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Notation

In what follows K is a local field, i.e., K is a complete non-archimedean discretely-valued
field. We will write OK for its valuation ring and πK is a uniformizer in its maximal ideal
m. We will write jK : SpecK ↪→ SpecOK for the canonical open immersion. Finally, let
k ..= OK/m be the residue field of OK and let i : Spec k ↪→ SpecOK be the corresponding closed
immersion. When k is not perfect, its characteristic char k is positive and is denoted by p.

We will write Knr for the maximal unramified extension of K inside a fixed separable closure
Ksep of K. Then Knr is again a local field and its valuation ring OKnr is a strict Henselianization
of OK which will be denoted by O sh

K .
When we consider the stalks for abelian sheaves on the étale site over SpecOK , we use the

notations η for a geometric point over SpecK and s for a geometric point over Spec k and identify
the limit over étale neighborhoods of η with SpecKsep and the limit over étale neighborhoods of
s with SpecO sh

K .

For a finite separable extension L/K, which is always assumed to be a subextension of
Ksep/K, L is again a local field in the above sense. We write Lnr = L ∩ Knr for the max-
imal subextension of L which is unramified over K. Note that Lnr = LKnr is the max-
imal unramified extension of L inside Ksep and restriction-to-Knr induces an isomorphism
Gal(Lnr/L) ∼= Gal(Knr/Lnr). We denote the inertia subgroup of Gal(L/K) by IL/K . This
is the kernel of the canonical map Gal(L/K) −→ Autk(l). The inertia subgroup of Gal(Ksep/K)
is denoted by IK . If there is no risk of confusion, we will just write I for IK .

For a scheme S, we denote the fiber of an S-scheme T at a point s ∈ S by Ts. A base
change of a scheme T over an affine base SpecR will be written as a tensor product T ⊗R R′.
For a SpecOK-scheme T we denote the generic and the special fiber as TK and Tk, respectively.
Similarly, a base change from SpecK to SpecL is usually only indicated with the index ·L and
we write RR′/R(·) for the Weil restriction from SpecR′ to SpecR.

As usual, Gm,U denotes the multiplicative group over the scheme U . If U is affine, say
SpecR, then we just write Gm,R. For an algebraic K-torus T we denote the character group
HomKsep−grp(TKsep ,Gm,Ksep) by X(T ). This is a continuous Gal(Ksep/K)-module. If we view
the character group as an abelian sheaf, then we write X(T ) for it. This sheaf is more precisely
the sheaf of rational characters.

In this work, sheaves are always abelian sheaves. By the étale site we mean the small étale
site as defined in [M, II,§1]. The smooth site over a scheme X consists of the category of smooth
X-schemes with surjective families of smooth morphisms as covers.
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We will denote Néron models by calligraphic letters. So if S is a Dedekind scheme and η is
the scheme of the generic fibers of S, then the Néron model of a smooth, separated algebraic
η -group Gη is denoted by G. For a point s ∈ S, the group of components of the smooth
s = Spec k(s)-scheme Gs is denoted by Φ(Gs).

If Gη is, moreover, commutative, we can also consider the Néron model as an abelian sheaf
on the smooth or étale site over S. This sheaf can canonically be identified with j∗Gη , where
j : η −→ S is the canonical open immersion.

However, for an algebraic K-torus T , we will abbreviate the group of components Φ(Tk) of
the special fiber of its Néron model by Φ(T ). This should not lead to any confusion, since a
K-torus is always connected as a scheme over K.



Introduction

Let K be a local field, by which we mean a discrete and non-Archimedean valued complete field 1 .
In this work, we study (lft-)Néron models of algebraic K-tori over SpecOK . In particular, their
groups of components will be described. Since group of components are defined fiber-by-fiber
and are invariant under completion, our descriptions also extend to global Néron models since
we do not impose any restrictions on the residue field.

Our interest in this problem comes from the fact that Néron models of algebraic tori are
among the basic building blocks of Néron models in general, because every commutative algebraic
K-group scheme can be written as a successive extension of group schemes which are abelian va-
rieties, unipotent group schemes or group schemes of multiplicative type. Further, algebraic tori
appear in the rigid-analytic uniformization of abelian varieties, whence Néron models of algebraic
tori can also be helpful in the description of Néron models of abelian varieties (see, e.g., [BX, §5]).

Now let T be an algebraic K-torus. A Néron model T of T over OK always exists. Let Φ be
the group of components of the special fiber Tk. If k is perfect, Xavier Xarles was able to give a
description of Φ in his paper [X]. In [X, Theorems 2.1 and 3.1] he defined natural isomorphisms

HomZ(Φ,Z) ∼= H0(I,X )

Ext1Z(Φ,Z) ∼= H1(I,X )

Φ ∼= coker
(
HomZ(X

′,Z) −→ HomZ

(
M I ,Z

))
where X is the character group of T , I is the inertia group of Gal(Ksep/K) and M and X ′ can
be determined from an I-acyclic and torsion-free resolution of X (see loc. cit.).

Xarles proves this description, which generalizes the results of L. Bégueri [Be, Theorems 7.2.1
and 7.2.2], using cohomological methods. He interprets the Néron model as a sheaf j∗T on the
étale and smooth sites over OK and shows that R1j∗T is trivial as an étale sheaf and also as
a smooth sheaf if T has multiplicative reduction. In this way he obtains from a short exact
sequence of algebraic tori a short exact sequence of their Néron models. He then applies the
functor Hom(·, i∗Z) to the sequence of Néron models.

Now there exists a canonical isomorphism for i = 0 in the étale topology and for i = 0, 1 in
the smooth topology

RiHom(T , i∗Z) ∼= RiHomZ(Φ,Z).

Thus Xarles obtains a long exact sequence for the free parts HomZ(Φ,Z) and the torsion parts
Ext1Z(Φ,Z) of the groups of components of a given torus. Using such sequences he can reduce
his proof of the general case to the cases where T has multiplicative reduction or has the form

1In algebraic number theory and arithmetric geometry, a local field is generally defined more restrictively : it
is required that the residue field k of OK be perfect or even finite. However, we are particularly interested in the
case where k is not perfect.
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T = RL/K(Gm,L).

In general, the above description is not valid in the case of an imperfect residue field. This
is reflected in Xarles’ proof via the fact that in the imperfect residue field case the étale sheaf
R1j∗T is certainly not trivial.

We will establish the following statements in the general situation. The description in [X,
Theorem 3.1] applies to algebraic tori which are split by a tamely ramified extension. Further,
the validity of the description in [X, Theorem 3.1] is compatible with the formation of Weil
restrictions along finite separable extensions ofK. The description of the free part in [X, Theorem
2.1] remains valid for algebraic tori which are split by a non-residually ramified extension. For
these tori, the description of the free part is also functorial, i.e. compatible with homomorphisms.
The prime-to-p part of the group of components can generally be written as in [X, Theorem 3.1],
i.e., the isomorphism given there holds true in the category of continuous Z

[
p−1
]
[Gk ]-modules.

One can construct algebraic tori that split only over a residually ramified extension and pro-
vide counterexamples to the claims of [X, Theorem 2.1]. In general, the free part can be described
as an extension of a finite p-group by X(T )I . The torsion part of the group of components is
always annihilated by the order of the inertia group of a splitting extension. The same estimate
also applies to H1(I,X(T )). For norm-one tori with respect to finite cyclic Galois extensions,
the torsion part of the group of components is bounded.

Our investigations of the Néron models of algebraic tori are structured as follows.
In Chapter 0 we cover some basics. We explain local and global Néron models. We show that

for a scheme S and a smooth and commutative S-group scheme G, the group of components of a
fiber Gs with s ∈ S can already be determined via S by those of G and of the identity component
G0 on the smooth or the étale site.

Further, we repeat definitions and properties of diagonalizable group schemes and of group
schemes of multiplicative type. We consider Cartier duality, with which we can describe Weil
restrictions of algebraic tori on the character groups as an induction of Galois modules. We also
prove that Cartier duality converts short exact sequences of torsion-free character groups into
short exact sequences with respect to the smooth or étale topology. Finally, we explain Xarles’
proof [X] in greater detail.

In Chapter 1 we consider some specific algebraic tori for which we can determine their Néron
models quite explicitly: the case of algebraic tori with multiplicative reduction can be reduced
to the construction of the Néron model of Gm,K using Galois descent. For Weil restrictions of
algebraic tori, we show that Weil restriction is compatible with the formation of the identity
component of the Néron model, whence the same holds for the group of components. Finally,
we construct the special fiber of the Néron model of a norm-one torus with respect to a cyclic
Galois extension of prime degree. This generalizes a computation from [LL, §5] and yields the
first counterexamples to a generalization of the description from [X].

In Chapter 2 we go back to the general situation and show that the group of components of a
local Néron model G of a smooth and commutative algebraic K-group GK is finitely generated.
This answers a question of Lorenzini’s [LL, §1.3]. To do this, we show that from a short exact
sequence of Néron models (in the smooth topology over SpecOK)

0 −→ G1 −→ G2 −→ G3 −→ 0

we obtain a short exact sequence of groups of components

0 −→ Φ̃ −→ Φ((G2)k) −→ Φ((G3)k) −→ 0,
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where Φ̃ is a quotient of Φ((G1)k). The finite generation statement is obtained by considering
the short exact sequence defined by the embedding of the maximal torus with multiplicative
reduction in GK . This sequence induces a short exact sequence of the corresponding lft-Néron
models. With the argument above, Φ(Gk) is then an extension of a finite group by a finitely
generated torsion-free group, i.e., it is finitely generated. With the construction of the Néron
model of a subgroup we see that in the above situation Φ̃ must be a quotient of a finite subgroup
of Φ((G1)k).

In Chapter 3 we deal with integral models of algebraic tori. These are OK-models of K-tori
which are flat and separated OK-groups. This class includes the ft-Néron model of Chai and
Yu [ChYu], but also the standard model considered by Moroz, Voskresenskii, Kunyavskii and
Popov. In order to make this literature useful, we include these models into the theory of Néron
models.

Since for an lft-Néron model G of a smooth and commutative algebraic K-group the group
Φ (Gk)tors is finite, we can find a smooth open subgroup G ft ⊆ G of finite type over OK whose
special fiber is exactly that which contains the connected components that induce the torsion
part of the group of components.

We define this subgroup G ft as the ft-Néron model and show that it has a lifting property for
certain étale points as well as mapping property similar to the Néron mapping property. Further,
G ft is compatible with étale base changes and the formation of Weil restrictions. For algebraic
tori, our definition is of course consistent with that of Chai and Yu.

The standard model of a torus T was introduced by Voskresenskii et al. and identified with
the schematic closure of T under the embedding

T ↪→ RL/K(TL) ∼= RL/K

(
Gdm,L

)
↪→ ROL/OK

(
Gdm,OL

)
for a splitting extension L/K of T [VKM, §5, Proposition 6]. Therefore, its smoothing is equal to
the ft-Néron model. Using an idea from [Edi], we derive a criterion to decide when a monomor-
phism of algebraic tori induces a closed immersion of their Néron models. For an algebraic torus
T we can identify the ft-Néron model with the étale sheaf Hom(j∗X(T ),Gm,OK

), which gives us
a deeper understanding of Xarles’ description of tori with multiplicative reduction. In summary,
we can say that the ft-Néron models already describe the identity component and the torsion
of the group of components of the lft-Néron model and are therefore useful because they are, in
principle, easier to determine.

After this digression, in Chapter 4 we analyze the sheaf R1j∗T in the étale and smooth
topologies. This sheaf is always a p = char(k)-primary torsion sheaf. If T splits over a tamely
ramified extension, then R1j∗T = 0. In addition, we describe the functors j∗ and R1j∗ for étale
groups. In Chapter 5 we generalize approaches from [X], [BX] and [LL]. We show that, for i = 0
and 1, in the smooth topology we have

RiHom(T , i∗C ) ∼= RiHomZ(Φ, C )

if C is a constant, torsion-free abelian sheaf. In analogy to [X], we examine the torsion-free part
of the group of components, which we can only determine via an exact sequence

0 −→ X(T )I −→ HomZ(Φ,Z) −→ E(T ) −→ 0,

where E(T ) is a finitely generated p-primary torsion module, which we refer to as the defect
term.

The defect term can be written as a group of components of a subset of R1j∗T
′ for a suitable

torus T ′. As abelian groups, HomZ(Φ,Z) and X(T )I remain isomorphic, but can support non-
isomorphic Galois module structures. This means that the maps of the free parts of the group of
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components induced by homomorphisms of algebraic tori can only be described using the above
sequences.

We also consider the possibilities of constructing exact sequences of group of components
from an exact sequence of Néron models of algebraic tori. By refining the results from the
second chapter, we generalize an idea contained in the proof of [X, Theorem 3.1] and can further
describe the group of components of norm-one tori, showing that the defect terms for algebraic
tori that split over a non-residually ramified extension are trivial.

In the last chapter we provide a description of the group of components as far as possible. For
algebraic tori T which split over a tamely ramified extension, we can transfer the results from [X]
to the smooth topology because R1j∗T = 0. For algebraic tori that split after a non-residually
ramified extension, the description of the free part is still valid. Since in this case the Néron
model is no longer an exact functor, we can only see the finite part as an extension

0 −→ H1(I,X(T )) −→ Ext1Z(Φ,Z) −→ Ext1Z
(
Φ
(
R1j∗T

′) ,Z) −→ 0

for a suitable K-torus T ′ .
Since R1j∗T and E(T ) are always p-primary torsion sheaves, it is reasonable to assume that

that part of the group of components which consists of prime-to-p-torsion elements does not
change. In fact, in general we can use the description from [X, Theorem 3.1] in the category of
Z
[
p−1
]
[Gk]-modules by applying Xarles’ proof using the functor Hom

(
·, i∗Z

[
p−1
])

.
However, in the category of Z

[
p−1
]
[GK ]-modules, not only the p-primary torsion of Φ is anni-

hilated; also the isomorphism classes of the Galois structures become larger, since isomorphisms
with coefficients in Z

[
p−1
]

are now allowed.
Using norm-one tori, we give explicit examples of algebraic tori where the free part and X(T )I

carry non-isomorphic Galois module structures.

For a complete description of the group of components, we still lack information about the
p-primary torsion component. Similarly to the situation with Néron models of abelian varieties
[ELL, Theorem 1], unfortunately we can only show that the p-primary torsion component of Φ is
annihilated by the maximal power of p that divides the order of IL/K , where L/K is a splitting
extension of T . The same estimate also applies to H1(I,X(T )). In all the examples we know,
the above estimate is not optimal.

The following conjecture seems plausible to the author: the torsion part of Φ is smaller, i.e.,
it is isomorphic to H1(I,X(T ))/E′, where E′ is some p-primary torsion module. In particular,
counterexamples to the description in [X, Theorem 3.1] only occur in the presence of residual
ramification.

This conjecture would be analogous to observations by Dino Lorenzini in the case of groups
of components of Néron models of Jacobian varieties.

Finally, I would like to thank everyone whose contribution and support made this work
possible. Above all, my thanks go to Professor Dr. Siegfried Bosch, who supervised my work and
always gave me encouragement and advice. I owe it to his appreciation of my work that I was able
to do my work as an employee of the Collaborative Research Center 478, "Geometric Structures
in Mathematics". I would like to thank the German research community and the Westphalian
Wilhelms University for the excellent working conditions at the Collaborative Research Center.

I would also like to thank my colleague and long-time friend, Dr. Jost Göttker-Schnetmann,
thank you for countless technical discussions. I would also like to thank Mr. Prof. Dr. Dino
Lorenzini and Mr. Dr. Sergei Popov for stimulating professional discussions, particularly during
their stays at the SFB 478.
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Chapter 0

Basics

This chapter explains some terms and constructions needed to describe the Néron model of an
algebraic torus and its group of components. We define Néron models and explain the connec-
tions between global and local Néron models. We also mention the most important existence
statements for Néron models and lft-Néron models.

We outline the construction of the group of components of a smooth group scheme. We
consider the group of components as a scheme and, in the case of a commutative group scheme,
also as a smooth and as an étale sheaf.

We define group schemes of multiplicative type, in particular algebraic tori, and cite important
properties of these group schemes. We consider here in particular the so-called Cartier duality:
for a connected, normal and locally Noetherian scheme S with a geometric point s̄, Cartier
duality induces an antiequivalence between the category of algebraic S-tori and the category of
continuous, finitely generated and torsion-free π1(S, s̄)-modules.

In the case that the base S is the spectrum of a field, we show that Cartier duality transforms
the Weil restriction functor into the induction of π1-modules. Using Cartier duality, we construct
exact sequences of algebraic tori in the smooth and étale topologies, which will be needed later
for determining the groups of components.

Finally, we give an overview of the work [X], in which the group of components of the Néron
model of an algebraic torus is described in the case of a local field with a perfect residue field.

0.1 Néron models

Let S be a Dedekind scheme, that is, a Noetherian normal scheme of dimension ≤ 1. The local
rings of S are fields or discrete valuation rings. If S itself is a local scheme, i.e., the spectrum of
a local ring, we speak of the local case. Otherwise we speak of the global case. The scheme S
splits into a finite number of irreducible components Si, whose generic points are denoted by ηi.
We call η ..= Spec(⊕k(ηi)) the scheme of the generic points of S. By definition, we have an open
immersion j : η −→ S. Using these notations, we can define an lft-Néron model:

Definition 0.1.1. Let Gη be a smooth and separated η -scheme of finite type. A Néron model
of Gη is an S-model G of Gη that is smooth, separated and of finite type and has the following
property, called the Néron mapping property:

For all smooth S-schemes Y and every η -morphism ϕη : Yη −→ Gη there exists exactly one
S-morphism ϕ : Y −→ G which extends ϕη.

13
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An S-model G of Gη that satisfies Néron’s map property and is separated and smooth but
only locally of finite type is called an lft-Néron model of Gη.

We will also refer to a Néron model in the local case as a local Néron model. Similarly, in
the global case we speak of global Néron models. It follows from [BLR, Proposition 1.2.4] that
global Néron models are composed of local Néron models. More precisely, for every closed point
s ∈ S the OS,s-scheme G ×S SpecOS,s is a Néron model of its generic fiber. On the other hand,
[BLR, Proposition 1.4.1] states that a global Néron model exists if, and only if, a global Néron
model exists over an open and dense subscheme S ′ ⊂ S and the local Néron models exist at the
finitely many closed points in S − S ′. By glueing these models together we obtain the Néron
model over S.

In the case of an η -group scheme Gη, the Néron model is an S-group scheme by the uniqueness
of the lifting. A smooth and commutative group scheme Gη can be understood as a sheaf on the
smooth and étale sites over η and its Néron model, if it exists, represents the sheaf j∗Gη on the
smooth and étale sites over S. In the case of the smooth site, the Néron model as a scheme is
clearly determined by this sheaf, since the Néron model is contained as a smooth scheme in the
site.

In this work we will limit ourselves to local lft-Néron models. More precisely, we will consider
the case where η = SpecK for a local field K and consider η as the generic fiber of S ..= SpecOK .
In the local case, it is known under which conditions Néron models exist.

Theorem 0.1.2. [BLR, Theorem 1.3.1] Let R be a discrete valuation ring with quotient field K
and strict Henselianization R sh and let Knr be the quotient field of R sh. Let GK be a smooth
K-group scheme of finite type. Then there exists a Néron model G of GK over SpecR if, and
only if, GK(Knr) is bounded in GK .

Consequently, Néron models always exist for smooth K-group schemes that are proper, e.g.,
for abelian varieties. In the above theorem, the restriction to models of finite type is very
important. For lft-Néron models, a full solution to the question of existence has so far only been
achieved for commutative group schemes.

One can explicitly construct an lft-Néron model for the multiplicative group Gm,K [BLR,
10.1.5] and show that the additive group Ga,K cannot have a Néron model [BLR, 10.1.8]. Using
Descent and an explicit consideration of anisotropic tori and wound unipotent groups, one can
then show that a smooth and commutative K-group scheme GK of finite type has an lft-Néron
model over OK if, and only if, GK ⊗K Knr does not have a subgroup of the form Ga,Knr [BLR,
10.2.2]. This lft-Néron model is of finite type, i.e., a Néron model, if, in addition, GK ⊗K Knr

does not contain a subgroup of the form Gm,Knr [BLR, Theorem 10.2.1]. Here, a subgroup U of
GK is always a closed subgroup, because a subgroup, as a subscheme, is an open subscheme in a
closed subscheme. Thus U is also an open subscheme in its closure Ū . This is again a subgroup
of GK . But now an open subgroup over a field is already closed, so that U = Ū follows.

0.2 The group of components of a smooth scheme
In [SGA3, VIa and VIb] the identity component of a smooth group scheme is defined. To review
this, let S be a scheme and let G be an S-group scheme. The identity component G0 is defined
in [SGA3, VIb, Definition 3.1] as a subgroup functor

U/S ⇝ G0(U) ..=
{
u ∈ G(U) | ∀s ∈ S, us(Us) ⊂ G0

s

}
,

where G0
s is the identity component of Gs ..= G×S Spec k(s) as a k(s)-group scheme [SGA3, VIa,

§2].
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If G is a smooth S-group scheme, it follows from [SGA3, VIb, Theorem 3.10] that G0 is
represented by an open and smooth subgroup. This is the union of the identity components of
the fibers and is of finite type over S (see loc. cit. 3.4-3.6). The identity component is fiber-
wise geometrically irreducible [SGA3, VIa, Proposition 2.4], i.e., all fibers G0

s are geometrically
irreducible.

Now let s ∈ S be a point. In the fiber above s we have the group of components of Gs,
i.e., the quotient Φ(Gs) ..= Gs/G

0
s . This quotient Φ(Gs) is represented by an étale k(s)-scheme

[SGA3, VIa, 5.5] and the associated morphism Gs −→ Φ(Gs) is flat and surjective [SGA3, VIa,
Theorem 3.2].

The above quotient can be described in the smooth and the étale topologies, provided we
consider commutative group schemes G:

If G is commutative, one can form an exact sequence of abelian sheaves on the smooth site
over S

0 −→ G0 −→ G −→ Φ(G) −→ 0. (1)

For a point i : s ↪→ S, i∗ is an exact functor since difference kernels exist on the smooth site
(cf. [M, II, 1.13 and 2.6]). By [M, II, 3.1(d)], i∗G0 and i∗G are represented by G0

s and Gs,
respectively, because G0 and G are smooth group schemes. So we obtain an exact sequence

0 −→ G0
s −→ Gs −→ i∗Φ(G) −→ 0.

In the fpqc topology, the quotient Gs/G0
s is represented by the étale group scheme Φ(Gs). The

restriction from the fpqc topology to the smooth topology is left exact, so that i∗Φ(G) is a
subsheaf of Φ(Gs). On the other hand, G0

s is a smooth scheme, so the morphism Gs −→ Φ(Gs)
is surjective in the smooth topology. This means that Φ(Gs) ∼= i∗Φ(G).

We now look at sequence (1) over the étale site. Just as in the smooth case, i∗ is exact. We
factor i as the composition s

is−→ SpecOS,s
iS−→ S. By [M, II, 3.1(d)], we have a canonical map

i∗SG −→ GOS,s
which is induced by the map

ipSG −→ GOS,s

(f, g) =(f ∈ G(U), g : U ′ → U) 7−→ fg ∈ G(U ′) = GOS,s
(U ′) ,

where U ′ → SpecOS,s and U → S are finite étale morphisms. By [EGA IV, 8.8.2] or [BLR, 1.2.5],
for a map f : U ′ −→ GOS,s

there exists an open neighborhood S ′ ⊆ S of s on which a lifting
f̃ : Ũ −→ GS ′ of f exists with Ũ → S ′ étale. Conversely, for a pair (f ∈ G(U), g : U ′ −→ U) with
fg = 0 ∈ GOS,s

(U ′) there exists an open neighborhood S ′ ⊆ S of s such that f |S ′ = 0. This
shows that i∗SG is represented by GOS,s

, and similarly i∗SG
0 is represented by G0

OS,s
.

Using the canonical morphism from [M, II 3.1(d)], we obtain a commutative diagram

0 i∗sG
0
OS,s

i∗sGOS,s
i∗Φ(G) 0

0 G0
s Gs Φ(Gs) 0.

α β

The bottom row is left-exact as a restriction of an fpqc-exact sequence. The surjectivity of
Gs → Φ(Gs) can be checked on the fiber over s̄. By [M, II, 2.9(d)], for a sheaf represented by
a k(s)-group scheme of finite type H, the stalk at s̄ corresponds to H(k(s)sep). The image of
a point x ∈ Φ(Gs)(k(s)

sep) in Φ(Gs) has an open preimage Ux in Gs which is not empty since
Gs −→ Φ(Gs) is surjective. Since Ux is smooth over k(s), Ux(k(s)sep) is dense in Ux [BLR,
2.2.13] and therefore Ux(ksep) is not empty. Since we can assume, after making a finite étale
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base change if necessary, that the image of x in Gs is geometrically connected, Ux(ksep) must
contain a preimage of x, i.e., an element that maps to x.

Now [M, II, Theorem 3.2] yields the following for the fibers over s̄:

Gs̄ = G
(
O sh
S,s

)
=(i∗sG)s̄ and G0

s̄ = G0
(
O sh
S,s

)
=
(
i∗sG

0
)
s̄
.

By [BLR, 2.3.5], the morphisms G
(
O sh
S,s

)
= GO sh

s,s

(
O sh
S,s

)
−→ Gs(k(s)

sep) and G0
(
O sh
S,s

)
=

G0
O sh

S,s

(
O sh
S,s

)
−→ G0

s (k(s)
sep) are surjective, whence in the above diagram the maps α and β

are surjective as well.
Thus there exists a map i∗Φ(G) −→ Φ(Gs) and this map is surjective by the surjectivity of

β and injective by the surjectivity of α. This means that Φ(Gs) ∼= i∗Φ(G).
Summarizing, we obtain

Proposition 0.2.1. Let S be a Dedekind scheme and let G be a commutative smooth S-group
scheme. Let i : s −→ S be a point. Then the group scheme of components Φ(Gs) of Gs represents
the sheaf i∗

(
G/G0

)
on the smooth and étale sites over k(s) and is uniquely determined by this

sheaf on both of these sites.

Proof. We have established the representability above. It remains to be shown that the group
of components is uniquely determined by the sheaf.

In the smooth topology this is clear because Φ(Gs) is contained in the smooth site over k(s).
However, Φ(Gs) is not finite in general, whence Φ(Gs) does not belong to the étale site over k(s).
As an étale scheme, Φ(Gs) corresponds to the Gal(k(s)sep/k(s))-module Φ(Gs)(k(s)

sep) which,
by [M, II, Theorem 1.9], is uniquely determined by the étale sheaf represented by Φ(Gs).

In this work we will usually regard a group of components as a Galois module. For our
investigations we have to break up the group of components into a torsion part and a torsion-
free part. Since we will see later that the group of components of Néron models are always
finitely generated modules, the following considerations suffice :

Let Γ be a profinite topological group and let Φ be a finitely generated Γ-module. If one
wants to decompose Φ into a torsion-free part and a torsion part, this must be done taking the
Γ-module structure into account. Following Xarles, to do this we can dualize, i.e., apply the
functor HomZ(·,Z), and identify the torsion-free part with HomZ(Φ,Z) and the torsion part
with Ext1Z(Φ,Z). Of course, Z has the trivial Γ-module structure and, for two Γ-modules A and
B, HomZ(A,B) is equipped with the Γ module structure given by

σ · f ..= ρB(σ) ◦ f ◦ ρA
(
σ−1

)
,

where σ ∈ Γ and f ∈ HomZ(A,B) and ρ(.) denotes the Γ-action as a representation ρ : Γ −→
AutZ(·).

The action on Ext1Z(Φ,Z) is explained similarly, since one can compute Ext using an injective
resolution of Z. Since Φ is finitely generated, the modules constructed in this way are again
continuous and finitely generated.

As Xarles shows [X, Lemma 2.7], we can dualize these parts again and find an exact sequence

0 −→ Ext1Z
(
Ext1Z(Φ,Z),Z

)
−→ Φ −→ HomZ(HomZ(Φ,Z),Z) −→ 0.

This sequence can also be understood by considering the torsion part Φtors of Φ as an abelian
group. This is already a Γ-submodule, because the automorphisms with which Γ acts must
restrict to automorphisms of the torsion part. If we define the torsion part in this way, then we
can define the torsion-free part as the quotient of Φ by its torsion part.
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0.3 Algebraic tori
Let S be a scheme and let G be an S-group functor from the category of schemes over S to the
category of sets. Consider the contravariant functor

D : (S− group functors) ⇝ (commutative S− group functors)

G ⇝ D(G) ..= HomS−grp(G,Gm,S) .

D(G) is called the dual (or Cartier dual) of G and, by definition, for an S-scheme Y we have
D(G)(Y ) ..= HomY−grp(GY ,Gm,Y ). The dual is compatible with base changes under morphisms
of schemes S ′ −→ S.

For an arbitrary group M and an arbitrary S-scheme X, let MX be the constant X-group
scheme associated to M . As a scheme, this is equal to ⨿m∈MXm, where Xm = X for all m ∈M .
For an X-scheme Y , HomX(Y,MX) is equal to the set of locally constant maps from Y to M .
If M is an abelian group, then the functor D(MS) is represented by an S-group scheme.

Definition 0.3.1. [SGA3, VIII, Definition 1.1] An S-group schemeG is diagonalizable if there ex-
ists an abelian groupM such thatG is isomorphic to the schemeD(MS) = HomS−grp(MS ,Gm,S).

For a diagonalizable scheme, the points with values in an S-scheme Y are computed as follows:

D(MS) (Y ) = HomS(Y,D(MS)) = HomS

(
Y,HomS−grp(MS ,Gm,S)

)
= HomZ(M,HomS(Y,Gm,Y )) .

Theorem 0.3.2. [SGA3, VIII, Theorem and Corollaries 1.2-1.4] Let M be an abelian group and
let S be a scheme. The canonical morphism MS −→ D(D(MS)) is an isomorphism and every
character χ : D(MS) −→ Gm,S corresponds uniquely to a locally constant map S −→M .

If N is another abelian group, then there exists a natural isomorphism

HomS-grp(D(MS) , D(NS)) ∼= HomS-grp(NS ,MS)

If N is finitely generated, then the natural injection

(HomZ(N,M))S ↪→ HomS−grp(NS ,MS)

is an isomorphism and therefore

(HomZ(N,M))S
∼= HomS−grp(D(NS) , D(MS)) .

Proposition 0.3.3. (cf. [SGA3, VIII, Proposition 2.1]) Let M be an abelian group. Then:

1. The scheme D(MS) is faithfully flat and affine over S. More precisely D(MS) = SpecOS [M ].

2. D(MS) is of finite presentation ⇐⇒ D(MS) is of finite type ⇐⇒ M is finitely generated.

3. D(MS) is finite ⇐⇒ M is finite.

4. M = 0 ⇐⇒ D(MS) is the trivial group.

5. D(MS) is a smooth S-scheme ⇐⇒ M is finitely generated and the order of the torsion
part of M is prime to the characteristic of the field k(s) for every point s ∈ S.

