which are submodels of M with the power strictly less than κ and for isomorphism $f : A \rightarrow A_1$ for each extension B of model A , which is a submodel of M and is model of T with the power strictly less than κ there is exist the extension B_1 of model A_1 , which is a submodel of M and an isomorphism $g : B \rightarrow B_1$ which extends f .

Definition 3. [1]

Model C of Jonsson theory T is called **semantic model**, if it is ω^+ -homogeneous-universal.

Definition 4. [1]

The **center** of Jonsson theory T is called an elementary theory of the its semantic model. And denoted through T^* , i.e. $T^* = Th(C)$.

Fact 1. [1]

Each Jonsson theory T has k^+ -homogeneous-universal model of power 2^k . Conversely, if a theory T is inductive and has infinite model and ω^+ -homogeneous-universal model then the theory T is a Jonsson theory.

Fact 2. [1]

Let T is a Jonsson theory. Two k -homogeneous-universal models M and M_1 of T are elementary equivalent.

Definition 5. [1]

Jonsson theory T is called **a perfect theory**, if each a semantic model of theory T is saturated model of T^* .

Theorem 1. [1]

Let T is a Jonsson theory. Then the following conditions are equivalent:

- ① theory T is perfect;
- ② theory T^* is a model companion of theory T .

Let E_T be a class of all existentially closed models of theory T .

Theorem 2. [1]

If T is a perfect Jonsson theory then $E_T = \text{Mod}T^*$.

Jonsson spectrum

Definition 6. [2]

Let \mathcal{A} be an arbitrary model of signature σ . Let us call the **Jonsson spectrum** of model \mathcal{A} a set:

$$JSp(\mathcal{A}) = \{T \mid T \text{ is the Jonsson theory in a language } \sigma \text{ and } \mathcal{A} \in Mod T\}.$$

Definition 7. (Mustafin T.)

We say that Jonsson theory T_1 is **cosemantic** to the Jonsson theory T_2 ($T_1 \bowtie T_2$) if $C_{T_1} = C_{T_2}$, where C_{T_i} is a semantic model T_i , $i = 1, 2$.

The relation of cosemanticness on a set of theories is an equivalence relation. Then $JSp(\mathcal{A})/\bowtie$ is the factor set of the Jonsson spectrum of the model \mathcal{A} with respect to \bowtie .

Notation for features of the Jonsson spectrum

Let $[T] \in JSp(\mathcal{A})/\bowtie$. Since for each theory $\Delta \in [T]$ is $\mathcal{C}_\Delta = \mathcal{C}_T$, then the semantic model of the class $[T]$ will be called the semantic model of the theory T : $\mathcal{C}_{[T]} = \mathcal{C}_T$.

The center of Jonsson class $[T]$ will be called the elementary theory $[T]^*$ of its semantic model $\mathcal{C}_{[T]}$, i.e. $[T]^* = \text{Th}(\mathcal{C}_{[T]})$ and $[T]^* = \text{Th}(\mathcal{C}_\Delta)$ for each $\Delta \in [T]$.

Denote by $E_{[T]} = \bigcup_{\Delta \in [T]} E_\Delta$ the class of all existentially closed models of class $[T] \in JSp(\mathcal{A})/\bowtie$.

Definition 8 [1] (Mustafin)

Let T_1 and T_2 are complete theories. We will speak, as T_1 and T_2 are syntactically similar ($T_1 \stackrel{S}{\approx} T_2$), if $f : F(T_1) \longrightarrow F(T_2)$ exists bijection such that

- ① restriction f to $F_n(T_1)$ is isomorphism of Boolean algebras $F_n(T_1)$ and $F_n(T_2)$, $n < \omega$;
- ② $f(\exists v_{n+1}\varphi) = \exists v_{n+1}f(\varphi)$, $\varphi \in F_{n+1}(T)$, $n < \omega$;
- ③ $f(v_1 = v_2) = (v_1 = v_2)$.

Definition 9 [1] (Yeshkeyev)

Let T_1 and T_2 are an arbitrary Jonsson theories. We say that T_1 and T_2 are **Jonsson syntactically similar** ($T_1 \stackrel{S}{\sim} T_2$) if exists a bijection $f : E(T_1) \longrightarrow E(T_2)$ such that:

- ① restriction f to $E_n(T_1)$ is isomorphism of lattices $E_n(T_1)$ and $E_n(T_2)$, $n < \omega$;
- ② $f(\exists v_{n+1}\varphi) = \exists v_{n+1}f(\varphi)$, $\varphi \in E_{n+1}(T)$, $n < \omega$;
- ③ $f(v_1 = v_2) = (v_1 = v_2)$.