The functor D(·S) transforms direct sums into fiber products over S. Further, we have
D(ZS) = Gm,S and D((Z/nZ)S) = µn,S , so every diagonalizable group of finite presentation is
a fiber product of copies of the multiplicative group scheme and of groups of roots of unity.
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Theorem 0.3.4. [SGA3, VIII, Proposition 3.1] Let S be a scheme and let

0 M ′ M M ′′ 0u v

be an exact sequence of abelian groups. Then the dual of this sequence

0 −→ D(M ′′
S )

v′−→ D(MS)
u′

−→ D(M ′
S) −→ 0

is exact, i.e., u′ is flat and quasi-compact and v′ induces an isomorphism of D(M ′′
S ) with the

kernel of u′.

Using Descent Theory, one can enlarge the category of diagonalizable group schemes to the
category of group schemes of multiplicative type. The latter are the group schemes that arise
from a diagonalizable group scheme through a flat and quasi-compact descent.

Definition 0.3.5. (see [SGA3, IX, 1.1]) Let S be a scheme and letG be an S-group scheme. Then
G is called a group scheme of multiplicative type if G is locally diagonalizable in the faithfully
flat and quasi-compact topology. That is, for every s ∈ S there exists an open neighborhood
U of s in S and a faithfully flat and quasi-compact S-morphism U ′ −→ U such that GU ′ is a
diagonalizable U ′-group scheme.

The group G is called quasi-isotrivial if one can further require U ′ −→ U to be étale and
surjective. If there exists an étale, surjective and finite morphism S ′ −→ S such that GS ′ is
diagonalizable, then G is said to be isotrivial of multiplicative type.

Definition 0.3.6. (cf. [SGA3, IX, 1.3]) Let S be a scheme. An S-torus T is an S-group scheme
that is locally isomorphic, in the faithfully flat and quasi-compact topology, to the group scheme
Grm,S for some integer r ≥ 0.

By an S-torus T we will always understand an isotrivial (!) S-torus of finite type. Since
we will only consider fields or discrete valuation rings as basis S, isotriviality is not an actual
restriction:

Proposition 0.3.7. [SGA3, X, 5.16] Let S be a normal and locally noetherian scheme. Then
every group of multiplicative type and of finite type over S is isotrivial.

The isotrivial group schemes of multiplicative type can be described using the theory of Galois
descent. To do this, we first Galois morphisms.

Definition 0.3.8. [M, I, §5] Let G be a finite group and let Y and X be connected schemes. Let
GY denote the constant Y -group scheme G. A morphism of schemes Y −→ X is called Galois,
with Galois group G, if it is finite and faithfully flat and G acts on Y −→ X in such a way that
G acts trivially on X and the induced morphism

ψ : GY = ⨿σ∈GYσ −→ Y ×X Y

y ∈ Yσ 7−→ (y, σy)

is an isomorphism. In other words, Y is a G-torsor over X and the morphism Y −→ X is
necessarily étale.

For a connected scheme S with a geometric point s̄ −→ S, one can construct the fundamental
group π1(S, s̄). This is a compact topological group which is a projective limit of finite discrete
groups. The fundamental group can be characterized by the property that it induces an equiv-
alence between the category of finite and étale S-schemes and the category of finite continuous
π1(S, s̄)-modules [M, I, §5, particularly Theorem 5.3].
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Proposition 0.3.9. [SGA3, X, 1.2] Let S be a connected scheme and let s̄ −→ S be a geometric
point of S. Then the category of isotrivial S-group schemes of multiplicative type is anti-equivalent
to the category of continuous π1(S, s̄)-modules.

Via this anti-equivalence, an isotrivial group scheme of multiplicative type corresponds to its
character group:

Definition 0.3.10. (Character group) Let S be a connected scheme and let s̄ be a geometric
point of S. Let T be an isotrivial S-group scheme of multiplicative type and of finite type. Then
the π1(S, s̄)-module Xs̄(T ) ..= Hom s̄-grp(Ts̄,Gm,s̄) is called the character group of T .

For a morphism of schemes S ′ −→ S, we call HomS ′-grp(TS ′ ,Gm,S ′) the group of S ′-rational
characters of T and X(T ) ..= HomS-grp(T,Gm,S) the sheaf of rational characters.

The character group of an algebraic torus is a finitely generated, torsion-free and continuous
π1(S, s̄)-module. Since the group structure on T is also defined by Galois descent, X(T )(S ′) =

Xs̄(T )
π1(S ′,s̄′). Thus, in particular, the sheaf of rational characters is actually a sheaf on the

étale site over S.
If T is an isotrivial S-group scheme of multiplicative type, then a Galois extension S ′ −→ S

over which T is diagonalizable is called a splitting extension of T .
We now want to use the character group to construct sequences of algebraic tori, which can

be seen as exact sequences of sheaves on the étale or smooth site.

Proposition 0.3.11. Let S be a connected scheme with a geometric point s̄ and let (Ti)i=1,2,3

be isotrivial S-group schemes of multiplicative type. If there exists a short exact sequence of
π1(S, s̄)-modules

0 −→ Xs̄(T3) −→ Xs̄(T3) −→ Xs̄(T3) −→ 0 (2)

and Xs̄(T3) is finitely generated and torsion-free, then the induced sequence

0 −→ T1 −→ T2 −→ T3 −→ 0

is a short exact sequence of abelian sheaves on both the smooth and étale sites over S.

Proof. By the anti-equivalence mentioned above, the homomorphisms of character groups induce
homomorphisms of group schemes T1 −→ T2 and T2 −→ T3. These, in turn, induce morphisms
of the corresponding étale (respectively, smooth) sheaves.

By isotriviality, there exists a finite, étale and surjective morphism S ′ −→ S such that all
Ti ×S S ′ are diagonalizable group schemes. Without loss of generality, we may assume that S ′

is connected.
After the indicated base change, the maps between character groups (viewed as π1(S ′, s̄′)-

modules with trivial action) induce maps Ti ×S S ′ −→ Ti+1 ×S S ′. It follows from [SGA3, VIII,
Theorem 3.1] that the sequence

0 −→ T1 ×S S ′ −→ T2 ×S S ′ −→ T3 ×S S ′ −→ 0

is exact in the fpqc topology over S ′. It is therefore certainly left-exact in the smooth and étale
topologies. By the assumption that Xs̄(T1) is finitely generated and torsion-free, T1 is a smooth
S ′ scheme, whence the map T2 −→ T3 is surjective in the smooth topology.

In the étale topology we can check surjectivity on the stalks. So let s′ ∈ S ′ be a point and
let s̄′ be a geometric point that lies over s′. Now let OS ′,s̄′ = O sh

S ′,s′ be the limit of all étale
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neighborhoods of s̄′. Then, by [M, II, 2.9(d)], the sequence of stalks in s̄′ is isomorphic to the
sequence

0 −→ T1(OS ′,s̄′) −→ T2(OS ′,s̄′) −→ T3(OS ′,s̄′) ,

and this is isomorphic by Cartier duality to the sequence

0 −→ HomZ

(
Xs̄(T1) ,O∗

S′,s̄′
)
−→ HomZ

(
Xs̄(T2) ,O∗

S ′,s̄′
)
−→ HomZ

(
Xs̄(T3) ,O∗

S ′,s̄′
)
.

Since (2) is exact and Xs̄′(T1) is torsion-free, we have Ext1Z
(
Xs̄′(T1) ,O∗

S ′,s̄′

)
= 0. Consequently,

the sequence of stalks is surjective at T3(OS ′,s̄′).
Since S ′ −→ S is a covering in the étale and smooth topologies, the sequence

0 −→ T1 −→ T2 −→ T3 −→ 0

is also exact on the corresponding sites over S.

Proposition 0.3.12. Let S be a connected scheme with a geometric point s̄. Let T be an
isotrivial S-torus of finite type. Then on the étale site over S we have:

HomS(·, T ) ∼= Hom(X(T ),Gm,S) ,

where X(T ) is the sheaf of rational characters of T .

Proof. Without loss of generality, we may assume that T ×S S ′ is diagonalizable, where S ′ −→ S
is a Galois morphism. We can verify the isomorphism of the statement locally, so we may
assume that U = SpecA is affine and U −→ S is finite and étale. Further, let U ′ be a connected
component of U ×S S ′. We may assume that U ′ = SpecB is affine and Galois over U . Now T is
diagonalizable over U ′, whence TU ′ = SpecB[Xs̄(T )] and TU comes from TU ′ via Galois descent
with respect to the finite group Gal(U ′/U ). More precisely, Gal(U ′/U ) acts on the algebra
B[Xs̄(T )] via the canonical action on B and the induced action on Xs̄(T ). Note that Gal(U ′/U )
is a quotient of Gal(S ′/S ).

Thus

T (U) = TU (U) = TU ′ (U ′)
Gal(U ′/U )

= HomB(B[Xs̄(T )] , B )
Gal(U ′/U ) = HomZ(Xs̄(T ), B

∗)
Gal(U ′/U ) .

Conversely, Hom(X(T ),Gm,S)(U ′) = HomZ(Xs̄(T ), B
∗), since for each sheaf F the iden-

tity Hom(Z,F) = F holds, where Z stands for the constant sheaf with value Z. Since U ′ −→
U is a Galois cover, it follows from the sheaf condition, i.e., the exactness of the sequence
Hom(X(T ),Gm,S) (U) −→ Hom(X(T ),Gm,S)(U ′)⇒ Hom(X(T ),Gm,S)(U ′ ×U U ′), that we have
an isomorphism Hom(X(T ),Gm,S) (U) ∼= HomZ(Xs̄(T ), B

∗)
Gal(U ′/U ).

According to the definition of diagonalizable group schemes, these isomorphisms are functorial
in U ′ and therefore also in U .

Incidentally, note that the reverse duality does not hold, i.e., the étale sheaf Hom(T,Gm,S)
is not isomorphic to HomS(·, X(T )) in general. For example, consider a perfect local field K of
characteristic p. By [M, III, 1.7(c)], the sheaf Hom(Gm,K ,Gm,K) is represented on the étale site
over K by the module

M ..=
⋃
H

HomH((Ksep)∗, (Ksep)∗) ,

where H runs through all open normal subgroups of Gal(Ksep/K). If the reverse duality were
valid, then we should have M = Z. By the perfectness of K, for every x ∈ (Ksep)∗ there is
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exactly one p-th root in Ksep and the map x 7−→ x1/p is an isomorphism. Thus for all open
normal subgroups H ⊂ Gal(Ksep/K) we have

Z
[
p−1
]
7−→ HomH((Ksep)∗, (Ksep)∗)

n/pr 7−→
(
x 7−→ xn/p

r
)
,

whence Z
[
p−1
]
⊂M .

0.4 Weil restrictions of algebraic tori

Next we want to describe the Weil restriction of algebraic tori. For simplicity, we limit ourselves
to tori over local fields.

If we work with a fixed separable closure of K, we do not explicitly specify a geometric point
s̄ in the fundamental group, since this must factor through the morphism SpecKsep −→ SpecK.
For any field K, we have π1(SpecK) = Gal(Ksep/K) [M, I, 5.2(a)].

We briefly recall the definition of the Weil restriction of a scheme:

Definition 0.4.1. Let S ′ −→ S be a morphism of schemes and

X ′ : (Schemes/S ′) −→ (Sets)

a contravariant functor. Then the contravariant functor

RS ′/S(X ) : (Schemes/S) −→ (Sets)
Y 7−→ X ′(Y ×S S ′)

is called the Weil restriction of X ′ with respect to S ′ −→ S.

If X ′ is a representable functor, we also denote the representing S ′-scheme by X ′. If S ′ −→ S
is a finite, locally free and faithfully flat morphism, then the Weil restriction of a representable
functor is again representable [BLR, Theorem 7.6.4]. In this case, RS ′/S(X

′) also denotes the
representing S-scheme. For further properties of the Weil restriction please see [BLR, 7.6].

To describe the character group of the Weil restriction of a torus, we need the concept of
induction.

Definition 0.4.2. Let G be a group and let H be a subgroup. Let M be an H-module. Then
the G-module IndHGM

..= M ⊗Z[H ] Z[G] is called the induction of M with respect to G ⊃ H. A
module of the form Z[G]⊗Z M is called an induced G-module.

The G-module CoindHGM
..= HomZ[H ](Z[G],M) is called the coinduction of M with respect

to G ⊃ H. A module of the form HomZ(Z[G],M) is called a coinduced module.

By Shapiro’s lemma [Br, Proposition III.6.2], we have Hn
(
G,CoindHG M

)
= Hn(H,M) and

Hn

(
G, IndHG M

)
= Hn(H,M). If [G : H ] is finite, then induction and coinduction are isomorphic

to each other [S, VII, §1, p. 110]. If H ⊂ G is a subgroup, then an induced G-module is also
an induced H-module. If G is a finite group, then an induced G-module M is cohomologically
trivial, i.e., for all k ∈ Z and every subgroup H of G, the Tate cohomology group Ȟk(H,M) is
trivial.
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Proposition 0.4.3. Let L/K be a finite separable extension of local fields of degree n = [L : K ]
and let T ′ be a torus over L. Let GK ..= Gal(Ksep/K) and GL ..= Gal(Ksep/L). Then the Weil
restriction RL/K(T ′) is a torus over K with character group

X
(
RL/K(T ′)

)
= IndGL

GK
X(T ′) .

Proof. We show the claim using the defining property of the Weil restriction for the torus of the
specified character group. So let M/L be a finite, Galois extension such that T ′ splits over M .
Thus T ′ ⊗LM ∼= SpecM [X(T ′)] and by Galois descent we have T ′ ∼= SpecM [X(T ′)]

Gal(M/L).
For an affine K-scheme Y = SpecB we have

RL/K(T ′) (Y ) = T ′(Y ⊗K L) = HomL(Y ⊗K L, T ′) = HomM (Y ⊗K M,T ′ ⊗LM)
Gal(M/L)

= HomM-alg(M [X(T ′)] , B ⊗K M)
Gal(M/L)

= HomZ

(
X(T ′) ,(B ⊗K M)

∗)Gal(M/L)
.

Let d be the rank ofX(T ′) and let e1, . . . , ed be a Z-basis ofX(T ′). Let the elements of Gal(M/L)
be (τk)k=1,...,m, where m ..= [M : L], and let the action of τk on X(T ′) be represented by the
matrix (t(k)i,j) ∈ GL(d,Z).

Then an element from HomZ

(
X(T ′) , (B ⊗K M)

∗)Gal(M/L) is determined by specifying ele-
ments bj ∈(B ⊗K M)

∗ for j = 1, . . . , d such that

τk (bj) =

d∏
i=1

b
t(k)i,j
i ,

where τk acts on B ⊗K M via its canonical action on M .
Now let R be the K-torus with character group IndGL

GK
X(T ′). Then R splits over the finite

Galois extension M/K. In particular, we can redefine GL as Gal(M/L) and GK as Gal(M/K)
without changing the Gal(Ksep/K)-action on IndGL

GK
X(T ′).

Let σ1, . . . , σn ∈ Gal(M/K) represent the GL -coordinate classes in GK . This gives us a
Z-basis for IndGL

GK
(ej,l) with j = 1, . . . , d and l = 1, . . . , n.

An element ξ ∈ GK permutes the GL-coclasses, i.e., there is a permutation ψξ of {1, .., n} such
that ξσlGL = σψξ(l)GL. Further, for such ξ and every index l there is an index k(ξ, l) ∈ {1, ..,m}
so that

ξσl = σψξ(l)τk(ξ,l),

where τk(ξ,l) ∈ GL is as above. This allows us to compute the GK-action on the basis ej,l

ξej,l = τk(ξ,l)ej,ψξ(l) =

d∑
i=1

t(k(ξ, l))i,jei,ψξ(l),

where t(·)i,j is defined as above.

Now we have R ∼= SpecM
[
IndGL

GK
X(T ′)

]Gal(M/K)

and for an affine K-scheme Y = SpecB

Galois descent yields

HomK(Y,R) = HomM (Y ⊗K M,R⊗K M)
Gal(M/K)

= HomM

(
Y ⊗K M,SpecM

[
IndGL

GK
X(T ′)

])Gal(M/K)

= HomM−alg

(
M
[
IndGL

GK
X(T ′)

]
, B ⊗K M

)Gal(M/K)

= HomZ

(
IndGL

GK
X(T ′) ,(B ⊗K M)

∗
)Gal(M/K)

.
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A morphism β ∈ HomK(Y,R) corresponds to the specification of elements bj,l ∈(B ⊗K M)
∗ such

that for all ξ ∈ GK we have

ξ(bj,l) =

d∏
i=1

(
bi,ψξ(l)

)t(k(ξ,l)i,j
. (0.4.3.1)

Without loss of generality, we may assume that the representative σ1 is the identity element of
GK . It follows that

τk(bj,1) =

d∏
i=1

(bi,1)
t(k)i,j .

So a morphism β yields an element from T ′(Y ⊗K L) represented by the given elements
(bj,1)j=1,...,d from (B ⊗K M)

∗. This assignment is clearly functorial in Y and compatible with
the group laws on R and T ′.

Conversely, we obtain a point (bj,1) ∈ T ′(Y ⊗K L), by setting bj,l ..= σl(bj,1). Now let
j ∈ {1, .., d}, ξ ∈ GK and l ∈ {1, .., n} be arbitrary. Then the following holds

ξ(bj,l) = ξσl(bj,1) = σψξ(l)τk(ξ,l)(bj,1)

= σψξ(l)

(
d∏
i=1

(bi,1)
t(k(ξ,j)i,j

)
=

d∏
i=1

(
bi,ψξ(l)

)t(k(ξ,l)i,j
So all relations of the form 0.4.3.1 hold. Summarizing, we have an isomorphism R(Y ) ∼=
T ′(Y ⊗K L) = RL/K(T ′) (Y ) for affine K-schemes Y . By construction, this isomorphism is
functorial in Y , so that R = RL/K(T ′).

Using the above explicit description of the character group of a Weil restriction, we can obtain
interesting statements.

Proposition 0.4.4. Let K be a local field and let T be an algebraic K-torus. Further, let L/K
be a finite separable extension. Then there exists an exact sequence of algebraic K-tori in both
the smooth and the étale topology

0 −→ T ′ −→ RL/K(TL) −→ T −→ 0. (3)

Proof. Let d be the rank of X(T ). Then X(T ), as a Z module, has a base (ej)j=1,...,d. Let
M/L be a finite Galois extension of degree m ..= [M : L] such that T trivializes over M and
σ1, . . . , σm ∈ Gal(M/K) are representatives of the GL ..= Gal(M/L) cosets of GK ..= Gal(M/K).
Further, let the elements of GL be uniquely denoted by τ1, . . . , τm. Below we recall some of the
notation from the proof of Proposition 0.4.3 for the L-torus TL.

We define a Z-linear map

ι : X(T ) −→ IndGL

GK
σiX(TL)

v 7−→
(
σ−1
1 (v), .., σ−1

l (v), .., σ−1
m (v)

)
.

This map is obviously injective. It is also compatible with the action of GK . Indeed, as in the
previous proof, let ψξ(l) and k(ξ, l) be represented by the equations ξσl = σψξ(l)τk(ξ,l) in GK .
Then for any v ∈ X(T ) we have

σ−1
ψξ(l)

ξv = τk(ξ,l)σ
−1
l v.

Now let ϕξ ..= ψ−1
ξ be the inverse function. It follows that

ι(ξv) =
(
σ−1
1 (ξv), .., σ−1

l (ξv), .., σ−1
m (ξv)

)
=
(
τk(ξ,ϕξ(1))σ

−1
ϕξ(1)

(v), . . . , τk(ξ,ϕξ(l))σ
−1
ϕξ(1)

(ξv), ., τk(ξ,ϕξ(m))σ
−1
ϕξ(1)

(ξv)
)
.
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This is exactly ξι(v) since the l = ψξ(ϕξ(l))-th component of ξι(v) is τk(ξ,ϕξ(l)) relative to the
ϕξ(l)-th component of ι(v).

The image of ι is saturated in Zd [Gal(L/K)]. Thus when we add an r ∈ N and compare

rvi = σ−1
i (v)

for i = 1, . . . , n with v ∈ X(T ) and vi ∈ Zd, then v must already be in rX(T ) because the σi are
isomorphisms.

So we have a short exact sequence of continuous and torsion-free Gal(L/K)-modules

0 −→ X(T ) −→ Zd[Gal(L/K)] −→ X(T ′ ) −→ 0. (4)

Thus the assertion follows from Proposition 0.3.11.

By the universal property of the Weil restriction, there exists a map T −→ RL/K(TL) which
corresponds to the identity of TL. This map is a closed immersion, because it is a homomorphism
of group schemes and T is separated. Using the notations as above, on character groups this
corresponds to the map

IndGL

GK
X(TL) −→ X(T )

(v1, . . . , vn) 7−→
n∑
i=1

σi(vi) .

Proposition 0.4.5. Let L/K be a finite Galois extension of local fields with Galois group G.
Then every torsion-free and finitely generated G module X admits a G-acyclic resolution

X −→ J −→ J ′ −→ · · ·

by torsion-free and finitely generated G-modules.

Proof. Let d be the rank of X and consider the embedding ι : X −→ Zd[G] for X constructed
in the proof of Proposition 0.4.4. Since the group G is finite, the induced G-module Zd[G] is
coinduced, hence (cohomologically) G-acyclic. So set J ..= Zd[G] with the embedding ι : X −→ J .

The quotient J/ι(X ) is, as shown above, torsion-free and finitely generated as the quotient
of a finitely generated module. So, using the same construction as above, we can embed the
quotient in a torsion-free and finitely generated G-acyclic module J ′. The assertion yields an
inductive continuation of this construction.

We now want to define the so-called norm-one tori.

Definition 0.4.6. Let L/K be a finite separable extension of local fields. Then the norm-one
torus associated to the extension L/K is the K-torus TN defined by the exact sequence (3)
corresponding to the choice T = Gm,K :

0 −→ TN −→ RL/K(Gm,L) −→ Gm,K −→ 0. (5)

By Proposition 0.4.4, existence is clear and we see that

X(TN ) = Coker
(

Z −→ IndGL

GK
Z
)
,

where the map Z −→ IndGL

GK
Z corresponds to the diagonal embedding m 7−→ (m, . . . ,m).

The name norm-one torus is justified by the following observation.
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Proposition 0.4.7. Let Y = SpecB be affine and let L/K be a finite separable extension of
local fields. Further, set G ..= HomK(L,Ksep). Then the map

RL/K(Gm,L) (Y ) −→ Gm,K(Y )

in the definition of the norm-one torus corresponds to the norm map

(B ⊗K L)
∗ −→ B ∗

x 7−→
∏
σ∈G

(id⊗ σ)(X ) ∈(B ⊗K L)
G ∼= B.

Proof. Let M/L be a finite Galois extension and set n ..= [L : K ]. Let σ1, . . . , σn represent the
GL ..= Gal(M/L) co-classes of GK ..= Gal(M/K). An element β ∈ RL/K(Gm,L) corresponds to
giving elements (bj)j=1,...,n in B ⊗K M such that, for all ξ ∈ Gal(M/K), the relations

ξ(bj) = τk(ξ,j)
(
bψξ(j)

)
hold, where the elements are represented by the equation ξσj = σψξ(j)τk(ξ,j) with τk(ξ,j) ∈ GL
uniquely determined.

The relations imply that GL acts trivially on the bj , so the bj already come from B ⊗K L.
Further, bj = σj(b1) if we assume (without loss of generality) that σ1 = e. The map of the
character group is the diagonal embedding, so that the point (bj) is mapped to the product∏n
j=1bj ∈ B ∗.

0.5 Néron models of algebraic tori

Let S be a Dedekind scheme and let η be the scheme of generic fibers of S. It is shown in [BLR,
10.1.6] that every algebraic η -torus has an lft-Néron model over S. Further, [BLR, Theorem
1.2.4] also applies to lft-Néron models, i.e., a global lft-Néron model is obtained by glueing local
lft-Néron models. Since the group of components is defined fiber by fiber, it suffices to examine
the group of components in the local case. Algebraic tori are connected, so one is interested
only in the group of components of the special fiber. Since Néron models are compatible with
completions and a completion is an isomorphism on the special fiber, it suffices to consider the
case of a local field.

From now on we only consider algebraic tori over a local field K. The lft-Néron model G
of Gm,K can be constructed explicitly (see. [BLR, 10.1.5]) and can be described by an exact
sequence

0 −→ Gm,OK
−→ G −→ i∗Z −→ 0.

See also [SGA7, VIII, §6].
A finite unramified Galois extension L/K of local fields induces an étale and faithfully-flat

(even Galois) extension of the associated discrete valuation rings. So the Néron model of an
algebraic K-torus T which splits over L can be derived from the Néron model of TL ∼= Gdm,L.

Such tori are called algebraic tori with multiplicative reduction and have the following prop-
erties :

Definition 0.5.1. [NX, 1.2] Let K be a local field. An algebraic K -torus T has multiplicative
reduction if one of the following equivalent conditions is satisfied:

1. X(T )I = X(T ), i.e., the inertia group acts trivially on the character group X(T ).
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2. T splits over an unramified extension of K.

3. There is a torus T 0 over Spec OK such that T 0
K = T .

4. The identity component of the Néron model of T is a torus over SpecOK .

5. The reduction T 0
k of the identity component of the Néron model is a k -torus.

We now use Proposition 0.3.11 to define certain specific exact sequences of K-tori.

Proposition 0.5.2. Let K be a local field and let T be an algebraic K-torus. Then there exists
a canonical maximal quotient T I of T which is a torus with multiplicative reduction. We have a
short exact sequence of algebraic K-tori in the smooth and the étale topologies

0 −→ T̃ −→ T −→ T I −→ 0. (6)

A homomorphism of K-tori ϕ : T1 −→ T2 induces a commutative diagram of algebraic K-tori

0 T̃1 T1 T I1 0

0 T̃2 T2 T I2 0

ϕ

Proof. Let X(T ) be the character group of T . A quotient T I of T which is a torus corresponds
one-to-one to a Gal(Ksep/K)-submodule of X(T ). By the Definition 0.5.1, there exists a maximal
quotient with multiplicative reduction and it corresponds to the torus with the character group
X(T )I . This submodule is saturated, i.e., the quotient X(T )/X(T )I is a continuous and torsion-
free Gal(Ksep/K)-module X(T̃ ). This gives us an exact sequence of continuous and torsion-free
Gal(Ksep/K)-modules

0 −→ X(T )I −→ X(T ) −→ X(T̃ ) −→ 0. (7)

A morphism ϕ : T1 −→ T2 corresponds to a homomorphism of Galois modules D(ϕ) : X(T2) −→
X(T1) and, clearly, there exists an induced commutative diagram

0 X(T2)
I X(T2) X(T̃2 ) 0

0 X(T1)
I X(T1) X(T̃1 ) 0

D(ϕ)D(ϕ)|X(T2)I

Thus the assertion in the statement follows from Proposition 0.3.11.

Proposition 0.5.3. (cf. [X, 2.13]) Let K be a local field and let T be an algebraic K-torus.
Then there exists an exact sequence of algebraic K-tori in the smooth and étale topologies

0 −→M −→ Q −→ T −→ 0, (8)

where M has multiplicative reduction and Q is such that H1(I,X(Q)) = 0, where I is the inertia
subgroup of Gal (Ksep/K).

Proof. It suffices to construct the corresponding sequence of character groups. To do this, we
start with the sequence (4)

0 −→ X(T ) −→ Zd[Gal(L/K)] −→ X(R) −→ 0.
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and consider the preimage X(Q) of X(R)I in Zd[Gal(L/K)]. Then X(Q) is a torsion-free and
saturated Gal(L/K)-submodule and we have a sequence

0 −→ X(T ) −→ X(Q) −→ X(R)I −→ 0.

By definition, this sequence is exact except, perhaps, at X(Q). All that remains to be shown is
that each element from the kernel of the map X(Q) −→ X(R)I comes from X(T ). But this is
clear because the initial sequence was exact. By definition we have an exact sequence

0 −→ X(Q) −→ Zd[Gal(L/K)] −→ X(R)/X(R)I −→ 0. (9)

Since the Galois action on X(Q) factors through Gal(L/K) and X(Q) is torsion-free, we have
H1(GL, X(Q)) = 0. By [S, VII, §6 Proposition 5] and the exactness of the direct limit functor, we
conclude that H1(I,X(Q)) = H1

(
IL/K , X(Q)

)
, where IL/K is the inertia group of the extension

L/K. Now, since H0
(
IL/K , X(R)/X(R)I

)
= H1

(
IL/K ,Zd[Gal(L/K)]

)
= 0, the long exact

IL/K-cohomology sequence induced by (9) yields H1
(
IL/K , X(Q)

)
= 0.

Now we can explain the description of the group of components of the Néron model of an
algebraic torus given by Xavier Xarles in [X]. This description assumes that the residue field is
perfect.

So let K be a local field with a perfect residue field and let T be an algebraic K-torus with
character group X(T ). Let T be the Néron model of T over SpecOK and let Φ ..= Φ(Ts) be the
group of components of the special fiber of the Néron model. This is always interpreted as a
Gk ..= Gal(ksep/k)-module. Finally, let I ..= Gal(Ksep/Knr) be the inertia group of Gal(Ksep/K).
As we saw in Proposition 0.2.1, one can determine the group of components of the special fiber
of the Néron model of an algebraic torus T in the étale topology. Xarles also takes this approach.
In [X, Theorem 1.1] it is stated that Φ ∼= HomZ(X(T ),Z) if T has multiplicative reduction.
Xarles proves this by explicitly determining the sequence

0 −→ T 0 −→ T −→ i∗Φ −→ 0.

In [X, Theorem 2.1], Xarles shows that for any K-torus T there are natural isomorphisms

HomZ(Φ,Z) ∼= X(T )I = H0(I,X(T )) (0.5.3.1)

Ext1Z(Φ,Z) ∼= H1(I,X(T )) (0.5.3.2)

To prove these two statements, Xarles uses two basic tools. On the one hand, he uses that in the
étale topology the formation of the Néron model for algebraic tori is exact, whence R1j∗T = 0
[X, Lemma 2.3]. This means that Xarles obtains short exact sequences of their Néron models
from short exact sequences of algebraic tori.

On the other hand, Xarles identifies the sheaves

Hom(T , i∗Z) ∼= Hom(i∗Φ, i∗Z) ∼= i∗ HomZ(Φ,Z)

in the smooth and étale topologies and, in the smooth topology, the sheaves

Ext1(T , i∗Z) ∼= Ext1(i∗Φ, i∗Z) ∼= i∗ Ext
1
Z(Φ,Z).

These identifications are given in [X, Lemmas 2.2 and 2.12 and proof of Proposition 2.14].
With these tools, he gets the statement 0.5.3.1 from the sequence (6)

0 −→ T̃ −→ T −→ T I −→ 0
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by applying the functors j∗ and Hom(·, i∗Z) in the étale topology.
On the other hand, he gets the statement 0.5.3.2 from the sequence (8)

0 −→M −→ Q −→ T −→ 0

by applying the functors j∗ and Hom(·, i∗Z) in the smooth topology. For this he needs the
auxiliary results that R1j∗T vanishes in the smooth topology for tori with multiplicative reduction
[X, Lemma 2.11], and that algebraic tori T with H1(I,X(T )) = 0 have a torsion-free group of
components [X, Proposition 2.7], whence Ext1(j∗R, i∗Z) = 0. The statement [X, Proposition
2.7] is essentially based on properties of the Weil restriction [X, Proposition 2.6].

The main result of Xarles is [X, Theorem 3.1]. Here Xarles chooses an I-acyclic resolution

X(T ) −→ J ′ −→ J ′′ −→ · · ·

of the character group with Z-free continuous Gal(Ksep/K)-modules and defines

X ′ ..= ker(J ′ −→ J ′′) .

This gives him the statement

Theorem 0.5.4. [X, Theorem 3.1] There exists an exact sequence of Gk-modules

0 −→ HomZ

(
(X ′)I ,Z

)
−→ HomZ

(
M I ,Z

)
−→ Φ −→ 0.

Xarles proves this result by using the short exact sequence

0 −→ X(T ) −→ J −→ X ′ −→ 0

and Cartier duality to obtain a short exact sequence of algebraic tori

0 −→ T ′ −→ TJ −→ T −→ 0

and shows that the associated short exact sequence of Néron models induces a short exact
sequence of groups of components

0 −→(Φ′)
∨∨ −→ ΦJ −→ Φ −→ 0.

Here (·)∨ = HomZ(·,Z).

To understand the proofs in [X] some remarks are necessary: Xarles uses the fact that the
isomorphism Φ ∼= HomZ(X(T ),Z) from [X, 1.1] is compatible with homomorphisms of algebraic
tori without proving this explicitly. This compatibility implies that the isomorphisms from [X,
2.1] are also natural, i.e. compatible with homomorphisms. This is also implicitly required when
computing Φ in [X, Theorem 3.1].

Further, Xarles formulates his results without specifying a finite splitting extension of T . This
leads to a problem with [X, Theorem 3.1]: the I-acyclic module J cannot be finitely generated
[Br, VI, Theorem 8.7(v)], since I is an infinite profinite group, and thus the Cartier dual of J is
not an algebraic torus.

To get around this problem, it is advisable to formulate the descriptions relative to a finite
Galois splitting extension L/K of T . To do this, we specify our notations: IK is the inertia
group of Gal(Ksep/K), IL is the inertia group of Gal(Ksep/L) and IL/K is the inertia group
of Gal(L/K). Since L/K is Galois, IL is a normal subgroup of IK and IL/K ∼= IK/IL. Since
the action of Gal(Ksep/K) factors through the quotient Gal(L/K), it follows that X(T )IK =
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X(T )IL/K . Using the canonical inflation-restriction exact sequence [S, VII, §6 Proposition 5] and
the exactness of the direct limit functor, we obtain an exact sequence

0 −→ H1
(
IL/K , X(T )

)
−→ H1(IK , X(T )) −→ H1(IL, X(T )) .

Since the profinite group IL acts trivially on the torsion-free groupX(T ), we have H1(IL, X(T )) =
0. Thus we can also compute H1 relatively. In particular, the Galois structure induced by
Gal(ksep/k) −→ Gal(l/k) on the group Hi

(
IL/K , X(T )

)
equals the canonical Galois structure

on the group Hi(IK , X(T )) (for i = 0, 1).
Similarly, an I-acyclic resolution can also be understood as an IL/K-acyclic resolution by con-

tinuous Gal(L/K)-modules. These are again transformed into continuous Gal(Ksep/K)-modules
by the projection Gal(Ksep/K)↠ Gal(L/K).

As already mentioned in the Introduction, the results [X, 2.1 and 3.1] cannot be extended to
arbitrary local fields. The reason for this is that the formation of the Néron model is no longer
exact in general, since the Brauer group of Knr is no longer trivial when k is not perfect.

From a more general perspective, new interpretations of the proofs in [X] arise: the sequence
used by Xarles in the proof of [X, Theorem 1.1] can be defined for arbitrary tori and then has
the form

0 −→ T ft −→ T −→ i∗H
0(I,X(T )) −→ · · · ,

where T ft is the ft-Néron model of T defined in Theorem 3.1.3.
The considerations from the proof of [X, Theorem 3.1] can be generalized. From any short

exact sequence of Néron models

0 −→ N1 −→ N2 −→ N3 −→ 0

we can obtain a short exact sequence of groups of components

0 −→ Φ̃(N1) −→ Φ(N2) −→ Φ(N3) −→ 0,

where Φ̃(N1) is a quotient of Φ(N1) by a suitable torsion subgroup. With this result one can
derive [X, 3.1] from the description 0.5.3.1 using [X, 2.7]. The description 0.5.3.2 then follows
as a corollary to [X, Theorem 3.1]. We will follow this method of proof in Theorem 6.1.1, for
example.
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Chapter 1

Néron models of some specific
algebraic tori

Let K be a local field and let T be an algebraic K-torus. The lft-Néron model T of T exists and
we denote the group of components of the special fiber of this model by Φ(T ) ..= Φ(Tk). Since
we are considering algebraic tori, Néron models in this chapter are always lft-Néron models.

First, we consider an algebraic torus T with multiplicative reduction. Starting from the
explicit construction of the Néron model of Gm,K , we can describe T in this case via Galois
descent. We can identify the identity component T 0 and the OK-torus Hom(X(T ),Gm,OK

). This
gives us an isomorphism Φ(T ) ∼= HomZ(X(T ),Z), which is compatible with homomorphisms of
tori with multiplicative reduction .

Next we consider the case where T = RL/K(T ′), where L/K is a finite separable extension of
local fields and T ′ is an L-torus. If T ′ is the Néron model of T ′ , then ROL/OK

(T ′ ) is the Néron
model of T and we will show that its identity component is equal to ROL/OK

(
(T ′)0

)
. By the

exactness of the Weil restriction functor in the étale topology, it follows that ROL/OK
(i∗Φ(T

′)) =
i∗Φ(T ).

Conversely, the Weil restriction on the character groups corresponds to the induction of Galois
modules. Thus [X, Theorem 3.1] holds for Φ(T ) if, and only if, it holds for Φ(T ′ ).

After these direct generalizations of some of the results from [X], we want to provide a first
family of counterexamples. To do this, we generalize the calculation of the reduction of the
Néron model for norm-one tori with respect to a cyclic and totally ramified extension L/K of
degree p = char(k) from [LL, §5].

For these tori, [X, Theorem 3.1] predicts a group of components of the form Z/pZ. If L/K
induces a trivial extension of the residue fields, this remains valid. However, our calculations
provide counterexamples if there is residual ramification. Specifically, in our examples the group
of components is trivial.

These examples also provide a counterexample to a generalization of [NX, Proposition 3.2],
since in the case of residual ramification we find that, instead of Gp−1

a,k , we obtain a k-wound
unipotent group as the reduction of the identity component.

1.1 Néron models of tori with multiplicative reduction

Let T be an algebraic K-torus with multiplicative reduction and let T be the Néron model of
T . Then there exists a finite, unramified and Galois extension L of K such that the torus T

31
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trivializes over L, i.e. TL ∼= Gdm,L ∼= SpecL[X(T )], where d = dim(T ). Since the formation of
Néron models is compatible with an unramified base change [BLR, 10.1.3], one can obtain the
Néron model T via Galois descent from the Néron model of Gdm,L over OL.

The Néron model GdOL
of Gdm,L over SpecOL is constructed by gluing copies of

πν1L Gm,OL
×OL

πν2L Gm,OL
×OL

· · · ×OL
πνdL Gm,OL

∼= Gdm,OL
,

where ν1, . . . , νd ∈ Z, along the generic fibers.
On the generic fiber, the trivialization Gdm,L ∼= SpecL[X(T )] yields an effective descent datum

in the form of an action of the Galois group Gal(L/K) on SpecL[X(T )]: this action is defined
on the algebra L[X(T )] by the simultaneous canonical action on the scalars from L and on the
characters (as Gal(L/K)-module, since by hypothesis Gal(Ksep/L) acts trivially on X(T )). The
effectiveness is clear because the operating group is finite.

By the Néron mapping property, the action extends to an action on the Néron model GdOL

and also yields an effective descent datum.
The isomophism Gdm,L ∼= SpecL[X(T )] extends to an isomorphism(

GdOL

)0 ∼= Gdm,OL
∼= SpecOL[X(T )].

The Galois group Gal(L/K) acts on L[X(T )] via K-automorphisms and these clearly are
limited to OK-automorphisms of OL[X(T )]. This means that the identity component of GdOL

is
stable under the descent datum and maps into the OK-torus TO ..= SpecOL[X(T )]Gal(OL/OK)

(defined by X(T ) as Gal
(
O sh
K /OK

)
-module). So T 0 = TO.

We now want to determine the short exact sequence

0 −→ T 0 −→ T −→ i∗Φ(T ) −→ 0.

We repeatedly use the decomposition theorem [M, II, Example 3.12, p. 75], which states that
there exists an equivalence of categories between the category of abelian sheaves on the étale site
over SpecOK and the category of triples (MK , Nk, ϕ), where MK is a continuous Gal(Ksep/K)-
module, Nk is a continuous Gal(ksep/k)-module and ϕ : : Nk −→ M I is a Gal(ksep/k)-module
homomorphism. For an étale sheaf F , under the equivalence MK is the representing module of
j∗F on the étale site over SpecK, Nk is the representing module of i∗F on the étale site over
Spec k and ϕ corresponds to the morphism i∗F −→ i∗j∗j

∗F . Morphisms of sheaves correspond
to pairs of continuous homomorphisms of the Galois modules which commute with the maps ϕ.

Proposition 1.1.1. Let T be an algebraic K-torus with multiplicative reduction and let T be its
Néron model over OK . Then there exists a commutative diagram in the étale topology

T 0 T

Hom(j∗X(T ),Gm,OK
) Hom(j∗X(T ), j∗Gm,K)

∼=∼=

where the inclusion on the top row comes from the canonical open immersion of the identity
component and the map on the bottom row is induced by the inclusion ι : Gm,OK

−→ GK coming
from the short exact sequence for the Néron model of Gm,K .

Proof. We first establish the isomorphisms. By Cartier duality, we have T ∼= Hom(X(T ),Gm,K).
It follows that

T = j∗T = j∗Hom(X(T ),Gm,K) = Hom(j∗X(T ), j∗Gm,K) ,
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since X(T ) ∼= j∗j∗X(T ).
Since T has multiplicative reduction, X(T ) can be viewed as a sheaf over OK by identifying

X(T ) with the triple (X(T ), X(T ), id) = j∗X(T ). By Cartier duality, it follows that T 0 =
TO = Hom(X(T ),Gm,OK

). To check commutativity, it suffices to check it on test schemes of
the following forms: U = SpecL′, where L′/K is a finite and separable field extension, and
U = SpecOL′ for a finite and unramified field extension L′/K. For schemes of the first form,
on the top row we have T 0(SpecL′) = T (L′), as well as T (SpecL′) = T (L′), and the inclusion
T 0 ↪→ T corresponds to the identity map id : T −→ T on the generic fiber. For the bottom row
we find

Hom(j∗X(T ),Gm,OK
) (U) = HomU (X(T )|U ,Gm,U ) and

Hom(j∗X(T ), j∗Gm,K) (U) = HomU

(
X(T )|U , j∗Gm,K |U

)
.

Since the pullback over U of the map Gm,OK
−→ j∗Gm,K is the identity on Gm,U , both rows of

the diagram are isomorphic via Cartier duality.
We now consider test schemes of the second form, U = SpecOL′ , where L′/K is a finite

unramified extension. Without loss of generality, we may assume that the splitting extension L
was chosen so that L ⊃ L′.

On the top row we can use the U = SpecOL′ -valued points as the Gal(L/L′)-invariant
SpecOL-valued points, whereby the Galois action is derived from the trivialization

T 0(U) = HomOL

(
SpecOL,Gdm,OL

)Gal(L/L′)
= HomZ(X(T ),O∗

L)
Gal(L/L′)

T (U) = HomOL

(
SpecOL,GdOL

)Gal(L/L′)
= HomZ(X(T ), L∗)

Gal(L/L′)

Now the trivialisation TL = SpecL[X(T )] induces the trivialisation TOL
= SpecOL[X(T )].

Thus the map O∗
L ↪→ L∗ also induces the inclusion

T 0(U) = HomZ(X(T ),O∗
L)

Gal(L/L′) −→ HomZ(X(T ), L∗)
Gal(L/L′) = T (U).

Let us now look at the bottom row :
A ψ ∈ HomU ( j∗X(T )|U ,Gm,U ) = Hom(j∗X(T ),Gm,OK

) (U) corresponds, according to
the decomposition theorem, to a pair (ψη, ψs) with a Gal(Ksep/L′)-module homomorphism
ψη : X(T ) −→ (Ksep)∗ together with a Gal(Knr/L′ ) - module homomorphism ψs : X(T ) −→
(O sh

K )∗ and a compatibility condition, namely that ψη on the I-invariants matches ψs. Since
X(T )I = X(T ), ψη and ψs must already be equal. This means that ψ is already uniquely
determined by ψs. We obtain

HomU ( j∗X(T )|U ,Gm,U ) = HomGal(Knr/L′)

(
X(T ), (O sh

K )∗
)

= HomZ

(
X(T ), (O sh

K )∗
)Gal(Knr/L′)

and similarly, using the formula (j∗Gm,K)s̄ = (Knr)∗,

Hom(j∗X(T ), j∗Gm,K) (U) = HomU

(
j∗X(T )|U , j∗Gm,K |U

)
= HomGal(Knr/L′)(X(T ), (Knr)∗) = HomZ (X(T ), (Knr)∗)

Gal(Knr/L′ ) .

Since T trivializes over L, in these descriptions we can always replace Gal (Knr/L′) by Gal
(L/L′). On the stalks above s̄, the map Gm,OK

−→ j∗Gm,K corresponds to the canonical inclusion
(O sh

K )∗ −→ (Knr)∗, which shows commutativity.

This gives us two important results:
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Theorem 1.1.2. (See [X, 1.1]). Let K be a local field and let T be a K-torus with multiplicative
reduction and character group X(T ). Then the sequence

0 −→ Hom(j∗X(T ),Gm,OK) −→ Hom(j∗X(T ),G) −→ Hom(j∗X(T ), i∗Z) −→ 0,

which results by applying Hom(j∗X(T ), ·) to the short exact sequence of the Néron model of
Gm,K , is exact and isomorphic to the sequence

0 −→ j∗T
0 −→ j∗T −→ i∗Φ(T ) −→ 0.

In particular, Φ(T ) ∼= HomZ(X(T ),Z) for the group of components as a Gal(ksep/k)-module.

Proof. Proposition 1.1.1 yields the isomorphism of the sequences if the first sequence is exact,
for which we have to show that Ext1(j∗X(T ),Gm,OK

) = 0.
Since T has multiplicative reduction, there exists a finite unramified and Galois extension

L/K such that T trivializes over L. This means that j∗X(T )|SpecOL
is equal to the constant

sheaf Zd, where d = dimT .
Thus, for an étale morphism U −→ SpecOL , we have

Ext1U
(
j∗X(T )|U , Gm,OK

|U
)
= H1 (U,Gm,U )

d

Since these cohomology groups vanish locally, Ext1 (j∗X(T ),Gm,OK
) must vanish since it is the

sheafification of the presheaf V 7→ Ext1V
(
j∗X(T )|V , Gm,OK

|V
)
.

Finally, the sheaf Hom(j∗X(T ), i∗Z) is a skyscraper sheaf and its preimage in the étale site
over Spec k is given by HomZ(X(T ),Z) (as a Gal(ksep/k)-module) (cf. [M, Example III.1.7(c)]).

Secondly, this description is even functorial, which more precisely means the following:

Theorem 1.1.3. Let ϕ : T1 −→ T2 be a morphism of algebraic K-tori with multiplicative re-
duction and let D(ϕ) : X(T2) −→ X(T1) be the associated map of character groups. Then
the map j∗ϕ : T1 −→ T2 between the Néron models induces a map Φ(T1) −→ Φ(T2) of the
group of components, which via the above identification is equal to D(ϕ)∨ : HomZ(X(T2) ,Z) −→
HomZ(X(T1) ,Z).

Proof. The map D(ϕ) induces a sheaf homomorphism j∗X(T2) −→ j∗X(T1) and thus a mor-
phism of functors Hom(j∗X(T1) , ·) −→ Hom(j∗X(T2) , ·). This morphism of functors induces a
commutative diagram of étale sheaves

Hom(j∗X(T1),Gm,OK
) Hom(j∗X(T1),G) Hom(j∗X(T1), i∗Z)

Hom(j∗X(T2),Gm,OK
) Hom(j∗X(T2),G) Hom(j∗X(T2), i∗Z).

ψ0 ψ̄ψ

We claim that the above diagram is isomorphic to the diagram

0 (j∗T1)
0 j∗T1 i∗Φ(T1) 0

0 (j∗T2)
0 j∗T2 i∗Φ(T2) 0

j∗ϕ
0 j∗ϕ ϕ̄

Note that the identity component T 0
1 maps under the group homomorphism j∗ϕ into the

identity component T 0
2 , making the last diagram well-defined.
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It is clearly enough to show the equality of the first two vertical maps. Using the argument
from Proposition 1.1.1, one sees that the maps ψ and ψ0 are clearly determined by their “generic
fibers" ψη or ψ0

η . These correspond, via Cartier duality over K, to the morphism ϕ : T1 −→ T2.
Conversely, the morphisms j∗ϕ and j∗ϕ0 are also uniquely determined by their generic fibers,

by the Néron mapping property and Cartier duality, respectively.

1.2 Néron models of Weil restrictions

Theorem 1.2.1. Let K be a local field, let T be an algebraic K-torus and let L/K be a finite sep-
arable extension. Assume, in addition, that there exists an L-torus T ′ such that T ∼= RL/K(T ′).

Then the description from [X, Theorem 3.1] holds for Φ(T ′) if, and only if, it holds for Φ(T ).

To establish this theorem, we must first prove two lemmas. First we generalize [NX, Propo-
sition 2.4]:

Lemma 1.2.2. Let L/K be a finite separable extension of local fields and let T ′ be an affine
smooth SpecOL-group scheme with connected fibers, i.e. T ′ ..= T ′⊗OL

L and T ′
l

..= T ′⊗OL
l are

connected. Then ROL/OK
(T ′) also has connected fibers.

Proof. On the generic fiber we obtain

ROL/OK
(T ′)⊗OK

K ∼= RL/K(T ′ ⊗OL
L) = RL/K(T ′ ) .

It can be shown that a Weil restriction along a separable extension of an affine, smooth and
connected group scheme over a field is again connected. Let K̄ be an algebraic closure of K and
let GL/K ..= HomK(L, K̄) be the group of K-embeddings of L into this closure. After tensoring
with K̄ we obtain:

RL/K(T ′ )⊗K K̄ ∼= RL⊗KK̄/K̄

(
T ′ ⊗L L⊗K K̄

)
∼= R∏

GL/K
K̄/K̄

 ∐
GL/K

T ′
K̄

 ∼= ∏
GL/K

RK̄/K̄

(
T ′
K̄

)
∼=
∏
GL/K

T ′
K̄ .

Since T ′
K̄

is connected,
∏
GL/K

T ′
K̄

is connected as well by [SGA3, VIa, Lemma 2.1.2]. This means
that the generic fiber is geometrically connected, i.e., connected a fortiori.

Since ROL/OK
(T ′) ⊗OK

k ∼= ROL⊗OK
k/k(T ′ ⊗OL

(OL ⊗OK
k)), we first need to determine

OL ⊗OK
k. Since the Weil restriction functor is compatible with subextensions, it suffices to

consider the following particular cases: L/K is unramified and L/K is totally ramified.
In the first case OL ⊗OK

k ∼= l and l/k is a separable field extension. This is entirely
similar to the situation on the generic fiber. So assume that L/K is totally ramified. Then
OL ⊗OK

k ∼= l[X]/(Xe) is a radicial extension of k. By [SGA3, VIa, Lemma 2.1.2]

T ′ ⊗OL
(OL ⊗OK

k) ∼= T ′
l ⊗l l[X]/(Xe)

is a smooth, affine and connected k-group scheme. It now follows from [SGA3, XVII, Appendix
III, Proposition 5.1] that the Weil restriction is connected since l[X]/(Xe) is a radicial extension
of k.
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Lemma 1.2.3. Let L/K be a finite separable extension of local fields and let L̃/L be a finite
Galois extension. Let X(T ′) be a finitely generated continuous Gal(Ksep/L)-module on which
Gal
(
Ksep/L̃

)
acts trivially. Let IL be the inertia group of GL ..= Gal(L̃/L) and similarly let IK

be the inertia group of Gal(L̃/K). Now let

0 −→ X(T ′) −→ J 0
L −→ J1

L −→ J2
L −→ . . .

be a resolution of X(T ′) by finitely generated continuous Gal(Ksep/L)-modules, which are torsion-
free and IL-acyclic. Further, let X ′ ..= ker

[
J1
L −→ J2

L

]
and set (as in [X, Theorem 3.1])

ΦL ..= coker
[
HomZ

(
(X ′)IL ,Z

)
−→ HomZ

(
(J 0
L)
IL ,Z

)]
.

Then, for X ..= IndGL

GK
X(T ′) and J i ..= IndGL

GK
J iL with GK ..= Gal(L̃/K),

0 −→ X −→ J 0 −→ J 1 −→ J 2 −→ · · ·

is a resolution of X by finitely generated continuous Gal(Ksep/K)-modules on which Gal
(
Ksep/L̃

)
acts trivially. Further, the J i are torsion-free and IK-acyclic and we have

Φ ..= coker
[
HomZ

(
XIK

0 ,Z
)
−→ HomZ

(
(J 0)IK ,Z

)] ∼= Ind
GLnr

GK
ΦL,

where X0
..= ker

[
J1 −→ J2

]
, Lnr denotes the maximal unramified extension of K in L and

GLnr
..= Gal

(
L̃/Lnr

)
.

Proof. It is clear that the J i are torsion-free. Since L/K is a finite extension, induction and
coinduction are isomorphic with respect to the inclusion GL ⊂ GK . We can now decompose
the field extension L/K into a chain L ⊃ Lnr ⊃ K. Then, for a finitely generated continuous
GL-module N , we have

IndGL

GK
N ∼= Ind

GLnr

GK
IndGL

GLnr
N.

Obviously IL is a subgroup of finite index in IK and, via restriction to the category of IK-modules,
the induction IndGL

GLnr
N is isomorphic to IndILIK N . Thus, for any j ∈ N, we have

Hj
(
IK , Ind

GL

GK
N
)
= Hj

(
IK , Ind

GLnr

GK
IndGL

GLnr
N
)

∼= Ind
GLnr

GK
Hj
(
IK , Ind

IL
IK
N
)
= Ind

GLnr

GK
Hj(IL, N) ,

where Shapiro’s lemma was applied in the last step. This makes it clear that the J i are again
IK-acyclic.

Since the induction is an exact functor, it follows that

X0 = ker
(
IndGL

GK
J 1
L −→ IndGL

GK
J 2
L

)
= IndGL

GK
X ′

and thus, after decomposing the induction and applying Shapiro’s lemma, XIK
0 = Ind

GLnr

GK
(X ′)IL

and (J 0)IK = IndGK

GLnr
(J 0
L)
IL . Next, the following isomorphism is valid for any finitely generated

continuous GLnr
-module N :

HomZ

(
Ind

GLnr

GK
N,Z

)
∼= Ind

GLnr

GK
HomZ(N,Z).

Since the induction is an exact functor, it follows that Φ ∼= Ind
GLnr

GK
ΦL.
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Proof of Theorem 1.2.1. The formation of Néron models is compatible with Weil restriction: if
T ′ is the Néron model of T ′ over SpecOL, then T ..= ROL/OK

(T ′) is the Néron model of
T = RL/K(T ′). Further, the Weil restriction with respect to a finite morphism is an exact
functor on the étale site. Therefore the exact sequence

0 −→ (T ′)0 −→ T ′ −→ i∗Φ(T
′) −→ 0

induces an exact sequence

0 −→ ROL/OK

(
(T ′)0

)
−→ T −→ ROL/OK

(i∗Φ(T
′)) −→ 0.

We will show that ROL/OK

(
(T ′)0

)
is the identity component of T . The identity component

(T ′)0 is a smooth, affine and open subgroup of the Néron model T ′. Since the Weil restriction
of a group scheme is again a group scheme and the Weil restriction is also compatible with open
immersions (see, e.g. [BLR, 7.6]), we see that ROL/OK

(
(T ′)0

)
is a smooth and open subgroup

of the Néron Model T .
By [SGA3, VIb, Lemma 3.10.1], we have T 0 ⊆ ROL/OK

(
(T ′)0

)
and necessarily T 0 =

ROL/OK

(
(T ′)0

)0. Since ROL/OK

(
(T ′)0

)
has connected fibers by Lemma 1.2.2, we must have

T 0 = ROL/OK

(
(T ′)0

)
.

Summarizing, Φ ..= ROL/OK
(i∗Φ(T

′)) is the group of components of T . Since the Weil
restriction can be computed successively via subextensions, we first decompose the extension
L/K into a chain L ⊃ Lnr ⊃ K, where L/Lnr is totally ramified and Lnr/K is unramified.
The totally ramified extension is solvable, so it can be broken up into subextensions which are
either totally ramified with trivial residue field extension or totally residually ramified. Since
we only have to determine the Weil restriction as an étale sheaf, it suffices to determine the
Gal(ksep/k)-module

Φ(ksep) = ROL/OK
(i∗Φ(T

′))(ksep) = Φ(T ′)(ksep ⊗k (OL ⊗OK
k)) .

We consider first the case where L/K is unramified, i.e., the residual extension l/k is separable.
Set Gl/k ..= Homk(l, k

sep). Then

ksep ⊗k (OL ⊗OK
k) = ksep ⊗k l ∼=

∏
Gl/k

ksep

regarded as an l-algebra.
Let us now understand the effect of a σ ∈ Gal(ksep/k) = Autk(k

sep) on Φ(ksep). To do this,
let x ∈ l be a primitive element for l/k and write l = k[X]/(f(X )), where f(X ) is the minimal
polynomial of x. Then ksep ⊗k l ∼= ksep[X]/(f(X )) and therefore f(X ) factors through ksep as
f(X ) = Π(X − τj(X )) for suitable representatives τj ∈ Gal(ksep/k) of Gl/k.

A Galois morphism σ ∈ Gal(ksep/k) now induces a permutation of the zeros τj(X ), more pre-
cisely the component associated to τj(X ) is mapped to the component of the zero σ(τj(X )) =: τj′(X )
while leaving l fixed, i.e., via the l-morphism τ−1

j′ ◦ σ ◦ τj . This yields

Φ(ksep) ∼=
∏
Gl/k

Φ(T ′) (ksep) = Ind
Gal(ksep/l)
Gal(ksep/k) Φ(T ′) (ksep) .

The case where L/K is totally ramified with trivial residue field extension is covered in [X, §2.6].
In this case the Galois module is Φ ∼= Φ(T ′). If L/K is totally ramified and induces a purely
inseparable residue field extension l/k, then we have an isomorphism Gal(ksep/k) ∼= Gal(lsep/l),
which yields lsep ∼= ksep ⊗k l.
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Further, without loss of generality, [L : K ] = [l : k ], so that OL ⊗OK
k ∼= l. It follows that

Φ(ksep) ∼= Φ(T ′)(lsep).
Thus, for an arbitrary finite and separable extension of local fields L/K, it follows that

Φ ∼= Ind
Gal(Lnr/L)
Gal(Knr/K) Φ(T

′)

Now the isomorphism Gal(Lnr/L) ∼= Gal(Knr/Lnr) together with Lemma 1.2.3 yields the equiv-
alence of the validity of [X, Theorem 3.1] for the two groups of components.

1.3 The norm-one torus of a cyclic extension of prime degree
If K is a local field with algebraically closed residue field, the article [LL] describes the norm-one
torus associated to a cyclic and totally ramified Galois extension L/K of degree p = char(k). In
analogy to the work of Liu and Lorenzini, in this section we assume that p > 0 and k = ksep

is separably closed. In [LL, 5.5 and 5.6], the reduction of the Néron model of such a norm-one
torus is described explicitly. We will show that this description is also valid in the imperfect
residue field case provided there is no residual ramification.

Proposition 1.3.1. Let L/K be a totally ramified Galois extension of local fields of degree p =
char(k) such that the corresponding residue field extension is separable and therefore necessarily
trivial.

Then the norm-one torus TN of L/K has a Néron model that is isomorphic to

SpecOK [X0, .., Xp−1] /(G(X0, .., Xp−1)) ,

where the polynomial G(X0, .., Xp−1) ∈ OK [X0, .., Xp−1] is congruent modulo π to Xp
m − uXm

for some u ∈ O∗
K and m ∈ {0, 1, .., p− 1}.

Proof. The proof in [LL] covers [op.cit., Lemmas 5.3 and 5.4 and Theorems 5.5 and 5.6]. The
following statements about the extension L/K are assumed (see [LL, 5.2]):

1. The extension is of Eisenstein type, i.e., it has the form

L = K[t]/
(
tp − s1tp−1 + . . .+ (−1)psp

)
,

where the si are elements in πKOK and sp has valuation νK(sp) = 1. Further, the class of
t in L is a uniformizing element in OL.

2. The classes of 1, t, . . . , tp−1 in L constitute a complete basis of OL over OK .

3. The different is computed as

νL
(
DL/K

)
= min

0≤i≤p−1
{pνK(si) + p− 1− i} = (p− 1)νL(σ(T )− t),

where s0 ..= p and σ is an arbitrary (fixed) generator of Gal(L/K).

In the imperfect residue field case, the facts that L/K is totally ramified and l/k is trivial still
imply that the extension is of Eisenstein type. See [S, I, Proposition 18]. As an Eisenstein
extension, it is therefore clear that

(
1, t, .., tp−1

)
is a complete basis.

It follows from [S, III, Corollary 2 to Proposition 11] that, for every monogenic extension
B = A[X]/f(X ) of a complete discrete valuation ring A, the different may be computed as
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νL
(
DL/K

)
= ν(f ′(X )) with x equal to the class of X in B. The class of t in B remains a

uniformizing element and νL(X ) = pνK(X ) for all x ∈ K. In this case it follows that

νL
(
DL/K

)
= min

1≤i≤p−1

{
νL
(
ptp−1

)
, νL
(
(p− i)sp−itp−1−i)}

= min
0≤i≤p−1

{pνK(sp−i) + p− 1− i}

(with s0 ..= p). This leads to the first formula for the different. The second formula follows from
the same corollary if we note that

f(X ) =
∏

σ∈Gal(L/K)

X − σ(T ) so that f ′(T ) =
∏

τ∈Gal(L/K)\{id}

τ(T )− t

and exploit that the order [L : K ] is prime, whence νL(τ(T )− t) = νL(σ(T )− t) for every τ ̸= id.
Thus, in the proof, the hypothesis of an algebraically closed residue field can be replaced by

the hypothesis of a trivial residue field extension (with a separably closed residue field) and the
rest of the proof remains valid without changes.