Definition 10 [1] (Yeshkeyev)

The pure triple $\langle C, \text{Aut}(\mathcal{C}), \text{Sub}(C) \rangle$ is called the Jonsson semantic triple, where C is universe of semantic model \mathcal{C} of theory T , $\text{Aut}(\mathcal{C})$ is the automorphism group of \mathcal{C} , $\text{Sub}(C)$ is a class of all subsets of C which are universe of the corresponding existentially closed submodels of \mathcal{C} .

Definition 11 [1] (Yeshkeyev)

Two Jonsson theories T_1 and T_2 are called the **Jonsson semantically similar** if their Jonsson semantic triples are isomorphic as pure triples.

Definition 12 [3]

1) Let T_1 and T_2 be some Jonsson theories of the countable language L of the same signature σ ; C_1 and C_2 are their semantic models, respectively. In the case of common signature of Jonsson theories T_1 , T_2 , let us call a hybrid of Jonsson theories T_1 and T_2 of the first type the following theory $Th_{\forall \exists}(C_1 \diamond C_2)$ if that theory is Jonsson in the language of signature σ and denote it by $H(T_1, T_2)$, where the operation $\diamond \in \{\times, +, \oplus, \prod_F, \prod_U\}$ and $C_1 \diamond C_2 \in Mod \sigma$.

Here \times means cartesian product, $+$ means sum, \oplus means direct sum, \prod_F means reduced product and \prod_U means ultraproduct of models. Herewith, the algebraic construction $(C_1 \diamond C_2)$ is called a semantic hybrid of the theories T_1 , T_2 .

Definition 12 [3]

2) If T_1 and T_2 are Jonsson theories of different signatures σ_1 and σ_2 , then $H(T_1, T_2) = Th_{\forall\exists}(C_1 \diamond C_2)$ will be called a hybrid of the second type, if that theory is Jonsson in the language of signature $\sigma = \sigma_1 \cup \sigma_2$ where $C_1 \diamond C_2 \in Mod \sigma$.

Obviously that 1) is the particular case of 2).

Examples of hybrids of Jonsson theories

- 1 Let T be some Jonsson theory, C be a semantic model of the theory T , $A, B \subseteq C$ and A, B be Jonsson subsets, where $dcl(A) = M_1$, $dcl(B) = M_2$ and $M_1, M_2 \in E_T$. Then, theories $T_1 = \text{Th}_{\forall \exists}(M_1)$ and $T_2 = \text{Th}_{\forall \exists}(M_2)$ are Jonsson theories. Let C_1 and C_2 be semantic models of these theories, respectively. Then $\text{Th}_{\forall \exists}(C_1 \times C_2) = H(T_1, T_2)$ is a hybrid of the first type of Jonsson theories T_1 and T_2 .
- 2 Let T_1, T_2 be the theories of groups. These theories are Jonsson theories. Let G_1 be the semantic model of the theory T_1 , G_2 be the semantic model of the theory T_2 . The particular case of this example of the hybrid is the example of acting of the group on itself.
- 3 Let T_1 be the theory of Abelian groups, T_2 is the theory of fields of fixed characteristic. Both T_1, T_2 are Jonsson theories. The particular case $H(T_1, T_2)$ is well-known notion of vector space.

The center of the hybrid

Since the hybrid of two Jonsson theories is a Jonsson theory, in the case when this theory is perfect, we will say for brevity – a perfect hybrid of two Jonsson theories. As the center of the hybrid $H(T_1, T_2)$, we will mean the center of the Jonsson theory $Th_{\forall \exists}(C_1 \diamond C_2)$ and denote it by $H^*(T_1, T_2)$.

Theorem 3.

Let K be an axiomatizable class of models of a countable language L of signature σ .

Let $[T_1], [T_2], [T_3], [T_4] \in JS(K)/\bowtie$, $H_1 = H([T_1], [T_2])$ and $H_2 = H([T_3], [T_4])$ are complete for existential sentences perfect hybrids, then following conditions are equivalent:

- 1 $H_1 \stackrel{S}{\sim} H_2$;
- 2 $H_1^* \stackrel{S}{\approx} H_2^*$.

Through $T_1 \stackrel{S}{\sim} T_2$ will be denote the Jonsson syntactic similarity of theories T_1 and T_2 . The syntactic similarities of the complete theories T_1 and T_2 will be denoted $T_1 \stackrel{S}{\approx} T_2$.

Theorem 4.

Let K be an axiomatizable class of models of a countable language L of signature σ , $[T_1], [T_2] \in JSp(K)/\bowtie$. For any perfect complete for \exists -sentences hybrid $H([T_1], [T_2])$ there is a Jonsson \exists -complete theory of the polygon T'_Π such that $H([T_1], [T_2]) \stackrel{\mathcal{S}}{\sim} T'_\Pi$.

Thank you for your attention!