In the case of a totally ramified extension L/K with a non-trivial inseparable residue field
extension, one can proceed in a similar manner to [LL]. Thus, let L/K be a Galois extension of
local fields of degree p which induces a purely inseparable extension of degree p of the residue
fields. We have

L = K[t]/
(
tp − s1tp−1 + s2t

p−2 + ..+ (−1)psp
)

with suitable si ∈ K. Since the associated extension of discrete valuation rings is monogenic, we
can write without loss of generality

OL = OK [t]/
(
tp − s1tp−1 + s2t

p−2 + ..+ (−1)psp
)
,

Thus we may assume that si ∈ OK . The extension of the residue fields must have the form
l = k[t]/(tp − sp), that is, sp ∈ O∗

K but si ∈ πKOK for i = 1, .., p− 1.
The extension has ramification index one, i.e., νL(X ) = νK(X ) for all x ∈ K. We further

identify t with its image in L. In contrast to the above, t is now an element of O∗
L. Due to the

form of the extension, one can determine the different similarly to the minimal polynomial f of
t:

νL
(
DL/K

)
= νL(f

′(T )) = ν

(
p−1∑
i=0

(p− i)tp−1−isi

)
= min
i=1,..,p−1

{ν(p), νK(si)}

Note that the residue classes of T I form a basis of l/k, so that an arbitrary sum is
∑p−1
i=0 αit

i

with αi ∈ O∗
K ∪ {0} in O∗

L, provided that there is at least one αi ̸= 0. Therefore νL
(
DL/K

)
cannot be smaller than the minimum of νL(αi).

Now νL
(
DL/K

)
must again be equal to (p− 1)νL(σ(T )− t). So we set νm ..= νL

(
DL/K

)
and

r ..= νm/p− 1. Clearly r ≥ 1 in all cases.

Proposition 1.3.2. Let L/K be a totally ramified Galois extension of local fields of degree p
with a non-trivial purely inseparable extension of residue fields. Then the Néron model of TN has
the form

SpecOK [X0, .., Xp−1] /(G(X0, .., Xp−1))

with a polynomial G(X0, .., Xp−1) ∈ OK [X0, .., Xp−1] that is congruent modulo πK to
p−1∑
i=0

sipX
p
i +

∑
{j | j≥0, ν(sj)=νm}

TrL/K
(
tj
)

πνm
Xj ,

where s0 ..= p.
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Proof. As in [LL], then the following holds

Lemma 1.3.3. [LL, 5.3]. Let A = Z[s1, .., sp, y0, .., yp−1] be a polynomial ring in 2p variables
and set B = A[u]/

(
up − s1up−1 + ..+ (−1)psp

)
. Let t be the image of u in B and set N ..=

NB/A
(
y0 + y1t+ ..+ yp−1t

p−1
)
. The following holds:

(1) N is homogeneous of degree p in the variables y0, y1, . . . , yp−1.

(2) Let 0 ≤ j ≤ p−1. Then the coefficient of ypj in N is equal to sjp and for j ̸= 0 the coefficient
of yp−1

0 yj equals TrL/K
(
tj
)
.

(3) The coefficients of yλ0
0 . . . y

λp−1

p−1 in N lie in the ideal (psp, s1, . . . , sp−1), provided that λ0 ≤
p− 2.

First, we will show

Lemma 1.3.4 (analogous to [LL, 5.4]). Let

b =(1 + a0) + a1t+ ..+ ap−1t
p−1 ∈ L

with ai ∈ K and NL/K(b) = 1. Then, for 0 ≤ i ≤ p− 1, we have

ν(ai) ≥ r

Proof. Since the norm of b is in OK , we have b ∈ OL. Since the powers of t form a full basis, all
ai lie in OK . Thus Lemma 1.3.3 applies

1 = NL/K(b) =(1 + a0)
p
+ spa

p
1 + ..+ sp−1

p app−1 + term from IJ

with the ideals I ..=(p, s1, .., sp−1) and J ..=(a1, .., ap−1). Thus it follows that

ν
(
(1 + a0)

p − 1 + spa
p
1 + ..+ sp−1

p app−1

)
≥ min

1≤i≤p−1
{ν(si) , ν(p)}+ min

1≤j≤p−1
{ν(aj)} .

By definition, the first minimum equals νm with the choice 1 ≤ j0 ≤ p − 1, so that the second
minimum equals ν(aj0). It now follows that

pν(aj0) ≥ ν
(
(1 + a0)

p − 1 + spa
p
1 + ..+ sp−1

p app−1

)
≥ νm + ν(aj0) ,

because the residue classes of 1, sp, .., sp−1
p form a k-basis of l. Hence ν(aj0) ≥ νm/(p − 1) = r.

Thus, if 1 ≤ j ≤ p− 1, then the following holds in general:

pν(aj) ≥ ν
(
(1 + a0)

p − 1 + spa
p
1 + .+ sp−1

p app−1

)
≥ νm + ν(aj0) ≥ νm + r.

Thus ν(aj) ≥ (νm + r)/p = [(p− 1)r + r]/p = r.
It remains to consider ν(a0). Let e′ ..= ν(p)/(p − 1). According to the definition of νm, we

have e′ ≥ r = νm/(p− 1). Thus, in the case ν(a0) ≥ e′, there is nothing to prove.
Otherwise (p− 1)ν(a0) < ν(p) and since p |

(
p
k

)
we conclude that

ν(ap0) = pν(a0) < ν

((
p

k

)
ak0

)
= ν(p) + kν(a0) .

This yields ν((1 + a0)
p − 1) = ν

(
ap0 +

∑p−1
k=1

(
p
k

)
ak0

)
= pν(a0). It follows similarly as above that

pν(a0) ≥ ν
(
(1 + a0)

p − 1 + spa
p
1 + ..+ sp−1

p app−1

)
≥ νm + r,

whence ν(a0) ≥ r also.
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In the representation TN = SpecK[x0, .., xp−1] /
(
NL/K

(
1 +

∑p−1
i=0 T

Ixi

)
− 1
)

we substitute
xj ..= πrXj and obtain

F (X0, .., Xp−1) = NL/K

1 +

p−1∑
j=0

πrtjXj

− 1.

Using y0 ..= 1 + x0 = 1 + πrX0 as well as yi ..= xi = πrXi, Lemma 1.3.3 yields

F (X0, .., Xp−1) =1 +

p−1∑
k=1

(
p

k

)
πkrXk

0 + πprXp
0 − 1 +

p−1∑
i=1

sipπ
prXp

i

+

p−1∑
i=1

TrL/K
(
T I
)
(1 + πrX0)

p−1
πrXi

+
∑

aλ0,..,λp−1
(1 + πrX0)

λ0

p−1∏
i=1

πrλi ,

where in the last sum the indices λi ≥ 0 satisfy λ0 ≤ p− 2 and
∑
i=0,...,p−1 λi = p and the coef-

ficients aλ0,...,λp−1
are chosen appropriately. If one looks closely, one can see that the coefficients

of the monomials of F always have a valuation ≥ pr. Indeed:
Since ν(sp) = 0, we have ν

(
sipπ

pr
)
= pr and therefore each of the monomials of the form Xp

i

has a coefficient with valuation pr.
Further, we have ν(p) ≥ νm = (p − 1)r, whence ν

((
p
k

)
πkr
)
≥ pr + (k − 1)r. Therefore, the

middle terms in the first row have a valuation greater than pr, except for pπrX0 in the case that
ν(p) = νm.

The following identity holds for 1 ≤ j ≤ p− 1 (see proof of [LL, 5.5]).

TrL/K
(
tj
)
+ (−1)jjsj =

∑
1≤l≤j−1

(−1)l+1slTrL/K
(
tj−l

)
.

This shows that ν
(
TrL/K

(
T I
))
≥ νm always. More precisely, the equality holds if, and only if,

ν(si) = νm. This also applies in the case i = 0 if one sets s0 ..= p = TrL/K(1).
After multiplying, we obtain terms of the following form on the third line(

p− 1

k

)
TrL/K

(
T I
)
πr+krXk

0Xi.

Thus the coefficients of these terms have minimum valuation for k = 0 and ν(si) = νm and this
valuation is νm + r = pr .

The terms on the last line have coefficients

aλ0,...,λp−1

(
λ0
k

)
πkrπr

∑
1≤i≤p−1 λi ,

where 0 ≤ k ≤ λ0 and
∑

1≤i<p−1 λi is at least 2. Further, according to Lemma 1.3.3, the factors
aλ0,...,λp−1

belong to the ideal (p, s1, . . . , sp−1), so they have valuation at least νm. Consequently,
only coefficients with a valuation greater than or equal to νm + 2r = pr + r > pr appear.

This means G(X0, .., Xp−1) ..= π−prF (X0, .., Xp−1) ∈ OK [X0, .., Xp−1] is congruent modulo
π to

p−1∑
i=0

sipX
p
i +

∑
{j|ν(sj)=νm}

TrL/K
(
tj
)

πνm
Xj ,
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where above we set s0 = p.
This substitution can be interpreted as follows: If we pass from TN to the OK-model

T ..= SpecOK [x0, .., xp−1] /
(
NL/K

(
1 + x0 + tx1 + ..+ tp−1xp−1

)
− 1
)

and blow-up the zero section (x0 = 1, x1 = .. = xp−1 = 0) of the special fiber r times, then we
obtain as dilatation the scheme

T sm ..= SpecOK [X0, .., Xp−1] /(G(X0, .., Xp−1)) .

Note that T is an OK-group scheme, because on TN one obtains the multiplication map. Indeed,
in the polynomial ring

L
[
X

(2)
0 , .., X

(2)
p−1

]
⊗L L

[
X

(3)
0 , .., X

(3)
p−1

]
one can certainly write the product

M ..=
(
X

(2)
0 + tX

(2)
1 + ..+ tp−1X

(2)
p−1

)(
X

(3)
0 + tX

(2)
1 + . . .+ tp−1X

(3)
p−1

)
in the form

M =

p−1∑
i=0

fi

(
X

(2)
0 , .., X

(2)
p−1, X

(3)
0 , .., X

(3)
p−1

)
T I

with polynomials fi en K
[
X

(2)
0 , .., X

(2)
p−1, X

(3)
0 , .., X

(3)
p−1

]
. Then the multiplication

K[X
(1)
0 , .., X

(1)
p−1]/(N(X

(1)
0 , .., X

(1)
p−1))

K[X
(2)
0 , .., X

(2)
p−1]/(N(X

(2)
0 , .., X

(2)
p−1))⊗K K[X

(3)
0 , .., X

(3)
p−1]/(N(X

(3)
0 , .., X

(3)
p−1))

µ

is given by X(1)
l 7→ fi

(
X

(2)
0 , .., X

(2)
p−1, X

(3)
0 , .., X

(3)
p−1

)
. Since the minimal polynomial of t only has

coefficients in OK , the polynomials fi only have coefficients in OK and thus one can extend the
group law on TN to a group law on T . Similarly, the zero section and the formation of inverses
can also be extended to T , since these are defined over OK ; for the latter, note that(

X0 + tX1 + ..+ tp−1Xp−1

)−1
=

∏
τ∈Gal(L/K)\{id}

τ
(
X0 + tX1 + ..+ tp−1Xp−1

)
.

Thus, by [BLR, 3.2.2d], T sm ..= SpecOK [X0, .., Xp−1] /(G(X0, .., Xp−1)) is a group scheme. It
is even an integral model of TN because it is separated and flat. The latter holds because π is
not a divisor of G(X0, .., Xp−1).

By the hypothesis OK = O sh
K , Lemma 1.3.4 shows that the canonical map T sm

(
O sh
K

)
−→

TN (Knr) is surjective. It now follows from [BLR, 7.1.1] that T sm is the Néron model of TN if it
is smooth. The latter follows from the Jacobi criterion because

dG =
∑

{j|ν(sj)=νm}

TrL/K
(
tj
)

πνm
dXj

with
TrL/K(tj)
πνm ∈ O∗

K for all j with ν(sj) = νm.
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Using the above representation, we obtain the following

Corollary 1.3.5. Let L/K be a cyclic totally ramified extension of local fields of degree p =
char(k). Assume that the corresponding extension of residue fields is purely inseparable of degree
p and let TN be the norm torus with respect to L/K.

Then the group of components of the Néron model of TN is trivial and the reduction of its
identity component is a k-wound unipotent group.

Proof. The special fiber of the Néron model has the form

T sm
k = Spec k [X0, .., Xp−1] /

(
Ḡ (X0, .., Xp−1)

)
,

where

Ḡ =

p−1∑
i=0

sipX
p
i +

p−1∑
i=0

ν(si)=νm

TrL/K(T I )

πνm
Xp0

i

is obviously a p-polynomial.
After blowups, the group law over OK results from the following calculation:(
1 + πrX

(2)
0 + tπrX

(2)
1 + ..+ tp−1πrX

(2)
p−1

)
⊗
(
1 + πrX

(3)
0 + tπrX

(3)
1 + ..+ tp−1πrX

(3)
p−1

)
= 1 + πr

p−1∑
i=0

T I
(
1⊗X(3)

l +X
(2)
l ⊗ 1

)
+ π2rΓ

(
X

(2)
0 , .., X

(3)
p−1

)
,

for some appropriate Γ
(
X

(2)
0 , . . . , X

(3)
p−1

)
∈ OK

[
X

(2)
0 , . . . , X

(2)
p−1

]
⊗ OK

[
X

(3)
0 , . . . , X

(3)
p−1

]
. After

splitting into powers of t and dividing by πr, we obtain modulo π the lawX
(2)
l 7→ 1⊗X(3)

l +X
(2)
l ⊗1

for 0 ≤ i ≤ p− 1.
Thus the special fiber is a subgroup of Gpa,k.
The principal part of G has no non-trivial rational zero: after choosing the extension L/K

we have sp = tp in l.
A root of the principal part now corresponds to an equation

s0pa
p
0 + ..+ sp−1

p app−1 = 0 with ai ∈ k

This equation can also be read in l as(
t0a0

)p
+ ..+

(
tp−1ap−1

)p
=
(
t0a0 + ..+ tp−1ap−1

)p
= 0.

Since l is a field, this already means that a0t0 + .. + ap−1t
p−1 = 0 and therefore ai = 0 for

every i, because the powers of t are a basis of l/k. So the only rational zero is the trivial one.
The claim now follows from Proposition A.1, provided that for an i0 ∈ {0, . . . , n} the linear

term to Xi0 is trivial. Thus let L = K[t] with ν(p) = ν (s1) = · · · = ν (sp−1) so that all linear
terms appear. In particular, char(K) = 0. But since TN does not depend on the particular
choice of t ∈ L, we can replace t with the (also generating) element T ′ ..= t− (s1/p). Note that
s1/p ∈ O∗

K , so that T ′ is integral. Now if χ(X ) = Xp − s1Xp−1+ .. +(−1)psp is the minimal
polynomial of t, then the minimal polynomial of t− s1

p equals

χ

(
X +

s1
p

)
=

(
X +

s1
p

)p
− s1

(
X +

s1
p

)p−1

+ ..+ (−1)psp

= Xp +Xp−1

(
p
s1
p
− s1

)
+ further terms .
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Thus if we carry out the construction with T ′, the result is a polynomial G′ that does not contain
a linear term containing X1.

Finally, we sketch the (well-known) tamely ramified case: let L/K be a finite totally and
tamely ramified extension of local fields of degree q. The extension is also an Eisenstein extension
L = K[t]/

∑q
i=0 siT

I with sq = 1, s0, .., sq−1 ∈ (πK) and νK(s0) = 1. Since we assumed that
k = ksep, we may assume by Hensel’s lemma that there exists a uniformizing element πL ∈ OL
such that πqL ∈ OK . It follows that we may assume the Eisenstein equation to be of the form
tq − πK .

This means that for a0, .., aq−1 ∈ OK the equation is

NL/K

(
q−1∑
i=0

aiT
I

)
≡ aq0 mod(πK)

and we find the smooth OK-model for TN

SpecOK [X0, .., Xq−1] /

(
NL/K

(
q−1∑
i=0

XiT
I

)
− 1

)

with special fiber Spec k[X0, .., Xq−1] /(X
q
0 − 1). Thus, the group of components is equal to

Z/qZ.



Chapter 2

Groups of components of Néron
models

In this chapter we will study the group of components of the special fiber of a (local) lft-Néron
model of a smooth and commutative algebraic K-group. Our first main result is that the group
of components is a finitely generated module (see Theorem 2.3.2). This answers a question of
Lorenzini’s [LL, Remark 1.3].

To do this we show that, given a smooth and commutative algebraic K-group GK , there
exists an exact sequence of smooth and commutative algebraic K-groups

0 −→ TI −→ GK −→ G ′ −→ 0,

where TI is a torus with multiplicative reduction and G ′⊗K Knr does not contain a subgroup of
the form Gm,Knr . Further, GK ⊗K Knr does not contain a subgroup of the form Ga,Knr if, and
only if, this is the case for G′ ⊗K Knr. Now, if GK has an lft-Néron model, we obtain a short
exact sequence of the associated lft-Néron models in the smooth topology

0 −→ TI −→ G −→ G ′ −→ 0.

Now, as in [BX, §4], we define the functor that assigns to a smooth sheaf over SpecOK its identity
component. More precisely, after restriction to the special fiber, this functor is represented by
the identity component there. As in the formal setting, this functor is right-exact, so we have a
short exact sequence of groups of components

0 −→ Φ̃ −→ Φ(Gk) −→ Φ(G ′
k) −→ 0,

where Φ̃ denotes a suitable quotient of Φ((TI)k). This then yields our description of the Néron
models of algebraic tori with multiplicative reduction and [BLR, Theorem 10.2.1] is our first
main result.

Our second main result is that a homomorphism G1 −→ G2 of smooth and commutative
algebraic K-groups which is a closed immersion induces a homomorphism Φ((G1)k) −→ Φ((G2)k)
between groups of components of their lft-Néron models (if these models exist) with a finite
kernel.

This is based on the fact that the induced homomorphism G1 −→ G2 of the lft-Néron models
is quasi-compact because a dilatation is a quasi-compact morphism. Later, using finiteness of
the kernel, we will describe the exact sequence of group of components in the case of lft-Néron
models of algebraic tori in more concrete terms.

45
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2.1 The maximal subtorus with multiplicative reduction
Let S be a scheme and let G be an S-group scheme of finite type. Then we can define a maximal
(sub-)torus of G as follows:

Definition 2.1.1. [SGA3, XII, Definition 1.3] Let S be a scheme and let G be an S-group
scheme of finite type. A subgroup scheme T of G is called a maximal torus of G if the following
conditions hold:

1. T is a torus.

2. If s is any point of S and s̄ denotes the spectrum of an algebraic closure of k(s), then Ts̄
is a maximal torus of Gs̄, i.e., an algebraic subgroup which is a torus and is maximal with
respect to this property.

Maximal tori exist for smooth algebraic groups over a field:

Theorem 2.1.2. [SGA3, XIV, Theorem 1.1] Let K be a field and let G be a smooth algebraic
K-group. Then G has a maximal torus T and therefore a Cartan subgroup C = CG(T ).

By [SGA3, XII, Corollary 1.15], a commutative group scheme can have at most one maximal
torus.

Lemma 2.1.3. Let K be a local field and let T be a K-torus with character group X(T ). Then
there exists in T a maximal subtorus TI ↪→ T with multiplicative reduction. The formation of TI
is compatible with unramified extensions.

Proof. Let L/K be a finite Galois extension such that T splits over L. Let IL/K be the inertia
group of L/K. We now look for a maximal torsion-free quotient of X(T ) with trivial IL/K action.
To do this, consider the map

TrI : X(T ) −→ X(T )I = X(T )IL/K , x 7→
∑

τ∈IL/K

τx.

The above map is well-defined since IL/K is a normal subgroup of Gal(L/K). Further, it is a
homomorphism of Gal(Ksep/K)-modules. We obtain a short exact sequence

0 −→ ker(TrI) −→ X(T ) −→ Im(TrI) ..= X(TI) −→ 0

of continuous and finitely generated Gal(Ksep/K)-modules. As submodules of torsion-free mod-
ules, ker(TrI) and im(TrI) are torsion-free. By definition, IL/K acts trivially on X (TI). We now
show that X(TI) is maximal with this property.

Let ψ : X(T ) ↠ X ′ be a homomorphism of Gal(L/K)-modules such that X ′ is torsion-free
with trivial IL/K-action. Then ψ(TrI(X )) = nψ(X ), where n is the cardinality of IL/K . Thus
ker(TrI) ⊂ ker(ψ) since X ′ is torsion-free. Thus we have a homomorphism X(TI) ↠ X ′. Now,
by [SGA3, VIII, Proposition 3.2] and [SGA1, VIII,Corollary 5.5], the map X(T ) ↠ X(TI)
corresponds to a homomorphism TI −→ T of algebraic tori which is a closed immersion.

Finally, since an unramified extension does not change the action of the inertia group, it is
clear that the formation of TI is compatible with such extensions.

Proposition 2.1.4. Let K be a local field and let GK be a smooth and commutative algebraic
K-group scheme. Then GK has a maximal torus TI with multiplicative reduction and the quotient
G ′ ..= GK/ TI is represented by a smooth and commutative algebraic K-group.

Further, G ′ ⊗K Knr contains no subgroup of the form Gm,Knr . Moreover, G′ ⊗K Knr has a
subgroup of the form Ga,Knr if, and only if, GK ⊗K Knr has such a subgroup.
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Proof. The K-group GK has a unique maximal torus T . This is a subscheme, so the homo-
morphism T −→ GK must be a closed immersion. Using the lemma above, we have a maximal
subtorus TI of T with multiplicative reduction and this is a subtorus of GK . By [SGA3, VIa,
§5.4, Theorem], the commutative algebraic K-group schemes form an abelian category, i.e., we
have an (fpqc)-exact sequence

0 −→ TI −→ GK −→ G ′ −→ 0.

The K-torus TI is smooth and flat over K and after changing bases with TI the K-groups GK
and G ′ are isomorphic. Thus, by descent, G ′ is also smooth over K.

We now consider this sequence after a base change with Knr. The preimage of a closed
subgroup U of G′ ⊗K Knr is a closed subgroup of GK ⊗K Knr as well as an extension of U by
TI⊗KKnr ∼= Grm,Knr . Suppose G ′⊗KKnr has a subgroup of the form Gm,Knr . Then GK⊗KKnr

has a subgroup that is an extension of Gm,Knr by Gm,Knr . By [SGA3, XVII, Proposition 7.1.1],
this extension is a group scheme of multiplicative type. Now, by Cartier duality, the extension
corresponds to an extension of Z by Zr as I = Gal(Ksep/Knr)-modules. Since Ext1I(Z

r,Z) =
H1(I,Z)r = 0, this extension is trivial. So GK ⊗K Knr has a subgroup of the form Gr+1

m,Knr .
However, this is a contradiction to the fact that TI is the maximal subtorus with multiplicative
reduction of T .

If GK⊗KKnr has a subgroup of the form Ga,Knr , then this also holds for G ′⊗KKnr because all
homomorphisms from Gm,Knr to Ga,Knr are trivial, so that the quotient map on such a subgroup
is an isomorphism.

Conversely, assume that G ′ ⊗K Knr has a subgroup of the form Ga,Knr . Then GK ⊗K Knr

has a subgroup that is an extension of Ga,Knr by Grm,Knr . However, by [SGA3, XVII, Theorem
6.1.1 A(ii)], such an extension is trivial and we can find a subgroup of the form Ga,Knr in
GK ⊗K Knr.

2.2 The identity component of a smooth sheaf
In analogy to [BX, 4.7], we will define a subsheaf of an abelian sheaf on the smooth site over the
spectrum of a Henselian discrete valuation ring R that we will interpret in a certain way as an
identity component. Incidentally, this definition only makes sense in the smooth topology, since
a similarly defined étale sheaf would be trivial on the special fiber.

In this section, we let K be the quotient field of R and write k for the residue field of R.

Definition 2.2.1. Let S = SpecR be the spectrum of a Henselian discrete valuation ring and
let F be an abelian sheaf on the smooth site over S. We define F 0 to be the subsheaf that
assigns to every smooth S-scheme T the sections f ∈ F(T ) for which the following holds: for
every étale point u : SpecA −→ T there exists

1. a valuation ring R′ that is étale over A (and thus étale over R),

2. a fiberwise geometrically connected smooth S-scheme T ′ with a section g ∈ F(T ′) and

3. R′-valued points u′0, u′1 : SpecR′ −→ T ′ such that g|u′
0
= 0 and g|u′

1
factors through f |u.

Proposition 2.2.2. For a smooth sheaf F over a Henselian discrete valuation ring R, F 0 is
a subsheaf of F . Further, j∗F = j∗F 0, where j : SpecK −→ SpecR is the canonical open
immersion. If F is represented by a smooth R-group scheme F and i : Spec k −→ SpecR is the
(closed) immersion of the special fiber, then

i∗F 0 = i∗
(
F 0
)
.
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Further, if F has a connected generic fiber, then

F 0 = F 0.

Proof. Let T be a smooth R-scheme. If T = TK , then T has no étale points, so F 0(T ) = F(T ).
This means that j∗F = j∗F 0. Now let T be arbitrary. For a morphism ψ : U −→ T we denote
the restriction morphism of the sheaf F by ρψ.

We have 0 ∈ F 0(T ), because for an étale point u : SpecA −→ T we have ρu(0) = 0 and this
is equal to ρu′(0) for u′ : SpecA −→ SpecR. Since R is geometrically connected, the conditions
of the definition hold.

Now let τ : T1 −→ T2 be a morphism in the category of smooth R-schemes. Then every étale
point of T1 induces an étale point of T2 and thus ρτF 0(T2) ⊂ F 0(T1).

Consequently, F 0 is a subsheaf of sets. Now let f, g ∈ F 0(T ). Then, as explained in [BX,
after Definition 4.7], we have f − g ∈ F 0(T ). This means that F 0 is a subsheaf of groups.

Now let F be a sheaf represented by a smooth group scheme. We will show that a section
f ∈ F 0(T ) corresponds exactly to a morphism T −→ F , so that in the special fiber we have a
factorization Tk −→ F 0

k −→ Fk.
A section f ∈ F 0(T ) corresponds to a morphism f : T −→ F and for every étale point

u : SpecA −→ T there exists a geometrically connected smooth scheme T ′, a morphism g : T ′ −→
G and étale points u′0, u′1 : SpecR′ −→ T ′, such that g ◦ u′0 factors through the unit section of
G and f ◦ u ◦(SpecR′ −→ SpecA) is equal to g ◦ u′1. This means that f ◦ u factors through F 0.
Since the étale points have a dense image in the special fiber of T , fk : Tk −→ Fk must factor
through F 0

k .
For a section f : T −→ F such that fk factors through F 0

k and an étale point u : SpecA −→ T ,
consider the geometrically connected scheme T ′ ..= F 0⊗RA and, as étale points, the unit section
u′0 : SpecA −→ T ′ and the point u′1 induced by u : SpecA −→ T ′, which by definition means
that f ∈ F 0.

If the generic fiber of F is connected, the existence of a factorization Tk → F 0
k → Fk is

equivalent to a factorization T → F 0 → F . Thus we have F 0 = F 0.
In general we have an inclusion i∗F 0 = i∗

(
F 0
)0 −→ i∗F 0. Here

(
F 0
)0 means the identity

component (as defined above) of the sheaf represented by F 0. Conversely, we can construct
all sections of i∗F 0 from sections T −→ F for which T has no connected component without
an étale point. Thus we may compute i∗ on the subsheaf F 0 and i∗F 0 −→ i∗F 0 is therefore
surjective.

Thus, with this subsheaf, we can examine the identity component of a Néron model on the
special fiber. For algebraic tori, this sheaf also represents the identity component of the Néron
model over Ok. We now investigate how this subsheaf is compatible with morphisms of smooth
sheaves.

Proposition 2.2.3. Let R be a Henselian discrete valuation ring and let ψ : F −→ G be a
morphism of abelian sheaves on the smooth site over S = SpecR. Then this morphism induces
morphisms ψ0 = ψ|F 0 : F 0 −→ G0 and ψ̄ : Φ(F) ..= F/F 0 −→ Φ(G) ..= G/G0.

Proof. Since ψ is a morphism of functors into the category of abelian groups, given a section
f ∈ F 0(T ) with a fiberwise geometrically connected scheme T ′ and étale points u, u′0, u′1 (as
required in Definition 2.2.1), their images under ψ also satisfy the conditions in Definition 2.2.1.
Thus the first assertion is clear. This means that ψ induces a map of presheaves F/F 0 −→ G/G0.
Since sheafification is an exact functor from the category of presheaves to the category of sheaves,
the second assertion follows.
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The functor F ⇝ F 0 satisfies the following

Proposition 2.2.4. [BX, 4.8] Let ϕ : F ′ −→ F be an epimorphism of abelian sheaves on the
smooth site over S. Then the induced morphism (F ′)

0 −→ F 0 is also an epimorphism.

Proof. The proof of [BX, 4.8] carries over verbatim to our situation since there is only something
to show on the special fiber.

2.3 The sequence of groups of components
Let h : G1 −→ G2 be a homomorphism of smooth group schemes over an arbitrary base scheme S.
This map induces a homomorphism h0 : G0

1 −→ G0
2 between the identity components. Therefore

h also induces a homomorphism between the group of components. We can understand this
globally as a morphism h̄ : Φ(G1) −→ Φ(G2) of smooth or étale sheaves, or locally for s ∈ S as a
homomorphism h̄s : Φ((G1)s) −→ Φ((G2)s) of étale k(s)-groups. We now want to investigate the
effect of this map on short exact sequences.

Proposition 2.3.1. Let K be a local field and let

0 −→ G1 −→ G2 −→ G3 −→ 0

be a short exact sequence of smooth and commutative algebraic K-groups whose lft-Néron models
Gi exist over SpecOK . Assume further that the induced sequence of Néron models

0 −→ G1
ι−→ G2 −→ G3 −→ 0

is exact in the smooth topology and set Φ(Gi) ..= Gi/G0
i , where G0

i is the subsheaf from Definition
2.2.1. Then there exists a short exact sequence of sheaves

0 −→ G1/ι−1
(
G0
2

)
−→ Φ(G2) −→ Φ(G3) −→ 0.

Further, there exists an exact sequence of continuous Gal(ksep/k)-modules

0 −→ Φ̃ −→ Φ((G2)k) −→ Φ((G3)k) −→ 0,

where Φ((Gi)k) is the group of components of the k-groups (Gi)k and Φ̃ is a quotient of Φ((G1)k).

Proof. In the smooth topology, we have an exact and commutative diagram

0 ι−1(G02) G02 G03 0

0 G1 G2 G3 0.ι

More precisely, commutativity follows from proposition 2.2.3 and exactness of the top row is
verified as follows. Exactness at ι−1

(
G0
2

)
holds because the preimage of a subsheaf is already a

subsheaf (cf. [M, II,2.12 c)]). By proposition 2.2.4, the top row is also exact at G0
3 . Exactness

at G0
2 then follows from the exactness of the second row and the commutativity of the diagram.

The snake lemma applied to the above diagram yields a short exact sequence of cokernels that
corresponds to the claimed sequence

0 −→ G1/ι−1
(
G0
2

)
−→ Φ(G2) −→ Φ(G3) −→ 0.
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The restriction i∗ of this sequence to the smooth site over s ..= Spec k is exact. In particular, the
quotients Φ are mapped to the (actual) group of components, since i∗G0

i is represented by
(
G0
i

)
k
.

The restriction to the étale site over Spec k is exact by [M, III, Proposition 3.3]. By proposition
0.2.1, this restriction corresponds to an exact sequence of continuous Gal(ksep/k)-modules

0 −→ Φ̃ −→ Φ((G2)k) −→ Φ((G3)k) −→ 0.

By the exactness of restriction, Φ̃ is a quotient of Φ((G1)k).

Theorem 2.3.2. Let K be a local field and let G be a smooth, commutative and separated
SpecOK-group scheme which is an lft-Néron model of its generic fiber GK . In particular, GK
is a smooth and commutative algebraic K-group. Then the group of components Φ(Gk) of the
special fiber of G is finitely generated as a Galois module.

Proof. By Proposition 2.1.4 and [BLR, Theorem 10.2.2], we have an exact sequence of smooth
and commutative algebraic K-groups

0 −→ TI −→ GK −→ G′ −→ 0,

where TI is a torus with multiplicative reduction and G′ ⊗K Knr does not contain subgroups of
the form Gm,Knr or Ga,Knr . By [X, Lemma 2.11], R1j∗TI = 0, whence proposition 2.3.1 yields
an exact sequence

0 −→ Φ̃ −→ Φ(Gk) −→ Φ(G′k) −→ 0,

where Φ̃ is a quotient of the sheaf Φ(TI). Now, by [BLR, Theorem 10.2.1], the Néron model of
G′ is quasicompact, whence Φ(G′k) is represented by a finite Gal(ksep/k)-module. By Theorem
1.1.2, Φ̃ is represented by a finitely generated Gal(ksep/k)-module. This means that Φ(Gk) is
also represented by a finitely generated Gal(ksep/k)-module.

Recall that a morphism f : X −→ Y of schemes is called quasi-compact if there exists an open
affine covering (Vi)i∈I of Y such that the inverse images f−1 (Vi) in X are quasi-compact.

Proposition 2.3.3. Let K be a local field and let G2 be a smooth algebraic K-group with an
lft-Néron model G2 over SpecOK . Let G1 be a smooth K-subgroup of G2.

Then there exists an lft-Néron model G1 of G1 and the map G1 −→ G2 induced by the inclusion
on the generic fiber is quasi-compact.

Proof. By [BLR, Theorem 10.1.4], the lft-Néron model of G1 exists and can be obtained as a
group smoothing of the schematic closure of G1 in G2. So we have a diagram

G1 = G(n) δ(n)

−−→ · · · −→ G(1) δ(1)−−→ G1 ⊂ G2,

where the δ(i) are dilatations of appropriate closed subgroups of the special fiber. This follows
from [BLR, Lemma 7.1.4] since it suffices (after making an étale base change if necessary) to
construct the group smoothing on G1 ∩ G0

2 .
According to [BLR, 3.2], a dilatation of a scheme can be constructed locally and the dilatation

of an affine scheme is affine. This means that a dilatation is quasi-compact. A finite combination
of quasi-compact morphisms is also quasi-compact.

By construction, we have a quasi-compact map G1 −→ G2 which corresponds to the inclusion
G1 ⊂ G2 on the generic fiber. Thus the assertion follows from the Néron mapping property.

We can now show that in the situation of Proposition 2.3.1 the quotient Φ((G1)k)↠ Φ̃ has a
finite kernel.
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Proposition 2.3.4. Let K be a local field and let G2 be a smooth algebraic K-group with lft-
Néron model G2 over SpecOK . Let G1 be a smooth (closed) K-subgroup of G2. Then the corre-
sponding map of Néron models induces a homomorphism of Gal(ksep/k)-modules

Φ((G1)k) −→ Φ((G2)k)

with a finite kernel.

Proof. The morphism G1 −→ G2 induces a quasi-compact morphism ι : (G1)k −→(G2)k. Since the
identity component

(
G0
2

)
k

is of finite type over k, it is quasi-compact and therefore its preimage
is quasi-compact. Thus we can cover ι−1

((
G0
2

)
k

)
with finitely many connected components of

(G1)k. Since every connected component over ksep decomposes into a finite number of translates
of
(
G0
1

)
k
, only finitely many elements of Φ((G1)k) lie in the kernel.
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Chapter 3

Integral Models

In this chapter we consider the problem of extending a smooth and commutative K-group scheme
of finite type to an integral model, i.e., a separated and flat OK-group scheme. This is motivated
by the fact that the literature considers integral models of algebraic tori that are not Néron
models. In [ChYu, §4], a so-called ft-Néron model is defined for algebraic tori T which is a
smooth integral model T ft for which T ft

(
O sh
K

)
corresponds to the maximal bounded subgroup

of T (Knr). On the other hand, in [VKM], [P] and [PV], Voskresenskii et. al. define a standard
model which is an integral model with similar properties to the ft-Néron model. We will show
that in the lft-Néron model there exists a unique open subgroup that induces the torsion part of
the group of components, which we will define as the ft-Néron model.

We will show that for a smooth and commutativeK-group scheme of finite typeGK a maximal
bounded subgroup of GK(Knr) exists if, and only if, GK does not contain a subgroup of the form
Ga,K , i.e., if, and only if, it admits an lft-Néron model G. We will identify the maximal bounded
subgroup with the image of the points from G

(
O sh
K

)
that are mapped to torsion elements in the

group of components.
Thus, our definition for algebraic tori is equivalent to that of Chai and Yu and an ft-Néron

model exists if, and only if, an lft-Néron model exists. We will show that the ft-Néron model is
caracterized by the lifting property for the étale points from the maximal restricted subgroup of
Knr-valued points and also has an extension property analogous to the Néron mapping property.

We will show that ft-Néron models are compatible with étale base change and Weil restriction.
The advantage of the ft-Néron model lies in the fact that it is easier to compute than the lft-
Néron model. For an algebraic torus T , this model is affine and can be obtained as a group
smoothing of the schematic closure of T in ROL/OK

(
Gnm,OL

)
, where n = dim(T ) and L is a

splitting extension of T .
This schematic closure, which is itself an integral model of T , corresponds to the standard

model of Voskresenskii et. al. Using an idea from [Edi], we establish a criterion for when
a monomorphism of algebraic K-tori induces a closed immersion of the corresponding Néron
models.

We will show that on the étale and the smooth sites the ft-Néron model is a left-exact functor.
We will define a measure on the group of Knr-valued points of a torus and identify these points
with maps of the character group into the units of a splitting extension L/Knr of TKnr . A point
belongs to the maximal bounded subgroup of T (Knr) if, and only if, the corresponding map
φ takes its values in O∗

L. This will be the case exactly when φ restricted to X(T )I has this
property. Therefore, regarded as an étale sheaf, we have T ft = Hom(j∗X(T ),Gm,OK

).
The above means that the sequence constructed in Xarles’ proof of [X, Theorem 1.1] is a

53
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particular case of the canonical sequence

0 −→ T ft −→ T −→ Hom(j∗X(T ), i∗Z) .

In Appendix B we will discuss the right-exactness of the ft-Néron model.

3.1 Integral models and Néron models

Let K be a local field and let GK be a smooth K-group scheme of finite type. By an integral
model of GK we mean a flat and separated OK-group scheme G whose generic fiber as a group
scheme is isomorphic to GK .

The most useful type of integral models are probably the lft-Néron models: for algebraic tori,
the Néron model always exists in our situation; one can even specify an explicit construction
(cf. [BLR, Proposition 10.1.4]). Namely, if T is an algebraic K-torus, then there exists a finite
Galois extension L/K such that T ⊗K L ∼= Gnm,L. This means that there is a closed immersion
T −→ RL/K

(
Gnm,L

)
through which T can be identified with a subgroup of RL/K

(
Gnm,L

)
. Now

there is an lft-Néron model of Gm,L and thus also an lft-Néron model R of RL/K

(
Gnm,L

)
. Then

the group smoothing of the schematic closure of T in R is an lft-Néron model of T .
What is important in this construction is that the schematic closure is an integral model of

T . Regarding this model, we cite the following result:

Lemma 3.1.1. [SGA3, VIII, 7.1] Let R be a discrete valuation ring with quotient field K and
set S ..= SpecR. If G is an S-scheme and H is a closed subscheme of GK (so that H is a
subscheme of G), then the schematic closure H̄ of H exists in G. This is a flat S-scheme with
generic fiber H̄K = H and is the only closed subscheme of G with these two properties.

This construction is functorial with respect to such pairs (H,G) and commutes with fiber
products. In particular, if G is an S-group scheme and H is a K-subgroup of GK , then H̄ is an
S-subgroup of G.

Since the scheme R is no longer quasi-compact and the lft-Néron model of a torus T is
generally neither affine nor quasi-compact, this construction is rather unwieldy for explicit calcu-
lations. That is why Ching-Li Chai and Jui-Kang Yu consider in [ChYu, §3] a so-called ft-Néron
model. They write T (Knr)

bd to denote the maximal bounded subgroup of T (Knr) and define
their ft-Néron model as a smooth integral model T ft of T which satisfies T ft

(
O sh
K

)
= T (Knr)

bd.
They state that this model can be constructed as a group smoothing of the schematic closure of
T under the embedding

T ↪→ RL/K(TL) ∼= RL/K

(
Gnm,L

)
↪→ ROL/OK

(
Gnm,OL

)
.

This construction corresponds to the construction of the lft-Néron model, except for the fact
that the Néron model R is replaced by its identity component ROL/OK

(
Gnm,OL

)
(cf. [NX, 2.4]).

We want to define the ft-Néron model in general, determine its properties and compare it
with the lft-Néron model. Naturally, in the case that a Néron model of finite type exists, we also
want to understand it as an ft-Néron model. Thus, in analogy to the considerations from [BLR,
10.2], we investigate the case of smooth and commutative K-group schemes of finite type.

Proposition 3.1.2. Let GK be a smooth and commutative K-group scheme of finite type. Then
there exists a maximal bounded subgroup of GK(Knr) if, and only if, GK contains no subgroup
of the form Ga,K .
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A maximal bounded subgroup GK(Knr)
bd exists if, and only if, an lft-Néron model G of GK

exists. This subgroup corresponds to the preimage of the torsion part of Φ(Gk) under the canonical
surjection

GK(Knr) = G
(
O sh
K

)
−→ Gk(ksep) −→ Φ(Gk)(ksep) .

For every bounded subgroup C of GK(Knr), we have C ⊂ GK(Knr)
bd.

Proof. Since GK has no subgroup of the form Ga,K if, and only if, GK ⊗K Knr has no subgroup
of the form Ga,Knr , we may assume, without loss of generality, that K = Knr. We now assume
that a maximal bounded subgroup B ⊂ GK(K ) exists. Suppose that there exists a K-subgroup
UK = Ga,K ↪→ GK . Since we are considering K-group schemes, UK is a closed subgroup. This
means that B ∩ UK(K ) is a bounded subgroup of UK(K) = K.

By the boundedness of B, there exist a finite covering by open affine subschemes (Vi)i∈I of
GK , closed immersions Vi −→ Ani

K and a decomposition B =
⋃
i∈I Bi such that the Bi ⊂ Vi(K)

correspond to bounded subsets of Ani

K (K ). This means that (UK ∩ Vi)i∈I is an open affine cover
of UK , which shows that B ∩ UK(K ) is bounded in UK .

The multiplication µ onGK induces by restriction a group homomorphism UK×KGK −→ GK .
All subgroups πlOK ⊂ K = UK(K) with l ∈ Z are bounded, but UK(K) itself is unbounded.
So there exists an l ∈ Z such that πlOK is strictly larger than B ∩ UK(K). Now πlOK ×B is a
bounded subgroup of UK ×K GK , so by [BLR, 1.1.4] the image of this subgroup under µ must
be a bounded subgroup of GK(Knr), which contradicts the maximality of B.

Now assume that GK does not have a subgroup of the form Ga,K . This means that there
is an lft-Néron model G of GK . This model has a group of components Φ(Gk) which is finitely
generated as an abelian group. Its torsion part is therefore a finite subgroup. Since G is smooth
and OK is Henselian, the map

GK(Knr) = G
(
O sh
K

)
−→ Gk(ksep) −→ Φ(Gk)(ksep)

is an epimorphism of abelian groups. In GK(K ), consider the preimage B of the torsion part of
Φ(Gk). This preimage is equal to the OK-valued points of the subscheme G ft of G, which consists
of the generic fiber and all connected components of Gk that are mapped onto a torsion element of
Φ(Gk). Since Φ(Gk) becomes constant after a finite separable extension of k, there exists a finite
Galois extension OL −→ OK such that G ft ⊗OK

OL is a union of the generic fiber and finitely
many translates of the identity component of G ⊗OK

OL. Since the identity component is a
quasi-compact open subscheme, G ft must therefore already be an open quasi-compact subscheme
of G. In particular, Gft is of finite type. Therefore B must be a bounded subgroup of GK(K)
[BLR, 1.1.7].

Suppose C is a bounded subgroup of GK(K). By [BLR, 1.17 and 3.1.4], there exists a smooth
OK-scheme H of finite type with generic fiber GK such that C ⊂ im(H(OK) −→ HK(K)). Using
the Néron mapping property, we obtain a morphism H −→ G and an identification of C with a
subset of theOK-valued points of the image ofH. However, the image ofH in Gk is quasi-compact
and can therefore be covered by a finite number of connected components of Gk. Since every
connected component decomposes into a finite number of translates of the identity component
over Osh

K , the image of C in Φ(Gs)(ksep) is finite. But, according to the requirement, it is also a
subgroup. Thus, we must have C ⊂ B, thereby proving that B is the maximal bounded subgroup
of GK(K ).

Next, we identify the ft-Néron model with an open subgroup of the lft-Néron model and show
that an ft-Néron model can be characterized by a lifting property for certain étale points and a
mapping property that is similar to the Néron mapping property.
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Theorem 3.1.3. Let GK be a smooth and commutative K-group scheme of finite type and
assume that GK contains no subgroup of type Ga,K . Let G be the lft-Néron model of GK and let
Φ(Gk) be the group of components of Gk. For a smooth integral model of finite type Gft of GK ,
the following are equivalent.

(1) We have Gft
(
O sh
K

)
= GK(K

nr)
bd , where GK(Knr)

bd is the maximal bounded subgroup of
GK(Knr).

(2) Let Z be a smooth OK-scheme and let uK : ZK −→ GK be a K-morphism inducing a map
ZK(Knr) −→ GK (Knr)

bd. Then there exists a unique extension of uK to a morphism of
OK-schemes u : Z −→ Gft.

(3) The model Gft is isomorphic to the open subgroup G ft of G with generic fiber GK whose
special fiber consists of the connected components of Gk whose image under Gk −→ Φ(Gk)
lies in the torsion part of Φ(Gk).

Such an integral model is called an ft-Néron model of GK . It exists under the conditions of
the theorem, and without those conditions none of the given descriptions would make sense.

Proof. Based on the description (3), we first establish the group structure. By [BLR, Theorem
10.2.2], under the stated assumptions there exists an lft-Néron model of GK and its group of
components Φ(Gk) is finitely generated as an abelian group, whence the torsion part of Φ(Gk)
is finite. As we saw in the proof of proposition 3.1.2, the subset G ft of G defined above is in
fact an open subscheme of finite type. The unit section trivially factors through G. The inverse
on G must be an isomorphism of G ft, since the torsion part of Φ(Gk) is a subgroup scheme of
Φ(Gk). In an analogous manner, multiplication must also factor through G ft. Conversely, if GK
has a subgroup of the form Ga,K , then neither an lft-Néron model of GK nor a maximal bounded
subgroup of GK(Knr) exist. We now show the equivalence of the three descriptions:

(1) ⇒ (2): This follows using the idea in the proof of [BLR, 3.5.3]. Let Z be a smooth OK-
scheme and let uk : ZK −→ Gft

K be a K-morphism such that ZK(Knr) ⊂ Gft
K (Knr)

bd. Without
loss of generality, we may assume that Z is of finite type. Now let Γ be the schematic closure of
the graph of uK in Z ×Gft. Further, let p : Γ ⊂ Z ×Gft −→ Z be the projection onto the first
factor.

Since Z and Gft are of finite type and OK is Noetherian, Γ is of finite presentation. By
Chevalley’s theorem, we conclude that the image of pk : Γk −→ Zk is constructible. By (1), the
image contains the dense subset of all points zk ∈ Zk(k

sep) that lift to a point z ∈ Z
(
O sh
K

)
.

Thus, for every irreducible component of Zk, its generic point must also lie in the image of p.
This means that such a generic point η has a preimage ξ ∈ Γ and the local ring OΓ,ξ dominates
the discrete valuation ring OZ,η. Since p is an isomorphism on the generic fiber and Γ is flat,
the associated localizations must be isomorphic via πK , and OΓ,ξ

∼= OZ,η. This means that p
is an isomorphism in an open neighborhood of η , and we therefore obtain an OK-rational map
Z → Gft.

SinceGft is a smooth and separated group scheme, the existence of anOK-morphism u : Z −→
Gft which extends uK follows from Weil’s extension theorem [BLR, Theorem 4.4.1]. This is unique
because it is based on the dense subset of points zk ∈ Zk(k) that lift to points z ∈ Z(OK), which
already determines it [EGA IV, 11.10].

(2)⇒ (3): By the universal property of the lft-Néron model G, there exists a map Gft −→ G
which extends the identity on GK . Since Gft is quasi-compact, the image of Gft is also quasi-
compact and can therefore be covered by a finite number of translates of the identity component.
Since this map has to be a group-scheme morphism by Néron’s mapping property, it must factor
through G ft −→ G.
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By proposition 3.1.2, the group of O sh
K -valued points of G ft is equal to the maximal bounded

subgroup of GK . Therefore, by (2), the identity on GK lifts to a map G ft −→ Gft. By the
uniqueness of these maps, we must have Gft ∼= G ft.

(3)⇒ (1) : This implication is clear by proposition 3.1.2.

In order to investigate the ft-Néron model for algebraic tori, it is advisable to first describe
the maximal bounded subgroup of Knr-valued points. To do this, we want to define a modulus
∥.∥ in a suitable manner.

So let T be an algebraicK-torus with character groupX(T ) and let L be a finite and separable
extension of Knr over which T splits. Then, by Cartier duality,

T (L) = HomZ (X(T ), (Ksep)∗)
Gal(Ksep/L)

= HomZ (X(T ), L∗)

T (Knr) = HomZ (X(T ), (Ksep)∗)
Gal(Ksep/Knr)

= HomGal(L/Knr) (X(T ), L∗)

Since T splits over L, there exists a trivialization TL ∼= Gnm,L ∼= SpecL[X(T )]. Using a Z-basis
(χ1, . . . , χn) of X(T ), we can write

L[X(T )] = L [X1, . . . , Xn, Z] / (X1 · . . . ·Xn · Z − 1)

with variables Xi for each χi. Via the above a point x ∈ T (L) = HomZ(X(T ), L∗) becomes
identified with a morphism

x : L[X(T )] −→ L, Xi 7→ x(χi) ∈ L∗.

To determine the size (i.e., modulus) of a point x ∈ T (Knr), it suffices to determine (using [BLR,
Proposition 1.1.5]) the size of x as a point in TL(L).

Via the above identification, a point x ∈ HomZ(X(T ), L∗)
Gal(L/Knr) is identified with a

Gal (L/Knr)-equivariant map underlying a map of abelian groups x : X(T ) −→ L∗. According
to definition [BLR, 1.1.2], we consider the closed immersion

TL ↪→ An+1
L L [X1, .., Xn, Z] −→ L [X1, .., Xn, Z] / (X1 · . . . ·Xn · Z − 1)

and define the modulus of x as

∥x∥ ..= max

{
|x (χ1)| , . . . |x (χn)| ,

∣∣∣∣∣ 1∏
i=1,...,n x (χi)

∣∣∣∣∣
}
.

We will write the group law on a torus multiplicatively. After trivialization, the multiplication
on T becomes the component-wise multiplication on Gnm,L. This shows that, for l ∈ N and
x, y ∈ T (L), we have ∥∥xl∥∥ = ∥x∥l∥∥x−1

∥∥−1
= min

{
|x (χ1)| , .., |x (χn)| ,

∣∣∣∣∣ 1∏
i=1,..n x (χi)

∣∣∣∣∣
}

∥xy∥ ≤ ∥x∥∥y∥.

Thus the subgroup generated by an element x is bounded if, and only if, all x(χi) have modulus
one. By component-wise multiplication, two such elements again produce a bounded subgroup.
Therefore, we have

T (Knr)
bd

= HomZ(X(T ),O∗
L)

Gal(L/Knr)
. (3.1.3.1)
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Based on the first description from Theorem 3.1.3, one can see that the ft-Néron model can
be constructed similarly to the usual Néron model as a group smoothing of an integral model
which T (Knr)

bd lifts. In the case of algebraic tori, one can explicitly describe such an integral
model.

Proposition 3.1.4. The ft-Néron model of Gm,K is Gm,OK
. If L/K is a finite separable exten-

sion of local fields and G ′ is a smooth and commutative algebraic L-group with ft-Néron model
(G ′)ft, then RL/K(G ′) has an ft-Néron model and this is isomorphic to ROL/OK

(
(G ′)ft

)
. The

ft-Néron model is compatible with étale base changes.

Proof. After constructing the lft-Néron model of Gm,K , it is clear that the ft-Néron model of
Gm,K is equal to Gm,OK

.
Now let G ′ be as stated. The lft-Néron model G ′ exists and contains (G ′)ft as an open and

quasi-compact subgroup. The Weil restriction is compatible with open immersions and respects
group scheme structures. Thus ROL/OK

(
(G ′)ft

)
is an open subgroup of the lft-Néron model

ROL/OK
(G ′) of RL/K(G ′). Since OK is Noetherian, the Weil restriction is also compatible with

quasi-compactness, so this subgroup is also of finite type. Finally, ROL/OK

(
(G ′)ft

)
is trivially

smooth.
Now we have an exact sequence

0 −→ (G ′)ft −→ G ′ −→ i∗Φ(G ′
s)

∨∨ −→ 0

on the étale site over OL. By the exactness of the Weil restriction functor, the above sequence
induces an exact sequence

0 −→ ROL/OK

(
(G ′)ft

)
−→ ROL/OK

(G ′ ) −→ ROL/OK

(
i∗Φ(G ′

s)
∨∨
)
−→ 0

over OK . Now Φ(G ′
s)

∨ is torsion-free and the Weil restriction of this group is an induction of
Φ(G ′

s)
∨∨ as we saw in the proof of Theorem 1.2.1. This means that it is torsion-free again, so that

the image of ROL/OK

(
(G ′)ft

)(
O sh
K

)
in the group of components of ROL/OK

(G ′ )⊗OK
k contains

the torsion part. By its quasi-compactness, the image cannot be larger than the torsion part,
which means that we have shown that

RL/K(G ′) (Knr)
bd

= ROL/OK

(
(G ′)ft

)(
O sh
K

)
.

Now the claim follows from Theorem 3.1.3.
Since boundedness is compatible with finite separable base changes, the argument in [BLR,

1.2.2(c)] can also be applied to ft-Néron models. These are therefore compatible with étale base
changes.

Proposition 3.1.5. Let T be an algebraic K-torus with a finite Galois splitting extension L.
Consider the sequence of inclusions

T ↪→ RL/K(TL) ∼= RL/K

(
Gnm,L

)
↪→ ROL/OK

(
Gnm,OL

)
.

Let T be the schematic closure of T in ROL/OK

(
Gnm,OL

)
. Then T is an affine integral model of

T that is independent of the choice of L. Regarding the choice of T , it is compatible with étale
base changes. Further, T

(
O sh
K

)
= T (Knr)

bd.

Proof. The closed immersion T −→ RL/K(TL) is a homomorphism of group schemes which maps
T (Knr)

bd into RL/K

(
Gnm,L

)
(Knr)

bd. These points lift to O sh
K -valued points of ROL/OK

(
Gnm,OL

)
.
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This means that all points of T (Knr)
bd lift to O sh

K -valued points of T . By construction, T is an
affine scheme of finite type since ROL/OK

(
Gnm,OL

)
and T are affine schemes. By [SGA3, VIII,

Lemma 7.1], T is an integral model of T . This means that no other points of T (Knr) can lift to
O sh
K -valued points of T because these points would induce unbounded subgroups.

For independence from the choice of L, consider a finite extension M/L. Then the em-
bedding T −→ ROM/OK

(
Gnm,OM

)
factors through the closed immersion ROL/OK

(
Gnm,OL

)
−→

ROM/OK

(
Gnm,OM

)
induced by the closed immersion Gnm,OL

↪→ ROM/OL

(
Gnm,OM

)
.

Finally, let K ′/K be an unramified extension. Since the schematic closure is compatible with
flat base change, T ⊗OK

OK′ is the schematic closure of TK′ in

ROL/OK

(
Gnm,OL

)
⊗OK

OK′ = ROL⊗OK
OK′/OK′ (Gm,OL

⊗OK
OK′) .

Since K ′/K is unramified, OL⊗OK
OK′ ∼=

∏
[L∩K′ : K ]OL′ , where L′ is the composite of K ′

with L. We obtain similarly (see [NX, Proposition 2.2])

ROL/OK

(
Gnm,OL

)
⊗OK

OK′ =
∏

[L∩K′ : K ]

ROL′/OK′

(
Gnm,OL′

)
and the embedding of TK′ here factors through the diagonal embedding

∆: ROL′/OK′

(
Gnm,OL′

)
↪→

∏
[L∩K′ : K ]

ROL′/OK′

(
Gnm,OL′

)
.

Since the schemes considered above are separated, the diagonal embedding is a closed immersion,
whence the schematic closure also factors through ∆.

3.2 Néron models and closed immersions
Proposition 3.2.1. The ft-Néron model of an algebraic K-torus T is equal to the group smooth-
ing of the schematic closure T of T under the immersion T −→ RL/K(TL) ∼= RL/K

(
Gnm,L

)
↪→

ROL/OK

(
Gnm,OL

)
. Further, the following are equivalent:

(1) T is smooth.

(2) The canonical map T ft −→ ROL/OK

(
Gnm,OL

)
is a closed immersion.

(3) The canonical map T −→ ROL/OK

(
GnOL

)
is a closed immersion.

Further, GnOL
is the lft-Néron model of Gnm,L over OL.

Proof. (1) ⇒ (2): Since T is an integral model of finite type, the group smoothing T ft of T
exists. By Proposition 3.1.5, T ft is an ft-Néron model of T . If T is already smooth, then the
smoothing is not necessary and the canonical map T ft −→ ROL/OK

(
Gnm,OL

)
corresponds to the

closed immersion T −→ ROL/OK

(
Gnm,OL

)
.

(2)⇒ (3): Similarly, T is the group smoothing of the schematic closure of T in ROL/OK

(
GnOL

)
.

Since this schematic closure is an OK-group scheme, it is smooth if it is smooth in a neighborhood
of the identity. The latter can be checked on the open subgroup ROL/OK

(
Gnm,OL

)
. By (2) and

the uniqueness statement in [SGA3, VIII, 7.1], the schematic closure in a neighborhood of the
identity equals the canonical embedding T ft −→ ROL/OK

(
Gnm,OL

)
and is, therefore, smooth.

This means that no smoothing is necessary and the canonical morphism is a closed immersion.
(3) ⇒ (1) Again by [SGA3, VIII, Lemma 7.1], the schematic closure of T in ROL/OK

(
GnOL

)
is smooth. Since the schematic closure is locally determined, T is an open subscheme of this
schematic closure, hence, in particular, smooth.
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In [VKM, §5, Proposition 6], the schematic closure T just considered is identified with the
so-called standard model (see loc. cit. and [PV, P]). By the proof of the last two propositions, it
is clear that the group smoothing of this closure corresponds to the ft-Néron model (cf. [P, §10,
Proposition 8] and [VKM, §5, Proposition 7]). In [Edi, Constructions 2.3 and 2.4], Edixhoven
defined for a finite Galois extension S ′ −→ S and an S-scheme X an action of G ..= Gal(S ′/S)
on X ′ ..= RS ′/S(X ×S S ′). He then considered the functor of G-invariant points of X ′ [Edi, §3]
and showed that, for a separated X, this functor is represented by a closed subscheme. From
the explicit construction one sees that the canonical closed immersion X −→ RS ′/S(X ×S S ′)
corresponds to the immersion (X ′)G −→ X ′ of the representing scheme of G-invariant points.

Now if T is an algebraic K-torus with a finite Galois splitting extension L, then we have
on RL/K(TL) ∼= RL/K

(
Gdm,L

)
an equivariant G ..= Gal(L/K)-action so that T corresponds to

the subscheme of G-invariant points. By the equivariance, this action extends canonically to an
action on ROL/OK

(
Gdm,OL

)
.

The closed subscheme of G-invariant points of ROL/OK

(
Gdm,OL

)
is an OK-model of T and

by [Edi, Proposition 3.4] one can see that this model is smooth if L/K is tamely ramified. By
[SGA3, VIII, Lemma 7.1], this model must already be the schematic closure of T . In particular,
the standard model is then equal to the ft-Néron model.

As an application we obtain the following statement:

Proposition 3.2.2 (cf. [BLR, Theorem 7.5.4] and [Edi, Theorem 6.1]). Let ι : T1 −→ T2 be a
monomorphism of algebraic K-tori and assume that T1 splits over a tamely ramified extension
of K. Then the induced map T1 −→ T2 of the Néron models is a closed immersion.

Proof. Let L/K be a common splitting extension of T1 and T2. Then we have a commutative
diagram

T1 T2

RL/K((T1)L) RL/K((T2)L)

in which all maps are closed immersions. For the top horizontal map one uses that monomor-
phisms of diagonalizable group schemes are closed immersions and closed immersions are compat-
ible with descent. The vertical maps are the canonical embeddings, which are closed immersions
by the separation of the tori Ti. On the bottom row we use the compatibility of the Weil
restriction with closed immersions.

Let R be the Néron model of RL/K((T2)L). By assumption, the schematic closure of T1 in R
is smooth and equal to the Néron model of T1. This embedding now factors through the map
j∗ι between Néron models induced by ι

T1 T2

R

j∗ι

This means that j∗ι must be a closed immersion, since T2 −→ R is separated [H, II, Example
4.8 and Corollary 4.6(e)].

3.3 The ft-Néron model of a torus as a sheaf
The formation of the Néron model corresponds to the left-exact functor j∗ on the étale and smooth
sites over SpecK. In this sense, a short exact sequence of commutative K-group schemes induces
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a left exact sequence of Néron models on the corresponding site over SpecOK . We now show
that this also applies to the ft-Néron models.

Proposition 3.3.1. Let K be a local field and let

0 −→ G1 −→ G2 −→ G3 −→ 0

be a short exact sequence of smooth and commutative algebraic K-groups for which lft-Néron
models exist. Then the above sequence induces a left-exact sequence on the étale and smooth sites
over OK of the corresponding ft-Néron models

0 −→ G ft
1 −→ G ft

2 −→ G ft
3 ,

where the morphisms between the sheaves are extensions of the corresponding morphisms between
the K-group schemes via the universal property of the ft-Néron model.

Proof. If Z is a smooth OK-scheme, Z −→ G ft
i is an OK-morphism and uK : ZK −→ Gi is a

K-morphism, then the OK-morphism u : Z −→ Gi that extends uK is the composition Z −→
G ft
i ↪→ G. Thus the exact sequence 0→ G1 → G2 −→ G3 induces a sequence of étale sheaves

0 −→ G ft
1 −→ G ft

2 −→ G ft
3 ,

where the intervening maps are as in the statement. Further, a morphism uK : ZK −→ Gi with
an extension Z −→ Gfti induces a K-morphism ZK −→ Gi+1 with an extension Z −→ Gfti+1,
because the image of a bounded subset is bounded again and the morphism Gi −→ Gi+1 is a
group homomorphism.

To examine the exactness of this sequence in the étale topology, it suffices to look at the
stalks. The sequence of stalks at the generic fiber is exact by assumption and the sequence of
stalks at the special fiber corresponds to the sequence

0 −→ G1(K
nr)

bd α−→ G2(K
nr)

bd β−→ G3(K
nr)

bd

with canonical arrows. It is clear that the sequence at G1 (K
nr)

bd is exact. For the exactness at
G2 (K

nr)
bd we need only check that Imα ⊃ kerβ . By the left exactness of the sequence of the

lft-Néron models, an x ∈ kerβ has a preimage z ∈ G1(K
nr). But since

{
xl | l ∈ Z

}
⊂ G2(K

nr)

is bounded by assumption and G1 −→ G2 is a closed immersion, its preimage
{
z l | l ∈ Z

}
must

also be bounded in G1, whence z ∈ G1(K
nr)

bd. In the smooth topology, we also need only check
that Imα ⊃ kerβ . So let Z be a smooth OK-scheme and let f2 : Z −→ G ft

2 be a morphism whose
composition with G ft

2 −→ G ft
3 is trivial. By the left-exactness of the sequence of the lft-Néron

models, f2 factors smoothly-locally through a section of G2 over G1. However, the image of
these factorizations can only affect components of (G1)k which are in the torsion part of Φ((G1)k)
because, under the quasi-compact group homomorphism (G1)k −→(G2)k, these components map
exactly into the torsion part of Φ((G2)k).

In Appendix B we will address the question of right-exactness (in the case of algebraicK-tori).

We now want to examine the étale sheaf represented by the ft-Néron model in more detail in
the case of an algebraic K-torus T . Up to this point we have tested the boundedness of a set of
points from T (Knr) on the whole character group. However, according to Xarles’ description of
the free part, the boundedness (at least for perfect residue fields) should be tested on X(T )I =
HomZ(Φ,Z). In fact, we have
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Proposition 3.3.2. Let T be an algebraic K-torus with character group X(T ). Let L/Knr be a
finite Galois splitting extension of T ⊗K Knr with Galois group I = Gal(L/Knr). Then

T (Knr)
bd

=
{
f ∈ HomZ(X(T ), L∗)

I | f(X ) ∈ (O sh
K )∗ for x ∈ X(T )I

}
,

i.e., the maximal bounded subgroup consists exactly of those points which, under the canonical
map T −→ T I , are mapped to a point that generates a bounded subgroup of T I(Knr).

Proof. Recall the sequence (6)

0 −→ T̃ −→ T −→ T I −→ 0

and its Cartier dual (7)

0 −→ X(T )I −→ X(T ) −→ X(T̃ ) −→ 0.

Taking Knr-valued points in the above sequences, we obtain an exact sequence of abelian groups

0 −→ HomI

(
X(T̃ ), L∗

)
−→ HomI(X(T ), L∗) −→ HomZ

(
X(T )I ,(Knr)

∗)
.

Since X(T )I is a saturated submodule of X(T ), there exists a Z-basis (χ1, . . . , χn) of X(T )

such that (χ1, . . . , χd) is a Z-basis of X(T )I . Now a point x ∈ T (Knr) = HomZ(X(T ), L∗)
I

belongs to the maximal bounded subgroup of T (Knr) if, and only if, every x(χi) lies in O∗
L.

Thus it can be shown that for a point x with x(χ1) , . . . , x(χd) ∈ O∗
L it necessarily follows that

x(χd+1) , . . . , x(χn) ∈ O∗
L.

Since the modulus is compatible with exponentiation, it suffices to show the above for x′ ..= xr,
where r =[L : Knr] is the cardinality of I. Now x′ corresponds to the map induced by the map
χi 7→ xri . Further, x1, . . . , xd ∈ (O sh

K )∗ since x is an I-morphism and the χ1, . . . , χd are I-
invariant.

Consider the map y ∈ HomZ(X(T ), L∗) = T (L) which is induced by the assignment

χ1 7→ x1, . . . , χd 7→ xd, χd+1 7→ 1, . . . , χn 7→ 1.

The map y′ ..=
∏
σ∈I σ ◦ y is invariant under the action of I, i.e., y′ ∈ T (Knr). For the I-

invariant characters (χi)i=1,...,d, we have σ ◦ y(χi) = σ
(
y
(
σ−1(χi)

))
= σ(y(χi)). Consequently,

y′(χi) = NL/Knr(xi) for i = 1, . . . , d. But since xi ∈ (O sh
K )∗, we have y′(χi) = xri for i = 1, . . . , d.

The remaining characters (χj)j=d+1,...,n are obviously mapped to products of powers of elements
of the form σ(xi) with σ ∈ I and i = 1, . . . , d. Since the xi are in (O sh

K )∗, these characters must
also have their images contained in (O sh

K )∗.
Now the map T (Knr) −→ T I (Knr) is the restriction to X(T )I , so x′/y′ lies in the kernel of

this map. By left-exactness of sections over Knr, x′/y′ must therefore lie in the image of T̃ (Knr).
Now T̃ ⊗K Knr is an anisotropic torus, whence

T̃ (Knr) = HomI

(
X(T̃ ), L∗

)
= HomZ

(
X(T )/X(T )I , L∗)I

is bounded [BLR, Theorem 10.2.1]. This means that all maps in HomZ

(
X(T )/X(T )I , L∗)I are

induced by assignments
χd+1 7→ xd+1, . . . , χn 7→ xn

with values xd+1, . . . , xn ∈ O∗
L.
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The map T̃ (Knr) −→ T (Knr) corresponds to the assignment χ1, .., χd 7→ 1. For i = d +
1, . . . , n, we conclude that

xri = x′(χi) = y′(χi) ·(x′(χi) /y′(χi)) ∈ O∗
L

whereby the xi are actually in O∗
L.

We can now describe the ft-Néron model as an étale sheaf:

Proposition 3.3.3. Let K be a local field and let T be an algebraic K-torus with character group
X(T ). Then the sheaf Hom(j∗X(T ),Gm,OK

) on (OK)ét is represented by the ft-Néron model of
T :

Hom(j∗X(T ),Gm,OK
) = Hom (OK)ét

(−, T ft).

Proof. It suffices to check the statement for connected étale OK-schemes U . If U = SpecK ′ for
a finite separable field extension K ′/K, then Cartier duality yields a natural isomorphism

Hom(j∗X(T ),Gm,OK
) (U) = HomK′(X(T ),Gm,K′) ∼= T (K ′) .

The ft-Néron model T ft has as its generic fiber the torus T itself, so the claim holds on the
generic fiber.

If U = SpecOK′ for a finite unramified extension K ′/K, then we have

Hom(j∗X(T ),Gm,OK
) (U) = HomOK′

(
j∗X(T ),Gm,OK′

)
.

We will investigate the right-hand side of the above equation using the decomposition theorem
[M, II, Theorem 3.10].

A morphism ψ from j∗X(T ) to Gm,OK
corresponds to a pair of morphisms(

ψη̄ : X(T ) −→ (Ksep)∗

ψs̄ : X(T )I −→ (O sh
K′)∗

)
,

where ψη̄ is a GK′ = Gal(Ksep/K ′)-morphism and ψs̄ is a Gk′ = Gal(ksep/k′) morphism. In
addition, the diagram

X(T )I (Osh
K ′)∗

X(T )I ((Ksep)∗)I Knr∗

ψs̄

ψη̄

commutes. But this means that Hom
(
j∗X(T ),Gm,OK′

)
(U) consists exactly of pairs

(
ψη̄,ψη̄|X(T )I

)
for which ψη̄|X(T )I assumes values in O sh

K′ . The restriction of a morphism ψη̄ must be understood
as the image under the morphism

HomZ(X(T ), (Ksep)∗)
GK′ −→HomZ

(
X(T )I , (Ksep)∗

)GK′

= HomZ

(
X(T )I , (Knr)∗

)GK′

induced by the inclusion X(T )I −→ X(T ).
Thus the elements of Hom

(
j∗X(T ),Gm,OK′

)
(U) correspond exactly to the points of T (K ′) =

HomZ(X(T ), (Ksep)∗)
GK′ which yield characters on X(T )I that only assume values in O sh

K′ . But
these are exactly the points of the maximal bounded subgroup of T (K ′), whence

Hom
(
j∗X(T ),Gm,OK′

)
(U) = T ft(U).

Via Cartier duality on the generic fiber, one sees that this identification is natural, i.e., it induces
a sheaf isomorphism.
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Chapter 4

Exactness properties of the Néron
model

If one examines the Néron model of an algebraic torus T using cohomological methods, as Xavier
Xarles does in his work [X], it is important to know under what conditions the formation of the
Néron model is an exact functor, i.e., when R1j∗T = 0.

We first consider this problem in the étale topology. Since j∗ is the identity on the generic
fiber, R1j∗T is a skyscraper sheaf, so one can test the triviality of R1j∗T in the stalk at s̄. Using
a base change theorem and Hilbert’s Theorem 90, we see that relative to a splitting extension
L/Knr of TKnr this stalk can be determined as H1(Gal(L/Knr) ,HomZ(X(T ), L∗)). Note that,
as a cohomology group with respect to a finite group,

(
R1j∗T

)
s̄

is a torsion group.
In the case of a perfect residue field or in the case that L/Knr is tamely ramified, the norm

residue group of L/Knr is trivial, so that L∗ is a cohomologically trivial Gal(L/Knr)-module.
Since X(T ) is torsion-free, the same applies to HomZ(X(T ), L∗), whence R1j∗T = 0. Via
a spectral sequence argument, we conclude that the property R1j∗T = 0 also holds for Weil
restrictions of T .

For arbitrary tori we can decompose the splitting extension L/Knr into a part of order a
power of p and a tamely ramified part. We thus see that both the norm residue group of a finite
separable extension of Knr and

(
R1j∗T

)
s̄

are p-primary torsion groups.
Finally, we show that for a norm-one torus TN with respect to L/Knr the group

(
R1j∗TN

)
s̄

is
equal to the norm residue group of this extension. We use examples to show that norm residue
groups are generally infinite and can be non-trivial even when there is no residual ramification.

Next we consider R1j∗T in the smooth topology. This is necessary, since the torsion part of
the group of components can only be determined in the smooth topology via Xarles’ methods.
The existence of a short exact sequence of groups of components in the étale topology also
requires the vanishing of a certain smooth sheaf R1j∗T1.

We show that R1j∗ vanishes for the multiplicative group and for Weil restrictions of the
multiplicative group. In the first case we use the definition of R1j∗Gm,K as a sheafification of
certain cohomology groups, which we can consider as Picard groups. We trace the second case
back to the first one using a spectral sequence argument. Using the Hochschild-Serre spectral
sequence, we can relate R1j∗T for any tori T to R1j∗Gm,K and show that R1j∗T is a [L : Knr]-
torsion sheaf if L is a splitting extension of TKnr .

To see that R1j∗T is, in fact, a p-primary torsion sheaf, we show that the smooth sheaf
R1j∗T restricted to the étale site is equal to the étale sheaf R1j∗T , since this restriction is exact
and R1j∗ can always be written as the cokernel of a homomorphism of Néron models. Since the

65
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identity component of a smooth group scheme is an l-divisible sheaf for every l ∈ N such that
p ∤ l, there would have to be a non-p-primary torsion part of R1j∗T that factors through the
group of components and can therefore be computed étale-wise. Thus R1j∗T is, as in the case
of the étale topology, a p-primary torsion sheaf.

This also implies that R1j∗T = 0 if T trivializes over a tamely ramified extension. Further,
we see that in the smooth topology we have Hom

(
R1j∗T, i∗Z

)
= Ext1

(
R1j∗T, i∗Z

[
p−1
])

= 0.
We give an explicit example that R1j∗T ̸= 0 can happen, even if the residue field is perfect

but T only trivializes over a wildly ramified extension. As a supplement, in the last section we
give a brief description of the functors j∗ and R1j∗ applied to étale group schemes.

4.1 R1j∗T as an étale sheaf

Proposition 4.1.1. Let K be a local field and let T be an algebraic K-torus with character
group X(T ). Further, let L/Knr be a finite Galois extension such that TL is split and let
I ..= Gal(L/Knr). Then, in the étale topology, R1j∗T is a skyscraper sheaf and

(
R1j∗T

)
s̄
=

H1(I,HomZ(X(T ), L∗)).

Proof. It is clear that R1j∗T is a skyscraper sheaf. The stalk in the special fiber can be determined
using [M, III, Theorem 1.15]. We obtain(

R1j∗T
)
s̄
= H1(Gal(Ksep/Knr) , T (Ksep)) .

Let L/Knr be a finite Galois extension with I ..= Gal(L/Knr) such that T splits over L. Then,
by the exactness of the direct limit functor, the canonical inflation-restriction sequence yields an
exact sequence

0 −→ H1
(
I, T (Ksep)

GL

)
−→ H1(GKnr , T (Ksep)) −→ H1(GL, T (K

sep)) ,

where GL ..= Gal(Ksep/L) and GKnr
..= Gal(Ksep/Knr). By Cartier duality, it follows that

T (Ksep) = HomZ(X(T ), (Ksep)∗). Since GL acts trivially on X(T ), we have

H1(GL, T (K
sep)) = H1 (GL, (K

sep)∗)
d
= 0

by Hilbert’s Theorem 90, where d is the rank of X(T ).

We immediately get some interesting corollaries.

Corollary 4.1.2. In the étale topology,
(
R1j∗T

)
s̄

is compatible with étale base changes. For
products of algebraic tori, we have(

R1j∗T1 ×K T2
)
s̄
=
(
R1j∗T1

)
s̄
⊕
(
R1j∗T2

)
s̄
.

Proof. Since an étale base change does not change the Gal(Ksep/Knr)-module structure of the
character group, the first assertion is clear. The second assertion follows from the fact that
X (T1 ×K T2) = X (T1)⊕X (T2) (in the category of Galois modules) and both HomZ(·, L∗) and
H1(I, ·) are compatible with finite sums.

Corollary 4.1.3. In the étale topology, R1j∗T is a torsion sheaf. In particular,

Hom
(
R1j∗T, i∗Z

)
= 0.
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Proof. Since
(
R1j∗T

)
s̄

is a cohomology group with coefficients in a finite group I, multiplication
by the cardinality of I annihilates every element of

(
R1j∗T

)
s̄
. Clearly this also applies to every

section of the skyscraper sheaf R1j∗T .

By [S, IX, §5, Theorem 9], for a finite group G and two G-modules A and B, HomZ(A,B)
is a cohomologically trivial G-module if either A or B is a cohomologically trivial G-module and
Ext1Z(A,B) = 0. Since the character group of an algebraic torus is torsion-free, Ext1Z(X(T ), L∗) =
0. This shows that for any algebraic torus T over a local field with a perfect residue field we
have R1j∗T = 0, because L∗ is cohomologically trivial as a Gal(L/Knr)-module for every finite
separable extension L/Knr. This follows from the fact that the absolute Brauer group of Knr is
trivial. Note that this no longer holds for an arbitrary residue field, but we still get:

Lemma 4.1.4. Let L/K be a finite Galois and tamely ramified extension of a discretely valued
and non-archimedean strictly Henselian field. Then the norm residue group K∗/NL/KL

∗ is
trivial. In particular, L∗ is a cohomologically trivial Gal(L/K)-module.

Proof. For the norm map we have an exact and commutative diagram:

0 O∗
L L∗ Z 0

0 O∗
K K∗ Z 0.

νK

νL

NL/K
NL/K NL/K

Because of the (total) tame ramification, NL/K(πL) is a uniformizing element in OK . This means
that the norm map on the value groups is bijective and the snake lemma yields an isomorphism

K∗/NL/KL
∗ ∼= O∗

K/NL/KO∗
L.

Thus it suffices to check that the norm is surjective on integral units. Restricted to elements
from OK , the norm map is the exponentiation by e ..= [L : K]. By assumption p ∤ e, so that for
any x ∈ O∗

K the polynomial Xe − x is a primitive and separable polynomial. Modulo πK , this
polynomial splits into linear factors since, according to the assumption, k is separably closed and
x̄ ̸= 0. Using Hensel’s lemma, Xe−x must then split into linear factors in OK . This means that
there is even a preimage of x in OK under the standard map.

Thus for L∗ the zero-th (Tate) cohomology group with respect to Gal(L/K) is trivial, whence
L∗ is cohomologically trivial by Hilbert’s Theorem 90 and [S, IX, §5, Theorem 8].

Corollary 4.1.5. Let L/K be a finite separable and tamely ramified extension of local fields and
let T be an algebraic K-torus that splits over L. Then R1j∗T = 0 in the étale topology.

Proof. Without loss of generality, we may assume that K = Knr and L/K is Galois. By [S, IX,
§5, Theorem 9] and the argument above, it suffices to check that L∗ is a cohomologically trivial
I ..= Gal(L/K)-module. But this is the assertion of the previous lemma.

The property that R1j∗T = 0 is compatible with Weil restrictions relative to finite separable
extensions of local fields. We will show this using an idea from the proof of [BX, 4.2]:

Proposition 4.1.6. Let L/K be a finite separable and tamely ramified extension of local fields
and let T ′ be an algebraic L-torus such that R1(jL)∗T

′ = 0 in the étale topology over OL. Then
R1j∗RL/K(T ′) = 0 in the étale topology over OK .
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Proof. We consider the commutative diagram

SpecL SpecOL

SpecK SpecOK

ρρK

j

jL

and regard RL/K(T ′) as the étale sheaf (ρK)∗ T
′. By the above diagram, we have ρ∗ ◦(jL)∗ =

j∗ ◦(ρK)∗ on the respective étale sites. Further, flabby sheaves are acyclic for direct images and
the direct image of a flabby sheaf is flabby again [M, III, 1.14 and 1.19]. Thus we may consider
Leray spectral sequences [M, III, Theorem 1.18]:

By [M, II, Proposition 3.6], the Weil restriction as a functor h∗ for a finite morphism of
schemes h is exact in the étale topology. In particular, ρ∗ and (ρK)∗ are exact functors.

So we obtain the following exact sequence of terms of low degree from the Leray spectral
sequence for ρ∗ ◦(jL)∗:

0 −→
(
R1ρ∗

)
(jL)∗ T

′ −→ R1 (ρ∗ ◦ (jL)∗)T
′ −→ ρ∗R

1 (jL)∗ T
′.

Since ρ∗ is exact, the first term of this sequence vanishes. By the hypothesis on T ′, the third
term must also vanish. Consequently

R1(j∗ ◦(ρK)∗) T
′ = R1(ρ∗ ◦(jL)∗) T

′ = 0.

Now, from the Leray spectral sequence for j∗ ◦(ρK)∗ we obtain the exact sequence of low degree
terms

0 −→
(
R1j∗

)
(ρK)∗ T

′ −→ R1(j∗ ◦(ρK)∗)T
′ = 0,

which yields the proposition.

In order to obtain further results, we investigate how extensions of local fields can be decom-
posed.

Proposition 4.1.7. Let L/K be a finite Galois extension of local fields. Then, possibly after
making a finite separable extension of L, one can find a sequence of fields K ⊆ Knr ⊆ Kins ⊆
K(p) ⊆ L such that

• all extensions are finite and separable

• Knr/K is Galois and unramified.

• a uniformizing element in K is also a uniformizing element in Kins and the extension
Kins/K

nr is totally ramified with purely inseparable residue field extension (we say that it
is residually ramified)

• K(p)/Kins is totally ramified of p-primary degree with trivial residue field extension.

• L/K(p) is totally and tamely ramified.

Moreover, it is necessary to make an extension of L only if the associated extension of residue
fields has an inseparable part.
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Proof. The existence of the extension K ⊆ Knr is well-known. By [AS, Appendix, Corollary 2],
it follows that one can find a finite extension Kins of Knr such that the corresponding extension
of the residue field is purely inseparable and a uniformizing element of Lnr is also a uniformizing
element in Kins. However, Kins is a priori only a subfield of a finite separable extension L′ of L,
but the extension Kins ⊆ L′ does not ramify residually.

Now we replace L with the normal closure of L′. The extension Kins ⊆ L induces a (possibly
trivial) separable extension of the residue fields. By correspondingly increasing Knr and Kins,
Kins ⊆ L is then totally ramified and Galois with a trivial extension of the residue field.

By [S, IV, §2, Corollary 4], there exists in G ..= Gal(L/Kins) a cyclic subgroup Z of order
prime to p = char(k) and a normal subgroup N of p-power order such that G = N ⋊Z. But this
means that there is an intermediate field Kins ⊂ LZ ⊂ L such that Gal

(
L/LZ

)
is equal to Z,

i.e., it is totally and tamely ramified, and Kins ⊂ LZ is totally and wildly ramified of p-primary
order, but in general without inseparable part. If we set K(p)

..= LZ , the claim follows.

Corollary 4.1.8. Let K be a strictly Henselian local field and let L be a finite Galois extension.
Then the norm residue group K∗/NL/KL

∗ is a p-group.

Proof. Without loss of generality, we can enlarge L so that there is a decomposition of L/K as
in proposition 4.1.7, because such an extension at worst increases the norm residue group.

The norm residue group of the tamely ramified extension K(p) ⊂ L is trivial and therefore
K∗/NL/K(L∗) ⊂ K∗/NK(p)/K(K∗

(p)). Since K = Knr, this is an extension of p-primary order
and the norm residue group must be a p-group.

Proposition 4.1.9. Let K be a local field and let T be an algebraic K-torus. Let p = char(k).
Then, in the étale topology over OK , R1j∗T is a p-primary torsion sheaf. More precisely, there
exists a power pr, with r ∈ N, such that the multiplication by pr on R1j∗T is the zero map.

Proof. Without loss of generality, we may assume that K = Knr. Let L/K be a finite Ga-
lois splitting extension of T . Using proposition 4.1.7, let K(p) be an intermediate field such
that K(p)/K is an extension of p-primary degree and L/K(p) is tamely ramified. We set
G ..= Gal(L/K), H ..= Gal

(
L/K(p)

)
and J ..= HomZ(X(T ), L∗).

Now
(
R1j∗T

)
s̄
= H1(G, J ) and H1(H,J ) = 0 because L∗ is a cohomologically trivial H-

module. Further, the composition

H1(G, J )
res−−→ H1(H,J )

cor−−→ H1(G, J )

is multiplication by (G : H) = pr ..=
[
K(p) : K

]
(see [S, VII,§7 Proposition 6]). But since

H1(H,J ) = 0, this map must be the zero map.

Corollary 4.1.10. Let K be a local field and let T be an algebraic K-torus. Let L/Knr be a
finite Galois splitting extension of TKnr . Let I ..= Gal(L/Knr) and let Ip be the p-Sylow subgroup
of I. Then R1j∗Ts̄ = H1 (Ip,HomZ(X(T ), L∗))

I/Ip .

Proof. Note that Ip is a normal subgroup of I (cf. [S, IV, §2, Corollary 4]) and the quotient
H ..= I/Ip has order prime to p. Let J ..= HomZ(X(T ), L∗). There exists an exact sequence (see
[S, VII, §6, note at the end])

0 −→ H1
(
H,JIp

) α−→ H1(I, J )
β−→ H1 (Ip, J )

H γ−→ H2
(
H,JIp

)
.

Now H1
(
H,JIp

)
and H2

(
H,JIp

)
are torsion groups which are annihilated by the order h of H.

Conversely,
(
R1j∗T

)
s̄
= H1(I, J ) and H1 (Ip, J )

H are torsion groups that are annihilated by a
power of p. Because p and h are coprime, the morphisms α and γ must be the zero map, i.e., we
have an isomorphism H1(I, J ) ∼= H1 (Ip, J )

I/Ip .
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We now consider R1j∗T using norm-one tori as an example.

Proposition 4.1.11. Let L/K be a finite Galois extension of local fields and let T be a K-torus
that splits over L. Then the canonical short exact sequence

0 −→ T −→ RL/K(TL) −→ T ′ −→ 0

induces an isomorphism(
R1j∗T

)
s̄
∼= coker

(
RL/K(TL)(K

nr) −→ T ′(Knr)
)
.

Proof. Since TL is split, R1j∗RL/K(TL) = 0. This means that the long exact sequence of the
Néron models induced by the sequence of the proposition yields an isomorphism

R1j∗T ∼= coker
(
j∗RL/K(TL) −→ j∗T

′) .
Since the taking of stalks is an exact functor, by the Néron mapping property we have (j∗T

′)s̄ =
j∗T

′(O sh
K

)
= T ′(Knr) and similarly

(
j∗RL/K(TL)

)
s̄
= RL/K(TL)(K

nr). The proposition is now
clear.

From the above proposition one immediately sees that, if TN is the norm-one torus associated
to a finite Galois extension L/K, then

(
R1j∗TN

)
s̄

is equal to the norm residue group of this
extension. Thus any extension of local fields with a nontrivial inseparable residual extension
yields an example of a torus with nontrivial R1j∗T . If L/K is totally ramified, then we let
eL/K be the ramification index, that is, the uniquely determined natural number eL/K such that
π
eL/K

L ≡ πK mod πL, and δ ..= [L : K ]/eL/K .
Now, considered as abelian groups,

K∗/NL/KL
∗ = O∗

K/NL/KO∗
L ⊕ Z/δZ,

since the units of a local field are the direct sum of the units of the associated valuation ring and
the section πZ of the value group.

Using norm-one tori, we can also find examples where R1j∗TN ̸= 0 in which no inseparable
residual extension occurs.

Lemma 4.1.12. Let K be a strictly Henselian local field and let L/K be a finite separable
extension which induces a trivial extension of the residue fields. Let k be the residue field and let
pr be the highest power of p that divides the degree [L : K ]. Then there exists a surjection

K∗/NL/KL
∗ ↠ k∗/(kp

r

)∗.

Proof. Since, by hypothesis, the norm map on the value groups is surjective, the residual norm
group must be equal to the residual norm group of the extension of the valuation rings. Let U1

denote the group of 1-units. Then, by the snake lemma, the lemma follows from the diagram

0 U1
L O∗

L k∗ 0

0 U1
K O∗

K k∗ 0,

NL/K NL/K N0

taking into account the fact that the norm map on the residue fields induces the exponentiation
by [L : K ]. Since k is separably closed, the cokernel of the exponentiation by [L : K ] is equal to
the cokernel of the exponentiation by pr.
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If k is not a perfect field, then k ⊃ kp
r

is a non-trivial field extension, so the quotient
k∗/(kp

r

)∗ is also non-trivial. This means that the norm residue group is an infinite group since
the preimage of k∗ − (kp

r

)∗ under the canonical projection OK −→ k cannot lie in NL/K(L∗).
Indeed, by [S, II, §4, Proposition 5], one can write all elements of OK uniquely as power series∑∞
i=0 siπ

i
k, where the si come from a representative system for k in OK . This means that all

power series for which, after reduction, s0 lies in k∗− (kp
r

)∗ cannot lie in the image of the norm
map.

Using such norm-one tori as examples, it is easy to see that R1j∗T is generally not a constant
sheaf.

For let TN be a norm-one torus with respect to a totally ramified extension L/K of degree p =
2 = char(k) with eL/K = [L : K ]. We assume that the residue field k is neither perfect nor
separably closed. More precisely, there exists an element z ∈ k such that

√
z /∈ ksep and its

irreducible and separable polynomial Y 2 + āY + X̄ is in k[Y ]. Let z be a preimage of z in Knr.
Then z /∈ NL/K(Lnr)

∗. Now let z̃ be a root of the polynomial Y 2 + aY + z, where a ∈ O∗
K is a

preimage of ā. This polynomial defines an unramified extension, i.e., z̃ ∈ Knr. If σ is an element
of Gal(Knr/K) which does not leave z̃ fixed, then σ(z̃)/z̃ = z/z̃2.

Since on Knr the norm map to L/K is a square, it follows that σ(z̃)/z̃ /∈ NL/K(Lnr)
∗, that

is, the images of z̃ and σ(z̃) in the norm residue group are not equal.
However, we will see later that only the group of components of R1j∗T is really relevant for

the structure of the Néron model. For a norm-one torus, this corresponds to the Galois group
acting trivially on the quotient of the value groups.

4.2 R1j∗T as a smooth sheaf
First we prove a well-known result (see, e.g., [X, 2.14]). We give a proof because we will need
some of the considerations from this proof in later proofs.

Proposition 4.2.1. Let K be a local field. Then R1j∗Gm,K = 0 in the smooth topology over
SpecOK .

Proof. We show that R1j∗Gm,K(Y ) = 0 for all smooth OK-schemes Y . Since R1j∗Gm,K is the
smooth sheaf associated to the presheaf V 7→ Pic(VK), it suffices to show that the étale sheaf
associated to V 7→ Pic(VK) vanishes on the étale site over Y . This in turn holds if this sheaf
vanishes Zariski-locally. So we will show that, if Y −→ SpecOK is a smooth morphism , y ∈ Y
is a point and Y ′ ..= SpecOY,y, then Pic(Y ′

K) = 0. To do this, we will show that the affine ring of
Y ′
K , i.e. OY,y

[
π−1

]
, is integral and factorial. The former property implies that Pic(Y ′

K) is equal
to the divisor class group of Y ′

K . The latter group is then trivial because OY,y
[
π−1

]
is factorial.

Since OK is regular as a discrete valuation ring, Y ′ is regular again as a local ring scheme of
a smooth OK-scheme. A regular local ring is integral and factorial, so OY,y⊗OK

K = OY,y
[
π−1

]
is an integral ring. Let m be the maximal ideal of the local ring OY,y. If π is not in m, then
OY,y

[
π−1

]
= OY,y and the claim is clear. So let π ∈ m. Since the scheme Y is smooth, π does

not lie in m2. This means that OY,y
[
π−1

]
is factorial (cf. [BIV, proof of proposition 14.33]),

which means that Pic(Y ′
K) = 0.

Proposition 4.2.2. Let K be a local field and let L be a finite separable extension of K. Then
R1j∗RL/K(Gm,L) = 0 in the smooth topology.

Proof. The proof of proposition 4.1.6 can be copied verbatim with TL ..= Gm,L once we prove
that the Weil restriction with respect to a finite morphism of schemes is an exact functor in the
smooth topology.
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So let h : X ′ −→ X be a finite morphism of schemes. Let us denote by f∗, respectively f ′∗, the
restriction from the smooth site (sm)/X (or (sm)/X ′) to the étale site (ét)/X (resp. (ét)/X ′).
Then we have a commutative diagram of morphisms of sites

(sm)/X ′ (sm)/X

(ét)/X ′ (ét)/X.

f ′
∗

hét
∗

f∗

hsm
∗

Let F be a smooth sheaf over X ′. By the Leray spectral sequence [M, III, Theorem 1.18] and
the exactness of f∗ [M, III, Proposition 3.3], the following sequence of low-degree terms is exact

0 −→ R1hét
∗ (f ′∗F) −→ R1

(
hét
∗ ◦ f ′∗

)
F −→ hét

∗ R1f ′∗F .

Since hét
∗ is an exact functor on the étale sites, we have

R1(f∗ ◦ hsm
∗ )F = R1

(
hét
∗ ◦ f ′∗

)
F = 0.

This gives the other sequence of terms of low degree:

0 = R1(f∗ ◦ hsm
∗ )F −→ f∗R

1hsm
∗ F −→ R2f∗(h

sm
∗ F) = 0.

Thus the restriction of R1hsm
∗ to the étale site over X vanishes. Now let π : U −→ X be a

smooth morphism. Then the restriction π∗ : (sm)/X −→ (sm)/U is an exact functor that maps
flabby sheaves to flabby sheaves. Similarly, we can also consider the restriction to the morphism
π′ : U ′ ..= U ×X X ′ −→ X ′. Then (π′)

∗ is also exact and maps flabby sheaves to flabby sheaves.
If we look at the diagram similar to the above

(sm)/X ′ (sm)/U ′

(sm)/X (sm)/U,

h∗

π∗

(hU )∗

(π′)∗

we get π∗R1h∗F =
(
R1(hU )∗

)
(π′)

∗ F .
This means that R1h∗F(U) = 0 by replacing h : X ′ −→ X with a morphism hU : U ′ −→ U .

Thus R1h∗F = 0.

This result gives us the opportunity to compare the smooth sheaf R1j∗T and the étale sheaf
R1j∗T .

Proposition 4.2.3. Let f : (sm)/OK −→ (ét)/OK be the restriction from the smooth to the
étale site. Then for every algebraic K-torus T we have

f∗R
1
sm j∗T = R1

ét j∗T.

Proof. By [M, III, 3.3], f∗ is an exact functor. Let L/K be a splitting extension for T and
consider the exact sequence of smooth sheaves

0 −→ T −→ RL/K(TL) −→ T ′ −→ 0.

This induces a long exact sequence

0 −→ j∗T −→ j∗RL/K(TL) −→ j∗T
′ −→ R1j∗T −→ 0.
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Applying f∗ yields an exact sequence of étale sheaves

0 −→ f∗j∗T −→ f∗j∗RL/K(TL) −→ f∗j∗T
′ −→ f∗R

1j∗T −→ 0.

Since the Néron models are representable sheaves, this sequence is isomorphic to the sequence

0 −→ j∗T −→ j∗RL/K(TL) −→ j∗T
′ −→ f∗R

1j∗T −→ 0.

Now the (étale) cokernel of the map j∗RL/K(TL) −→ j∗T
′ is equal to the étale R1j∗T .

Thus, the étale sheaf R1j∗T is trivial if the smooth R1j∗T is trivial. As the example at the
end of this section shows, the étale sheaf R1j∗T can be trivial without the smooth R1j∗T being
trivial.

Proposition 4.2.4. Let K be a local field and let T be an algebraic K-torus. Let L/K be a
finite Galois extension splitting T and let e ..=[L : Knr] be the ramification index of L/K. Then
R1j∗T is an e-torsion sheaf.

Proof. Since R1j∗T is a sheaf and SpecOKnr −→ OK is an étale cover, it suffices to check the
e-torsion property on the smooth site over OKnr . Further, since the formation of the Néron
model is compatible with étale base changes, we may assume that L/K is totally ramified. Set
G ..= Gal(L/K) and let U −→ SpecOK be a smooth morphism. Then the morphism

ρ : UL ..= U ⊗OK
OL ⊗OL

L = U ⊗OK
K ⊗K L −→ U ⊗OK

K =: UK

is Galois, since L/K is Galois.
Thus, the Hochschild-Serre spectral sequence [M, III, Theorem 2.20] yields an exact sequence

0 −→ H1
(
G,H0(UL, T )

)
−→ H1(UK , T ) −→ H1 (UL, T )

G
.

Now R1j∗T is the sheaf associated to the smooth presheaf U 7→ H1(UK , T ). For a smooth
morphism V −→ SpecOK and a section s ∈ R1j∗T (V ), we can find a smooth covering (Ui)i∈I
of V such that s is the glueing of sections a(si), where a is the sheafification functor and si ∈
H1((Ui)K , T ). The section s is an e-torsion element if all si are e-torsion elements. So consider for
Ui the exact sequence induced by the Hochschild-Serre spectral sequence. Since the group order
e annihilates all elements from H1(G,T ((Ui)L)), it suffices to check that the si in H1((Ui)L , T )
are zero.

Now T splits over L and H1((Ui)L , T ) = Pic((Ui)L)
d, where d is the dimension of T . Let

y ∈ Ui be a point and let OUi,y be its local ring. Then OUi,y ⊗OK
OL is a finite ring extension.

Since finite algebras split into a product of local rings over a Henselian local ring, we see that, after
étale extension of Ui, the ring OUi,y ⊗OK

OL is a product of local rings. Since Pic commutes
with finite products, we may assume that OY,y ⊗OK

OL is a regular local ring . As we saw
in the proof of the equality R1j∗Gm,K = 0, we conclude that Pic

(
OY,y ⊗OK

OL
[
π−1

])
= 0.

Summarizing, after a suitable refinement, we can assume that si = 0 in H1((Ui)L , T ), whence
the claim follows.

On the other hand, the smooth sheaf R1j∗T is also a p-primary torsion sheaf:

Proposition 4.2.5. Let K be a local field and let T be an algebraic K-torus. Then the smooth
sheaf R1j∗T is a p-primary torsion sheaf.
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Proof. Let L/K be a finite splitting extension. We consider the exact sequence of smooth sheaves
for T

0 −→ j∗T −→ j∗RL/K(TL) −→ j∗T
′ −→ R1j∗T −→ 0.

Since R1j∗T is an abelian sheaf, this sheaf can be clearly decomposed into a sum

R1j∗T = Rp ⊕R ′

of a p-primary torsion part Rp and a prime-to-p-primary torsion part R ′. We embed the Néron
model j∗T ′ into the exact sequence

0 −→ j∗(T
′)0 −→ j∗T

′ −→ i∗Φ
′ −→ 0

and show that the morphism
δ : j∗T

′ −→ R1j∗T −→ R ′

factors through i∗ϕ′ or, equivalently, that j∗(T ′)0 −→ R ′ is the zero map:
By proposition 4.2.4, there exists an l ∈ N relatively prime to p such that multiplication by l

is the zero map on R ′. Since j∗T 0 is a smooth connected abelian group scheme, multiplication
by l is étale and surjective.

Thus let U −→ SpecOK be a smooth morphism and let s ∈ HomOK
(U, j∗(T

′)0) be a section.
By assumption, multiplication by l is an (étale) cover j∗(T ′)0 −→ j∗(T

′)0, so we have a Cartesian
diagram

U ′ ..= U ×j∗(T ′)0 j∗(T
′)0 j∗(T

′)0

U j∗(T
′)0,

sl

pU ·l

s

where pU : U ′ −→ U is an étale cover. By definition, we have

resU ′,U (s) = s ◦ pU = l · sl,

that is, the restriction of s to U ′ is l times the sum of the section sl ∈ HomOK

(
U ′, j∗(T

′)0
)
.

Thus we obtain a commutative diagram

j∗(T
′)0(U ′ ) R ′(U ′ )

l · sl l · δ(sl) = 0

s δ(s)

j∗(T
′)0(U) R ′(U).

δ

res

δ

res

Since U ′ −→ U is a cover, the associated restriction is injective, whence δ(s) = 0.
To establish the assertion of the proposition, it is now sufficient to show that R ′(U) = 0 for

any smooth morphism U −→ SpecOK .
So let a section s ∈ R ′(U) be given. By surjectivity, there exists a smooth cover (Ui)i∈I of U

and sections si ∈ j∗T ′(Ui) such that δ(si) = s|Ui
.
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As shown above, si ∈ i∗Φ′(Ui) = HomOK
(Ui, i∗Φ

′) are the preimages of the s|Ui
under the

map i∗Φ
′ −→ R ′. Now si : Ui −→ i∗Φ

′ is a morphism in the category of smooth OK-schemes
and for the associated restriction map we obtain

res si : HomOK
(i∗Φ

′, i∗Φ
′) −→ HomOK

(Ui, i∗Φ
′) f 7→ f ◦ si.

This means that for the corresponding restriction map on R1j∗T we have res si(δ(IdΦ)) = δ(si).
But since i∗Φ′ is an étale OK-scheme and the restriction of the smooth sheaf R1j∗T is equal to
the étale sheaf R1j∗T , δ(IdΦ) is a p-primary torsion element. Thus R ′(U) = 0.

We immediately obtain the following corollaries:

Corollary 4.2.6. Let K be a local field and let T be an algebraic K-torus which splits over a
tamely ramified extension. Then R1j∗T = 0 in the smooth topology.

Proof. This is clear from the previous two propositions since an abelian group that is annihilated
by two coprime numbers is trivial.

Corollary 4.2.7. Let K be a local field, let T be a K-torus and let K be a subsheaf of the smooth
sheaf R1j∗T . Then, in the smooth topology over OK , for an appropriate r ∈ N and for every
i ∈ N, we have

Hom(K, i∗Z) = 0

pr · Exti(K, i∗Z) = 0

Exti
(
K, i∗Z

[
p−1
])

= 0.

Proof. The first statement is clear since R1j∗T is a torsion sheaf. If r is equal to the p-valuation
of the degree of L/Knr for a splitting extension L of T , then multiplication by pr is the zero map
on R1j∗T and thus also on K. Now Exti(K, i∗Z) is a quotient of a subsheaf of Hom(K, I) for a
suitable injective sheaf I and multiplication by pr on Hom(K, I) induces multiplication with pr
on Exti(K, i∗Z). Let U be a smooth OK-scheme. Then Hom(K, I)(U) = Hom(K|U , I|U ) and
an element f in the latter group is a family fV : K(V ) −→ I(V ) of homomorphisms of abelian
groups for all smooth U -schemes V . For an x ∈ K(V ) we have (pr · f) (X ) = prf(X ) = f(prx) =
f(0) = 0.

For the third equation, note that multiplication by pr induces an isomorphism Z
[
p−1
]
−→

Z
[
p−1
]
. This, in turn, induces an isomorphism Exti

(
K, i∗Z

[
p−1
])
−→ Exti

(
K, i∗Z

[
p−1
])

. Since
one can compute Exti

(
K, i∗Z

[
p−1
])

using an injective resolution and morphisms of such reso-
lutions are unique up to homotopy, we may assume without loss of generality that multiplica-
tion by pr on the chosen injective resolution induces multiplication by pr, which also applies to
Exti

(
K, i∗Z

[
p−1
])

. Since the argument for the second equation also applies to Exti
(
K, i∗Z

[
p−1
])

,
the multiplication by pr must be the zero map.

Using an example, we will show that R1j∗T can be non-trivial even if the residue field is
perfect. Let K be a strictly Henselian local field with perfect residue field k. Let L/K be a finite
Galois extension and let TN be the norm-one torus associated with this extension. Consider the
corresponding long exact sequence in the smooth topology

0 −→ j∗TN −→ j∗RL/K(Gm,L) −→ j∗Gm,K −→ R1j∗TN .

Let U ..= A1
OK

= SpecOK [T ] be the affine line over OK . Then the restriction of the above
sequence to a sequence in the étale topology over U is exact (cf. [M, III, Theorem 3.3]). Consider
the stalks of this sequence at a geometric point over the generic point ηk of the special fiber Uk.
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The generic point corresponds to the ring OK [T ](π), so it is an extension of OK of ramification
index one, but this ring is no longer complete. The residue field is k(T ), so it is no longer perfect.

This yields for T = Gm,K , respectively T = RL/K(Gm,L), the following:

(j∗T )|(ét)/U
(
Osh
U,η

)
=(j∗T ×OK

OU,η)
(
Osh
U,η

)
.

Since Néron models are compatible with base changes of ramification index one, the following
holds:

(j∗T )×OK
OU,η

(
Osh
U,η

)
= j∗(T ×OK

OU,η)
(
Osh
U,η

)
.

For T = Gm,K , this is equal to (K(T )nr)
∗; for T = RL/K(Gm,L), this is equal to (L(T )nr)

∗.
So we obtain the exact sequence on the stalks

· · · −→(L(T )nr)
∗ NL/K−−−−→(K(T )nr)

∗ −→
(
R1j∗TN

∣∣
(ét)/U

)
η̄
−→ 0.

But if [L : K] and p ..= char(k) are not coprime, the last example from the previous section shows
that the norm residue group may no longer be trivial. So R1j∗TN as a smooth sheaf may not be
trivial.

4.3 j∗ and R1j∗ for étale groups

The Néron model of an étale K-group F is an étale OK-group. This suffices to determine
the Néron model in the étale topology. The étale sheaf represented by F corresponds to the
continuous Gal(ksep/k)-module MF

..= F (Ksep).
By the decomposition theorem, j∗F is equal to the triple

(
MF ,M

I
F ,M

I
F −→M I

F

)
consisting

of the module itself, its I-invariants and the identity on the invariants.
This can be understood as follows: as a scheme, F is a disjoint union of schemes Ui ..= SpecKi,

where the Ki are finite separable extensions of K. Now the formation of the Néron model (as
a scheme) is compatible with disjoint unions. A Ui as above for which Ki/K is an unramified
extension has the Néron model j∗Ui = SpecOKi

. Whereas a Ui as above that comes from a
non-unramified extension has no Knr-valued points, so it is its own Néron model.

By the decomposition theorem, it is clear that the Néron model of a constant group is again
the same constant group (but regarded over OK). For the groups of roots of unity, we have
j∗µq,K = µq,OK

if q is relatively prime to p = char(k).
If q is relatively prime to the characteristic of K but is not prime to p, one must take into

account the absolute ramification index of K. If this is one, then the p-th roots of unity are not in
O sh
K and then, for example, j∗µp,K is equal to µp,K glued to SpecOK along the identity section

SpecK −→ µp,K . If the absolute ramification index is larger than 1, µp,K becomes isomorphic
to the constant group Z/pZ and j∗µp,K is a form of the constant group Z/pZ.

To analyze
(
R1j∗F

)
s̄
= H1(Gal(Ksep/Knr) , F (Ksep)), we must understand Gal(Ksep/Knr).

Define Ẑ(p)
..= lim←−n∈(N\pN)

Z/nZ. Each tamely ramified extension L/Knr can be normalized s
that it has the form L = Knr[X]/(Xe − πK) and these normalizations are compatible since, for
every x ∈ (O sh

K )∗, Knr contains the e-th roots of x if e ∈ N \ pN.
This means that the maximal tamely ramified extension of Knr in Ksep is Galois with Galois

group Ẑ(p). This gives us an exact sequence

0 −→ N −→ Gal(Ksep/Knr) −→ Ẑ(p) −→ 0
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where N is a closed normal subgroup whose finite quotients are all p-groups. Now, if MF is a
finitely generated continuous Gal(Ksep/Knr)-module with trivial action, then

H1(Gal(Ksep/Knr) ,MF ) = Homcont.(Gal(Ksep/Knr) ,MF )

= Tors(p−1)(MF ) + p-power torsion,

where Tors(p−1)(MF ) denotes the torsion part of MF that is prime to p.
If MF is not a trivial module, then there exists a finite Galois extension L/Knr such that

Gal(Ksep/L) acts trivially on MF . From the inflation-restriction sequence we obtain the exact
sequence

H1(Gal(L/Knr) ,MF ) ↪→ H1(Gal(Ksep/Knr) ,MF ) −→ H1(Gal(Ksep/L) ,MF ) ,

so that the stalk of R1j∗F in s̄ is an extension of a subgroup of Homcont.(Gal(Ksep/L) ,MF ) by
H1(Gal(L/Knr) ,MF ).

As an example, consider the µq,K with q relatively prime to the characteristic of K. The
short exact Kummer sequence

0 −→ µq,K −→ Gm,K
(−)q−−−→ Gm,K −→ 0

induces a long exact sequence

0 −→ µq,OK
−→ j∗Gm,K −→ j∗Gm,K −→ R1j∗µq,K −→ 0.

The latter sequence induces, in turn, the following sequence on the group of components

i∗Z/qZ
0−map−−−−→ i∗Z

·q−→ i∗Z −→ Φ
(
R1j∗µq,K

)
−→ 0.

In the case that q is relatively prime to the characteristic of k, the sequence of identity components
corresponds to the exact Kummer sequence

0 −→ µq,K −→ Gm,K
(·)q−−→ Gm,K −→ 0

over OK . By an argument similar to that given in the proof of Theorem 5.3.4, the sequence of
groups of components is exact, whence R1j∗µq,K = i∗Z/qZ. If q is not prime to char(k), then
R1j∗µq,K must be contained in the cokernel of pνp(q)-exponentiation on (O sh

K )∗. This is non-
trivial if, and only if, the residue field is not perfect and in this case it is an infinite p-primary
torsion group. If the residue field is perfect, then the Kummer sequence over OK is exact since, as
O sh
K is a complete discrete valuation ring and hence Osh

K contains a multiplicative representative
system of ksep, we obtain R1j∗µq,K = Z/qZ.

Summarizing, we have:

Proposition 4.3.1. Let F be an étale K-group scheme and let L/Knr be a finite Galois extension
such that Gal(Ksep/L) acts trivially on F (Ksep). Let I ..= Gal(L/Knr). Further, assume that
F (Ksep) is finitely generated as an abelian group. Then there exists a short exact sequence of
abelian groups

0 −→ H1(I, F (Ksep)) −→
(
R1j∗F

)
s̄
−→ E(F ) −→ 0.

The group E(F ) is zero if F (Ksep) is torsion-free.
If L = Knr, i.e. H1(I, F (Ksep)) = 0, then

(
R1j∗F

)
s̄
= E(F ) is an extension of a p-group by

the prime-to-p torsion part of F (Ksep).

If the residue field is perfect and the characteristic of K is equal to that of k then, using the
structure theory of complete discrete valuation rings, one can see that Gal(Ksep/Knr) = Ẑ (see
[S, II, §4, Excercise]). For an étale K-group F with trivial Gal(Ksep/Knr)-action and a finitely
generated MF , we have

(
R1j∗F

)
s̄
= Tors(F (Ksep)).
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Chapter 5

Groups of components via
cohomological methods

In this chapter we develop methods for determining the group of components of the Néron model
of an algebraic K-torus T . First, we consider an approach from [X]. This approach of Xarles
consists in passing from short exact sequences of algebraic K-tori to the (short, in his case)
exact sequences of the Néron models and from these to the long exact sequence for the functor
Hom(·, i∗Z).

In order to obtain statements about the group of components, we have to do this in the
smooth topology and take advantage of the fact that there exist canonical identifications for
i = 0, 1

RiHom(j∗T, i∗Z) ∼= RiHom(i∗Φ(T ), i∗Z)
∼= i∗R

iHom(Φ(T ),Z) ∼= i∗R
iHomZ(Φ(T ),Z).

In the first three terms the smooth sheaves over OK , respectively k, are meant. In the last term,
however, Φ and Z are the Gal(ksep/k)-modules associated to the corresponding étale sheaves.
We establish these identification in a more general version, so that later instead of Hom(·, i∗Z)
we may also use the functor Hom

(
·, i∗Z

[
p−1
])

.
Using Xarles’ approach, we can then replace the free part of the group of components with

an extension
0 −→ X(T )I −→ HomZ(Φ,Z) −→ E(T ) −→ 0,

where E(T ) is a finitely generated p-primary torsion module which is called the defect term.
The existence of such a defect term is a direct consequence of the non-exactness of the Néron
model.

We then describe the map that a homomorphism of algebraic tori induces on the free part of
the group of components. We can describe this via a commutative diagram using the results for
tori with multiplicative reduction.

We also analyze the case of a short exact sequence of algebraic tori. In this case we can
produce a commutative diagram that is no longer exact and in which, in general, not all torsion
parts of the group of components under consideration appear.

As a second approach, we take up the idea from proposition 2.3.1 and thereby generalize [LL,
Proposition 4.2 a)]:

We consider the case of a sequence of algebraic tori

0 −→ T ′ −→ R −→ T −→ 0

79
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such that the torsion parts of Φ(T ′) and Φ(R) have coprime orders. If R1j∗T
′ = 0 in the smooth

topology, then we obtain an exact sequence

0 −→ Φ (T ′)
∨∨ −→ Φ(R) −→ Φ(T ) −→ 0.

Otherwise we define K ..= ker
(
R1j∗T

′ −→ R1j∗R
)

and obtain a sequence

0 Φ(T ′)∨∨ Φ(R) Φ(T ) Φ(K) 0

which is exact except perhaps at Φ(R).
We specify conditions for exactness above and describe the morphism Φ (T ′)

∨∨ −→ Φ(R).
The latter morphism can be described via a map between free parts.

Finally, we use this and the canonical surjection

T (Knr) = j∗T
(
O sh
K

)
−→ i∗Φ(T )

(
O sh
K

)
to compute certain group of components. Since we can view the defect terms as groups of
components, we obtain an estimate of their size. This estimate shows that the defect terms for
tori that split after a residually unramified extension are trivial.

5.1 The free part of the group of components
We first consider the functors Hom and Ext1 on the smooth and étale sites over OK . To distin-
guish them, we use the indices "sm" and "ét" to indicate the site on which these functors are
being considered.

Proposition 5.1.1. (cf. [X, 2.2 and 2.12]) Let T be a smooth SpecOK-group scheme with
connected fibers and let C be a constant torsion-free abelian sheaf on the étale or smooth sites
over Spec k. In the étale setting, assume in addition that there exists an l ∈ N which is relatively
prime to p ..= char(k) such that C contains no l-divisible part, i.e., for every c ∈ C \ {0}, there
exists an r ∈ N such that lrx ̸= c for every x ∈ C. Then

Homét(T , i∗C) = 0 Homsm(T , i∗C) = 0

Ext1sm(T , i∗C) = 0,

whereas in general Ext1ét(T , i∗C) ̸= 0.

Proof. We begin with the statements about the étale topology. Since

Hom(T , i∗C) ∼= i∗Hom(i∗T , C) ,

it suffices to check that Hom(i∗T , C) = 0. The étale site over Spec k is equivalent to the category
of continuous Gal(ksep/k)-modules and the sheaves i∗T and C correspond to the Galois modules
T
(
O sh
K

)
and C with trivial Galois action, respectively.

Now consider the given l ∈ N. Since l is prime to the characteristic of k, multiplication by l on
T is étale [BLR, 7.3.2]. This means (cf. [M, II, 2.19]) that the stalk Ts̄ = T

(
O sh
K

)
is an l-divisible

group. Since a connected étale k -scheme U is the spectrum of a finite separable extension k′ of
k and

HomU ( i
∗T |U ,C|U ) ⊂ HomZ

(
T
(
O sh
K

)
, C
)Gal(ksep/k′)

,

we must have Hom(i∗T , C ) = 0 since a homomorphism from an l-divisible group to C must be
trivial.
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As an example regarding the last assertion of the proposition about Ext1 in the étale topology,
consider the sheaf Ext1ét(Gm,OK

, i∗Z), which in general does not vanish according to proposition
5.1.2.

Now consider the smooth sheaves. Let U be an arbitrary scheme and let G1 and G2 be two
smooth U -group schemes. Via a Yoneda-type argument, we have

HomU−gr(G1, G2) ∼= Hom(sm)/U (G1, G2) ,

in other words, the homomorphisms of the smooth sheaves over U represented by the Gi coincide
with the U -group scheme morphisms from G1 to G2.

We now have Hom(T , i∗C) ∼= i∗Hom(i∗T , C) since, by the smoothness of T , the sheaf i∗T
is represented by T ⊗OK

k on the smooth site over k. Now, for every smooth and connected
k-scheme U , the group scheme Tk×k U is connected as well. Every group homomorphism from a
connected k-group scheme into an étale k-group scheme factors through the identity component
and is therefore trivial. This means that HomU (Tk|U ,C |U ) = 0 and therefore Hom(Tk, C) = 0
as well.

By [SGA7, VIII 5.7], i∗C is represented by an étale OK-group scheme Z ..= COK ,k which is
obtained by gluing copies Si of SpecOK for each i ∈ C along the generic fiber η = SpecK. Note
that this construction is compatible with base changes.

For a smooth SpecOK-scheme U , an extension of T by Z as abelian fppf sheaves over U is an
extension of U -groups in the sense of [SGA7, VIII]. Such an extension trivializes as a TZU

-torsor,
i.e., in general over an fppf cover, but in fact over a smooth cover because T is smooth over
SpecOK . Therefore the group of isomorphism classes of such extensions is equal to the group of
isomorphism classes of extensions as smooth abelian sheaves over U .

By [SGA7, VIII, 5.9] the extensions of TU by ZU correspond to the extensions of TUk
by CUk

as Uk-groups in the fppf topology, i.e., as seen above, to the extensions of smooth abelian sheaves
over Uk. Assume that Uk is irreducible and write η for the generic point of Uk. Since Uk is a
smooth k -scheme, it is geometrically unibranched. Thus, by [SGA7, VIII, 5.2], the extensions of
TUk

by CUk
correspond to the extensions of Tη by Cη. But these are extensions of groups over

the field k(η) and by [SGA7, VIII, 5.5] they are all trivial because Tη is connected. This yields
Ext1U (TU , i∗CU ) = 0.

Now Ext1(T , i∗C) is the sheafification of the presheaf U 7→ Ext1U (TU , ZU ), which completes
the proof.

Proposition 5.1.2. Let K be a local field with perfect residue field. In the étale topology over
SpecOK , we have Ext1(Gm,OK

, i∗Z) ̸= 0.

Proof. By definition, Ext1(Gm,OK
, i∗Z) is the sheafification of the presheaf

U 7→ Ext1U (Gm,OU
, i∗Z|U ). Since Hom(Gm,OK

, i∗Z) = 0, the local to global spectral sequence
for Ext [M, III, Theorem 1.22] shows that it suffices to check that Ext1U (Gm,OU

, i∗Z|U ) ̸= 0 for
a suitable U .

Now let n ∈ N be relatively prime to p = char(k) and choose U = SpecOK′ for an unramified
extension K ′/K containing the n-th roots of unity. Let the residue field of K ′ be denoted by k′.
From the exact sequence of constant sheaves on the étale site over OK

0 −→ Z −→ Q −→ Q/Z −→ 0

we obtain an exact sequence

HomU (Gm,OU
, i∗Q|U ) −→ HomU (Gm,OU

, (i∗Q/ Z)|U ) −→ Ext1U (Gm,OU
, i∗Z|U ) .
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Now we have

HomU (Gm,OU
, (i∗Q/ Z)|U ) = HomGk′ ((O sh

K )∗,Q/Z) = HomZ((O sh
K )∗Gk′ ,Q/Z),

where Gk′ ..= Gal(ksep/k′) and (·)Gk′ denotes the Gk′ -coinvariants.
Since Q/Z is divisible, i.e., Z-injective, maps from Z/nZ ∼= µn

(
O sh
K

)
to Q/Z extend to maps

(O sh
K )∗Gk′ −→ Q/Z. Now there exist exactly n different maps Z/nZ −→ Q/Z and their extensions

can restrict to a map (O sh
K )∗Gk′ −→ Q only if they are trivial on µn

(
O sh
K

)
.

Therefore, by the long exact sequence, Ext1U (Gm,OU
, i∗Z|U ) must contain a subgroup of the

form Z/nZ.

Now if K is a local field and T is an algebraic K-torus, the short exact sequence

0 −→(j∗T )
0 −→ j∗T −→ i∗Φ(T ) −→ 0

induces an isomorphism in the smooth and also the étale topology

Hom(j∗T, i∗Z) ∼= Hom(i∗Φ, i∗Z) . (5.1.2.1)

Moreover, in the smooth topology we have

Ext1(j∗T, i∗Z) ∼= Ext1(i∗Φ, i∗Z) . (5.1.2.2)

We want to simplify this further. To do this, we first determine the functors Hom and Ext1 on
the étale site in terms of Galois modules. Since the group of components Φ is an étale group
scheme and the corresponding Galois module Φ(ksep) is finitely generated, we can appeal to the
following proposition.

Proposition 5.1.3. Let F be a sheaf on the étale site over Spec k such that the associated
continuous Gal(ksep/k)-module MF is finitely generated. Then the equivalence of categories
between étale sheaves over Spec k and continuous Gal(ksep/k)-modules induces an isomorphism
of δ functors (in the second argument)

R iHom(F,G)⇝ R iHomZ(MF ,MG) .

Proof. Under these assumptions on F , the equivalence of categories maps Hom(F,G) to the mod-
ule HomZ(MF ,MG) [M, III, Example 1.7]. Further, under the equivalence of categories between
étale sheaves and continuous Galois modules, injective sheaves correspond to injective Galois
modules. Now RiHom(F, ·) is computed using injective resolutions and for every continuous
Galois module there exists an injective resolution of Galois modules which are also injective as
abelian groups. Since the forgetful functor is exact, we obtain an injective resolution of abelian
groups and the proposition follows.

Proposition 5.1.4. Let k be a field, let Φ be a commutative étale k-group scheme and let C be
a commutative constant k-group scheme. Assume that Φ(ksep) is finitely generated as an abelian
group.

Then there exists an étale k-group scheme Hom(Φ, C ) which represents Hom(Φ, C ) as smooth
and étale sheaf. Further, there exists an étale k-group scheme Ext1(Φ,Z) that represents
Ext1(Φ,Z) as smooth and étale sheaf.
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Proof. It is well-known that in the setting of the proposition there exists a k-group scheme
Hom(Φ, C ) that represents the group functor T 7→ HomT−grp(ΦT , CT ). This scheme must then
also represent Hom(Φ, C ) in the smooth and the étale topologies.

Since Φ is étale and Φ(ksep) is finitely generated, Φ is isomorphic to a constant group scheme
after an étale base change. For constant group schemes C1, C2, the functor Hom(C1, C2) corre-
sponds to the constant group scheme for the group Homgrp(C1, C2). This means that Hom(Φ, C)
becomes étale after an étale and surjective base change (since the base is a field), and is therefore
already étale. For the sheaf Ext1(Φ,Z) we consider the long exact sequence

0 −→ Hom(Φ,Z) −→ Hom(Φ,Q) −→ Hom(Φ,Q/Z) −→ Ext1(Φ,Z).

From Proposition 5.1.3 we see that Ext1(Φ,Q) = 0 in the étale topology. Since the Hom(Φ, ·)-
sheaves are represented by étale group schemes, the map Hom(Φ,Q) −→ Hom(Φ,Q/Z) is rep-
resented by a morphism of group schemes. By commutativity, the image of this morphism is a
normal subgroup of the group scheme Hom(Φ,Q/Z) and is also closed, because the topology on
Hom(Φ,Q/Z) is discrete. This means that the kernel of this homomorphism exists as an étale
group scheme. The cokernel then represents the sheaf Ext1(Φ,Z). Clearly, this also holds in the
smooth topology.

The above shows that the Galois modules HomZ(Φ,Z) and Ext1Z(Φ,Z) determine the smooth
sheaves Hom(j∗T, i∗Z) and Ext1(j∗T, i∗Z). However, this no longer applies to the higher Ext’s,
as the following example shows.

Proposition 5.1.5. In the smooth topology over SpecOK we have Ext2(Gm,OK
, i∗Z) ̸= 0.

Proof. Let n ∈ N be relatively prime to p. Then the Kummer sequence induces a long exact
sequence for the functor Hom(·, i∗Z):

· · · −→ 0 = Ext1(Gm,OK
, i∗Z) −→ Ext1(µn, i∗Z) −→ Ext2(Gm,OK

, i∗Z) .

As we have seen, for the étale group scheme µn one can already compute the étale Ext1 sheaf
and this corresponds (in the stalk above the special fiber) to the non-trivial Galois module
Ext1Z(Z/nZ,Z).

After this preliminary work, we want to analyze the free part of the group of components.

Theorem 5.1.6. Let K be a local field and let T be an algebraic K-torus with character group
X(T ). Let L/K be a finite Galois splitting extension for T with inertia group I ..= Gal(L/Knr).
Then the free part HomZ(Φ,Z) of the group of components Φ of the Néron model of T is an
extension of a p = char(k)-primary torsion group by X(T )I . More precisely, there exists an
exact sequence of Gal(ksep/k)-modules

0 −→ X(T )I −→ HomZ(Φ,Z) −→ E(T ) −→ 0

where E(T ) represents the restriction of the smooth sheaf Ext1(ker(R1j∗T̃ −→ R1j∗T ),Z) to the
étale site above Spec k, where the torus T̃ corresponds to the module X(T )/X(T )I via Cartier
duality.

We call E(T ) the defect term for T .

Proof. From the canonical short exact sequence (6)

0 −→ T̃ −→ T −→ T I −→ 0
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we obtain, after forming the Néron models in the smooth topology, the exact sequence

0 −→ j∗T̃ −→ j∗T −→ j∗T
I −→ K −→ 0,

where K ..= ker
(
R1j∗T̃ −→ R1j∗T

)
. We can split this sequence into two short exact sequences,

namely:

0 j∗T̃ j∗T N 0

0 N j∗T
I K 0

Applying Hom(·, i∗Z), we obtain the exact sequences

0 −→ Hom(N , i∗Z) −→ Hom(j∗T, i∗Z) −→ Hom(j∗T̃ , i∗Z) = 0

0 = Hom(K, i∗Z) −→ Hom(j∗T
I , i∗Z) −→ Hom(N , i∗Z)↠ E,

where E ..= Ext1(ker(R1j∗T̃ −→ R1j∗T ), i∗Z). The first sequence exploited the fact that the
Néron model of T̃ is of finite type, i.e., has a finite group of components. For the second sequence
we used the facts that R1j∗T̃ is a torsion sheaf and j∗T I has a torsion-free group of components,
so that in the smooth topology we obtain Ext1(j∗T

I , i∗Z) = 0.
By substituting the isomorphism from the first sequence we obtain an exact sequence

0 −→ Hom(j∗T
I , i∗Z) −→ Hom(j∗T, i∗Z) −→ E −→ 0.

The restriction of this sequence to the étale site on Spec k remains exact and the restriction of E
is also a p-primary torsion sheaf (just as E is). The étale sequence then yields the desired exact
sequence of Galois modules via Proposition 5.1.3 and the description of the group of components
in the case of tori with multiplicative reduction.

By the above theorem, additional statements can be obtained that generalize Xarles’ results
to the case of an arbitrary residue field:

Corollary 5.1.7. Let T be an algebraic K-torus as above. If T splits over a tamely ramified
extension, then HomZ(Φ(T ),Z) = X(T )I .

Proof. Consider again the sequence (6)

0 −→ T̃ −→ T −→ T I −→ 0.

Since the character group of T̃ is a quotient of X(T ) , namely X(T̃ ) = X(T )/X(T )I (see (7)),
T̃ also splits over a tamely ramified extension. This means that R1j∗T̃ is trivial, so that in
the notation of the proof above K = 0 and therefore E = 0. Consequently, HomZ(Φ(T ),Z) ∼=
HomZ

(
Φ
(
T I
)
,Z
) ∼= X(T )I .

5.2 The induced map on the free part

In order to use the results obtained so far for a further determination of the group of components,
we need to identify the effect of the functor Hom(j∗(·), i∗Z) on morphisms between K-tori.
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Proposition 5.2.1. Let ψ : T1 → T2 be a morphism of algebraic K-tori and let D(ψ) : X(T2)→
X(T1) be the associated homomorphism between character groups. Then the descriptions from
Theorems 1.1.3 and 5.1.6 induce a commutative diagram

X(T2)
I HomZ(Φ(T

I
2 ),Z) HomZ(Φ(T2),Z) E(T2)

X(T1)
I HomZ(Φ(T

I
1 ),Z) HomZ(Φ(T1),Z) E(T1)

∼=

D(ψ)I ψ̄

∼=

where ψ̄ ..= i∗Hom(j∗ψ, i∗Z) (on i∗Hom(j∗T2, i∗Z) ∼= HomZ(Φ(T2) ,Z)).

Proof. Since D(ψ) is a Galois module homomorphism, we have a commutative diagram

0 X(T2)
I X(T2) X(T̃2) 0

0 X(T1)
I X(T1) X(T̃1) 0

D(ψ)I D(ψ)

Using Cartier duality, we obtain a commutative diagram of algebraic tori with exact rows.
Since j∗ and Hom(·, i∗Z) are functors, using the technique from the proof of Theorem 5.1.6 we
obtain a commutative diagram

HomZ(Φ(T
I
2 ),Z) HomZ(Φ(T2),Z) E(T2)

HomZ(Φ(T
I
1 ),Z) HomZ(Φ(T1),Z) E(T1)

ψ̄

By Theorem 1.1.3, the morphisms on the first row can be described using character groups.

For later applications, we need to describe Hom(j∗·, i∗Z) when applied to a short exact
sequence of algebraic tori.

Theorem 5.2.2. Let K be a local field and let

0 −→ T1 −→ T2 −→ T3 −→ 0

be a short exact sequence of algebraic K-tori. Then we obtain a commutative diagram of
Gal(ksep/k)-modules with exact columns

E(T3) E(T2) E(T1)

HomZ(Φ(T3),Z) HomZ(Φ(T2),Z) HomZ(Φ(T1),Z) · · ·

X(T3)
I X(T2)

I X(T1)
I M,

where we use the following notations:

M ..= ker(H1(I,X(T3)) −→ H 1(I,X(T2))

· · · ..= Ext1(N , i∗Z)|(ét)/k −→ Ext1Z(Φ(T2),Z),

N ..= ker(T3 −→ K)
K ..= ker(R1j∗T1 → R1j∗T2).
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The bottom row of the above diagram is exact and the middle row is a complex which is exact
except perhaps at HomZ(Φ(T2) ,Z).

If Ext1(K, i∗Z) = 0, then the middle row is exact at HomZ(Φ(T2) ,Z) as well. In this case
we have an inclusion Ext1(Φ(T3) , i∗Z) ↪→ Ext1(N , i∗Z)

∣∣
(ét)/k

.

If, in addition, Ext2(K, i∗Z) = 0, then the preceding inclusion is an isomorphism.

Proof. The given short exact sequence of tori corresponds to a short exact sequence of character
groups and this induces an exact and commutative diagram with the above choice of M

X(T̃3 ) X(T̃2 ) X(T̃1 )

0 X(T3) X(T2) X(T1) 0

0 X(T3)
I X(T2)

I X(T1)
I M 0

By Cartier duality, we obtain from the above an exact and commutative diagram

T̃1 T̃2 T̃3

0 T1 T2 T3 0

0 D(M) T I1 T I2 T I3 0

We then apply the functors j∗ and Hom(·, i∗Z) in the smooth topology. If we set Ti ..= j∗Ti,
then we obtain on the middle row

0 T1 T2 T3 K 0

where K ..= ker(R1j∗T1 → R1j∗T2). In order to apply Hom(·, i∗Z) we split this sequence into the
sequences

0 −→ T1 −→ T2 −→ N −→ 0 (5.2.2.1)

and
0 −→ N −→ T3 −→ K −→ 0. (5.2.2.2)

We set N ..= ker(T3 → K). The long exact sequence induced by (5.2.2.1) yields

Hom(T3, i∗Z) Hom(T2, i∗Z) Hom(T1, i∗Z) Ext1(N , i∗Z) Ext1(T2, i∗Z)

where we take the inclusion Hom(T3, i∗Z) ↪→ Hom(N , i∗Z) from the long exact sequence induced
by (5.2.2.2). By construction, the modified sequence is a complex and is exact except perhaps
at Hom(T2, i∗Z).

After restricting to the étale site over k and passing to the representing Galois modules (via
(5.1.2.2) and (5.1.2.1)), we obtain the middle row of the diagram in the statement. This can be
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done using Proposition 5.2.1 to obtain the rows of a commutative diagram

E(T3) E(T2) E(T1)

HomZ(Φ(T3),Z) HomZ(Φ(T2),Z) HomZ(Φ(T1),Z) · · ·

X(T3)
I X(T2)

I X(T1)
I

where · · · stands for Ext1(N , i∗Z)|(ét)/k −→ Ext1Z(Φ(T2),Z) (as a morphism of the representing
Galois modules).

By Proposition 5.2.1, the maps on the bottom row correspond to the canonical maps of the
I-invariants of the character groups. Therefore the bottom row must be exact and X (T3)

I −→
X(T2)

I is an inclusion. In addition, we must have M = coker
(
X(T2)

I −→ X(T1)
I
)
.

The long exact sequence induced by the sequence (5.2.2.2) yields (in the smooth topology)
the stated relationships between RiHom(N , i∗Z) and

RiHom(T3, i∗Z) ∼= RiHom(i∗Φ(T3) , i∗Z) ∼= i∗Hom(Φ(T3) ,Z) .

Theorem 5.2.3. Let K be a local field and let

0 −→ T1 −→ T2 −→ T3 −→ 0

be a short exact sequence of K-tori. Further, assume either that the tori Ti split over a finite
Galois tamely ramified extension L/K or that the residue field is perfect.

Then the description of the free part is functorial. In particular we obtain a commutative
diagram

0 HomZ(Φ(T3),Z) HomZ(Φ(T2),Z) HomZ(Φ(T1),Z) Ext1Z(Φ(T3),Z)

0 X(T3)
I X(T2)

I X(T1)
I

of Gal(ksep/k)-modules with exact rows, where the maps on the top row are induced by the maps
on the Néron models and the maps on the bottom row are induced by the images of the character
groups.

Proof. If the residue field is perfect or the tori split after tame ramification, all defect terms are
trivial. Then the theorem above yields an isomorphism of the two bottom rows. In particular,
the sequence of the free parts must then be exact. Since we also have R1j∗T1 = 0 under the
stated hypotheses, we must have K = 0, whence Ext1(N , i∗Z) ∼= Ext1(T3, i∗Z).

5.3 Exact sequences of groups of components of tori
We now revisit the idea from Proposition 2.3.1 and consider the case of exact sequences of
algebraic tori. This yields a second procedure for obtaining information about the group of
components of the Néron model.
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In this section, we seek to understand the torsion part Tors(Φ(T )) of a group of components
Φ(T ) as submodule and accordingly define the torsion-free part as

Φ(T )∨∨ ..= HomZ(HomZ(Φ(T ),Z),Z) ∼= Φ(T )/Tors(Φ(T )).

Proposition 5.3.1. [LL, 4.3 a)] Let K be a local field and let

0 −→ T1 −→ T2 −→ T3 −→ 0

be a short exact sequence of algebraic K-tori with R1j∗T1 = 0 in the smooth topology. Then the
above sequence induces a short exact sequence

0 −→ j∗T1
ι−→ j∗T2 −→ j∗T3 −→ 0

which, in turn, induces a short exact sequence of groups of components

0 −→ j∗T1/ι
−1(j∗T

0
2 )|(ét)/k −→ Φ(T2) −→ Φ(T3) −→ 0.

We have j∗T 0
1 ⊂ ι−1(j∗T

0
2 ) ⊂ (j∗T1)

ft. In particular, if the torsion parts of Φ(T1) and Φ(T2)
have coprime orders, then

j∗T1/ι
−1(j∗T

0
2 ) = Φ (T1)

∨∨
.

Proof. By Proposition 2.3.1, only the additional assertions require proof. The containment
j∗T

0
1 ⊂ ι−1(j∗T

0
2 ) ⊂ (j∗T1)

ft is clear since Φ(T1) −→ Φ(T2) has a finite kernel (2.3.4) and
the ft-Néron model corresponds exactly to the torsion part of the group of components (since
this is the largest finite subgroup of the group of components).

In the étale topology we can identify the sheaf homomorphisms with the corresponding
Gal(ksep/k)-module homomorphisms. If the orders of the torsion components of Φ(T1)(k

sep)
and Φ(T2)(k

sep) are coprime, then the image of the torsion part of Φ(T1)(ksep) must be trivial,
so that by the above containment the map Φ(T1) −→ Φ(T2) is injective and can be factored
through the quotient Φ(T1)

∨∨.

In general, the sequence of Néron models is not expected to be right-exact. Therefore we want
to consider the "group of components" Φ

(
R1j∗T

)
. This is just the (sheaf) quotient of R1j∗T by

R1j∗T
0 according to the definition above.

Proposition 5.3.2. Let G −→ F be an epimorphism of sheaves on the smooth site over SpecOK ,
where G is represented by a smooth group scheme. Then

Hom(F 0, i∗Z) = 0

Ext1(F , i∗Z) ∼= Ext1(Φ(F), i∗Z).

Proof. By 2.2.4 there exists a short exact sequence

0 −→ κ −→ G0 −→ F 0 −→ 0.

Since Hom
(
G0, i∗Z

)
= 0, the first assertion follows. Now G0 is an l-divisible sheaf for every

natural number l that is not divisible by p = char(k). This means that the kernel κ is also an
l-divisible sheaf, whence Hom(κ, i∗Z) = 0.

Thus the long exact sequence for the functor Hom(·, i∗Z) in the smooth topology yields

0 = Hom(κ, i∗Z) Ext1(F 0, i∗Z) Ext1(G0, i∗Z) = 0.

Therefore, we obtain from the sequence

0 −→ F 0 −→ F −→ Φ(F) −→ 0

an isomorphism Ext1(Φ(F), i∗Z) ∼= Ext1(F , i∗Z).
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Proposition 5.3.3. Let F be a sheaf on the smooth site over SpecOK and let ψ : G1 −→ G2

be a morphism of smooth and commutative group schemes. If F ∼= coker(G1 −→ G2) as smooth
sheaves, then Φ(F ) is represented by an étale group scheme.

If, in addition, the restriction of F to the étale site is trivial, then Φ(F) is also trivial.

Proof. Clearly Φ(F) ∼= coker(Φ(G1) −→ Φ(G2)) as smooth sheaves and via a Yoneda argument
one sees that the morphism on the groups of components is induced by a homomorphism of the
étale group schemes. The image of Φ(G1) under this homomorphism must be a closed normal
subgroup because the groups are abelian and the topology on the étale groups is discrete. Thus
the cokernel exists as a group scheme and is étale; a fortiori, it represents the cokernel as a
smooth sheaf.

The epimorphism F −→ Φ(F ) is surjective even after restriction to the étale site, so that
Φ(F ) = 0 as an étale sheaf. Since Φ(F ) is an étale scheme, it follows from the triviality of
Φ(ksep) that Φ = 0 as well.

Theorem 5.3.4. Let K be a local field and let

0 −→ T ′ −→ R −→ T −→ 0

be a short exact sequence of algebraic K-tori. Assume that the torsion parts of the groups of
components Φ(R) and Φ(T ′) have coprime orders. Then the corresponding long exact sequence
of the Néron models

0 T ′ R T K 0,

where K ..= ker(R1j∗T
′ −→ R1j∗R), induces a sequence

0 −→ Φ(T ′)
∨∨ −→ Φ(R) −→ Φ(T ) −→ Φ(K) −→ 0

which is exact except perhaps at Φ(R).
If the sequence R0 −→ T 0 −→ K0 is exact, then the last sequence is exact at Φ(R) too.

Proof. We have a commutative diagram in the smooth topology

0 ι−1(R0) R0 T 0 K0 0

0 T ′ R T K 0ι

with an exact bottom row and a top row which is exact except perhaps at R0 and T 0.
If we restrict this diagram to the étale site over Spec k, then exactness is retained. In par-

ticular, we now consider the sheaves (without any distinction in the notation!) as continuous
Gal(ksep/k)-modules.

Thus the diagram induces a sequence of the group of components

0 −→ Φ(T ′)
∨∨ −→ Φ(R) −→ Φ(T ) −→ Φ(K)→ 0, (5.1)

which is trivially exact at Φ(K). By 2.2.4, it is exact at Φ(T ). The exactness at Φ(T ′)
∨∨ is clear

by the assumption on the orders of the torsion parts.
Now assume that the sequence R0 −→ T 0 −→ K0 is exact and let us show that (5.1) is exact

at Φ(R).
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All that remains to show is that an element x̄ ∈ Φ(R) which is mapped to zero in Φ(T )
already has a preimage in Φ (T ′)

∨∨. To do this, let a preimage x ∈ i∗R be chosen: its image z
under i∗R −→ i∗T is obviously already in i∗T 0. The image of z in i∗K is zero, so that by the
exactness of the sequence i∗R0 −→ i∗T 0 −→ i∗R1j∗(T

′)0 we can find a preimage x0 of z in z
in i∗R0. Summarizing, we obtain a section x − x0 ∈ i∗R which is a preimage of x̄ and has a
preimage in i∗T ′. Its image in the group of components Φ(T ′) must obviously be a preimage of
x̄.

Proposition 5.3.5. In the setting of Theorem 5.3.4 we have a commutative diagram

0 Φ(T ′)∨∨ HomZ(X(T ′)I ,Z) E(T ′)pd 0

0 Φ(R) HomZ(X(R)I ,Z) E(R)pd 0

α β

where the morphism β is induced by the maps on the Néron models and the morphism α is equal
to the dual of the given map X(R) −→ X(T ′) when restricted to the I-invariants. Above, (·)pd
denotes Pontryagin dual.

Proof. The assertion corresponds to the assertion of Proposition 5.2.1 applied to the morphism
T ′ −→ R and dualized via HomZ(·,Z). Since, as abelian groups, the defect terms are finite
groups, the functor Ext1Z(·,Z) corresponds to the Pontryagin dual.

We now use the induced sequences to compute certain group of components .

Proposition 5.3.6. Let L/K be a finite separable extension of local fields such that Lnr/Knr is
Galois and let TN be the associated norm-one torus. Then there exists an isomorphism of abelian
groups

Φ
(
R1j∗TN

) ∼=(Z/psZ)[Lnr :K ]
,

where ps ..= eL/K/νL(πK) = [l : k ]ins is the degree of inseparability of the associated extension of
residue fields.

Proof. After changing the base to Knr, the sequence of character groups that defines TN is of
the form

0 Z
⊕[Knr :K ]

i=1 Ind
Gal(Ksep/Lnr)
Gal(Ksep/Knr)Z X(TN ) 0α

Since α is the diagonal embedding, X(TN ) as a cokernel is also a sum and each summand is
isomorphic to the character group of the norm-one torus associated to the extension Lnr/Knr. It
suffices to consider the case K = Knr and L = Lnr:

Using Theorem 5.3.5, the defining sequence of the norm-one torus yields an exact sequence

Φ(R) −→ Φ(G) −→ Φ
(
R1j∗TN

)
−→ 0,

where R ..= j∗RL/K(Gm,L) and G : = j∗Gm,K . Since the group of components are étale groups,
we can consider this sequence relative to the étale topology and consider the terms of the sequence
as Galois modules. We obtain

L∗ = R(OK) G(OK) = K∗

L∗/O∗
L = Φ(R) Φ(G) = K∗/O∗

K Φ(R1j∗TN ) 0.

NL/K

νL νK
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Thus, the canonical map of the Néron models onto the group of components induces the map
1 = νL(πL) 7−→ νK

(
NL/K(πL)

)
= νK

(
πp

s

K

)
= ps.

The above considerations yield another interpretation of the defect term that we found when
we examined the free part. We also have the following simple alternative description.

Lemma 5.3.7. Let T be an algebraic K-torus and recall the sequence (6)

0 T̃ T T I 0.

Let K ..= ker(R1j∗T̃ −→ R1j∗T ). Then the defect group can be expressed as E(T ) =
Ext1(K, i∗Z) |(ét)/k= Ext1(Φ(K),Z). Further, the group of components Φ(K) can be determined
from the diagram

T (Knr) T I(Knr) = ((Knr)∗)dI

Φ(T ) Φ(T I) = ZdI Φ(K) 0

ν

Proof. We have already established the description of the Ext1 terms above. Using the idea
applied in the proof of Theorem 5.3.4, the sequence

0 −→ j∗T̃ −→ j∗T −→ j∗T
I −→ K −→ 0

induces an exact sequence
Φ(T ) −→ Φ(T I) −→ Φ(K) −→ 0,

which can obviously be determined in the étale topology. The diagram in the statement arises by
passing from the étale sheaves to the representing Galois modules (on the special fiber) and from
the explicit description of the Néron models of algebraic tori with multiplicative reduction.

The above yields an important statement:

Proposition 5.3.8. Let K be a local field and let T be an algebraic K-torus which splits over
a finite Galois extension L/K. Further, let d ..= rank

(
X(T )I

)
, where I = Gal(L/Knr) is the

inertia group of Gal(L/K). Then the defect term E(T ) is a quotient of (Z/psZ)d, where ps is
the degree of inseparability of the corresponding extension of residue fields. In particular, the
defect term is trivial if T splits over a non-residually ramified extension.

Proof. Using Lemma 5.3.7, it suffices to estimate the cokernel of the canonical map T (Knr) −→
Φ(T I). We have Φ(T I ) = Zd and for an element a⃗ = (a1, .., ad) ∈ Φ(T I ) one can construct in
T I(Knr) a pre-image α⃗ = (α1, .., αdI ) with elements αi ∈ Knr such that νK(αi) = ai.

By choosing a trivialization, one can write T I(Knr) = HomZ(X(T I ), (Knr)∗), so that by
choosing a Z-basis (χi)i=1,...,dI

of X(T I ) one can identify the point α⃗ with the map induced by
χi 7−→ αi.

Recall Lnr = LKnr. Then, for a uniformizing element πLnr in OLnr , we have

νK(NLnr/Knr(πLnr)) = pr.

Now T (Knr) = HomZ(X(T ), (Lnr)∗)Gal(Lnr/Knr) and we can obtain a base (χi) of X(T )I and
add elements (ξj) to form a Z-basis of X(T ). For a tuple b⃗ = (b1, .., bd) ∈ Zd, consider the
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induced homomorphism β⃗ in HomZ(X(T ), (Lnr)∗), which depends on the assignment χi 7−→ πbiLnr

ξj 7−→ 1. The norm
−→
β′ ..=

∑
τ∈Gal(Lnr/Knr) τ(β⃗ ) defines an element in T (Knr). This element

clearly maps the element χi to β ′
i

..= NLnr/Knr(πbiLnr). The image of this element in T I (Knr) is
therefore a preimage of ps · b⃗, since νK(NLnr/Knr(β ′

i )) = psbi.
Thus, by the above construction in Φ(T I ) = Zd, we find preimages for psZd, so that E(T )

must be a quotient of Zd/psZd. In the case of a non-residually ramified splitting extension we
have ps = 1, which means that E(T ) must be trivial.



Chapter 6

Main results

In the previous chapter we summarized our results on the group of components in the general
case. First we generalized the description from [X, Theorem 3.1] on algebraic tori that split over a
tamely ramified extension. Since the defect terms are trivial for these tori, the description is even
compatible with homomorphisms. From the generalization for these tori it follows immediately
that the results of Xarles also apply to Weil restrictions of such tori, but they need not be
compatible with homomorphisms anymore.

Next we consider algebraic tori T which split over a non-residually ramified extension. For
these tori we can show that the description of the free part remains valid. We can describe the
torsion part only as an extension of the group of components Φ

(
R1j∗T

′) (for a suitable torus
T ′) by H1(I,X(T )).

Since the defect terms and R1j∗T are always p-primary torsion sheaves, we give a description
of the group of components as a Z

[
p−1
]
[Gk]-module. In this setting, Xarles’ description can be

extended to the general case. However, the description as Z
[
p−1
]
[Gk]-modules only covers the

prime-to-p part and the isomorphism classes of modules become larger.

We then determine the group of components of the Néron model of norm-one tori TN with
respect to cyclic, Galois and totally ramified extensions L/K of local fields. For these, the tor-
sion part of the group of components is always a quotient of H1(I,X(TN )) and Z/psZ, where
ps is the degree of inseparability of the residue field extension associated to L/K. From such a
counterexample we construct a torus T for which the free part of the group of components is not
isomorphic to X(T )I .

Finally, we look at the p-primary torsion part. We show that the p-primary torsion part
is annihilated by multiplication by ps if there exists a splitting extension such that ps is the
highest power of p in the order of the inertia group of this extension. A general description of the
p-primary component has not yet been obtained, but we suspect that the p-primary component
will remain bounded. This conjecture would imply that the results of Xarles apply to algebraic
tori that split over a non-residually ramified extension.

6.1 Néron models and tame ramification
Now we want to generalize the results of Xarles to algebraic K-tori that split over a tamely
ramified extension. We have already seen that the result for the free part holds for algebraic tori
that split over a tamely ramified extension.

93
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Theorem 6.1.1. Let K be a local field and let T be an algebraic K-torus with character group
X(T ) that splits over a finite Galois tamely ramified extension L/K. Further, let GK ..=
Gal(L/K) and let I be the inertia group of GK . Now let

0 −→ X(T ) −→ J0 −→ J1 −→ J2 −→ · · ·

be a resolution of X(T ) by torsion-free, I-acyclic GK-modules. Then, as a Gk ..= GK/I-module,

Φ(T ) ∼= coker
(
HomZ

(
(X ′)I ,Z

)
−→ HomZ

(
JI0 ,Z

))
,

where X ′ ..= ker(J1 −→ J2).

Proof. Following Xarles, we consider the short exact sequence of algebraic K-tori

0 −→ T ′ −→ R −→ T −→ 0

induced via Cartier duality by the exact sequence

0 −→ X(T ) −→ J0 −→ X ′ −→ 0.

We may assume without loss of generality that J0 is an induced Gal(L/K)-module, i.e., the
torus R is a Weil restriction of a product of multiplicative groups. This means that the group
of components of the Néron model of R is torsion-free. Further, since with this choice of T the
tori R and T ′ also split over the tamely ramified extension L, we obtain a short exact sequence
of Néron models

0 −→ T ′ −→ R −→ T −→ 0.

Since the defect terms are trivial due to tame ramification, Propositions 5.3.1 and 5.3.5 induce
the following commutative diagram of Gk-modules

0 Φ(T ′)∨∨ Φ(R) Φ(T ) 0

HomZ((X
′)I ,Z) HomZ(J

I
0 ,Z)

α

where α is the linear dual of the restriction of the morphism J0 −→ X ′ to I-invariant subgroups.
Since the top row is exact, the claim follows.

Corollary 6.1.2. Let T be an algebraic K-torus that splits over a tamely ramified extension
L/K. Then H1(I,X(T )) ∼= Ext1Z(Φ(T ),Z) as Gk = GK/I-modules.

Proof. By Theorem 6.1.1, we have a short exact sequence of Gk-modules

0 −→ HomZ

(
(X ′)I ,Z

)
−→ HomZ

(
JI0 ,Z

)
−→ Φ(T ) −→ 0.

By applying HomZ(·,Z), we obtain the exact sequence of Gk-modules

· · · −→ JI0 −→(X ′)
I −→ Ext1Z(Φ(T ),Z) −→ 0.

Above we used the fact that X ′ and J0 are torsion-free. Now, by the left-exactness of the functor
(·)I , it follows that (X ′)

I
= ker

(
JI1 −→ JI2

)
, whence

Ext1Z(Φ(T ),Z) ∼= coker
(
JI0 −→ ker

(
JI1 −→ JI2

))
as Gk-modules. Since the Ji formed an I-acyclic resolution of X(T ), this must be H1(I,X(T )).
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From Theorem 1.2.1 we also immediately obtain the statement:

Proposition 6.1.3. Let L/K be a finite separable extension of local fields and let T ′ be an
algebraic L-torus which splits over a tamely ramified extension of L. Then the description from
[X, Theorem 3.1] applies to the group of components of the Néron model of the K-torus T ..=
RL/K(T ′).

6.2 Néron models and non-residual ramification
By Proposition 5.3.8 and Theorem 5.1.6, the following holds:

Proposition 6.2.1. Let K be a local field and let T be an algebraic K-torus which splits over
a finite Galois and non-residually ramified extension L/K. Then HomZ(Φ(T ),Z) ∼= X(T )I as
Gal(ksep/k)-modules.

However, since in this case we cannot yet describe the group of components of R1j∗T , we can
only describe the torsion part of the group of components as an extension:

Proposition 6.2.2. Let K be a local field and let T be an algebraic K-torus with character group
X(T ) which splits over a finite, Galois and non-residually ramified extension L/K. Let I be the
inertia group of GK ..= Gal(L/K). Then there exists an exact sequence of Gal(ksep/k)-modules

0 −→ H1(I,X(T )) −→ Ext1Z(Φ(T ),Z) −→ Ext1Z(Φ(R
1j∗Q

′),Z) −→ 0,

where Q ′ is a suitable torus.

Proof. We first consider the case where H1(I,X(T )) = 0. By Theorem 5.2.2, the sequence (3)

0 −→ T ′ −→ R ..= RL/K(TL) −→ T −→ 0

induces a commutative diagram

HomZ(Φ(T ),Z) HomZ(Φ(R),Z) HomZ(Φ(T
′),Z) Ext1Z(N ,Z)|(ét)/k

X(T )I X(R)I X(T ′)I 0

where, according to the notation of the theorem, N = ker
(
T −→ R1j∗T

′). The last map on the
top row is surjective because Φ(R) is torsion-free. Since the defect terms vanish by Proposition
5.3.8, the vertical maps are isomorphisms. Now, by the exactness of the bottom row, the top
row must be exact at Hom(R, i∗Z) also. In the long exact sequence

0 −→ Hom(T , i∗Z)
α−→ Hom(N , i∗Z) −→ Ext1(K, i∗Z)

−→ Ext1(T , i∗Z) −→ Ext1(N , i∗Z)

the morphism α is an isomorphism after restriction to the étale site over k. From the diagram
we see that Ext1(N , i∗Z)

∣∣
(ét)/k = 0, which yields

Ext1Z(Φ(R
1j∗T

′),Z) ∼= Ext1Z(Φ(T ),Z).

Since we assumed that H1(I,X(T )) = 0, we obtain the sequence of the proposition by setting
Q ′ = T ′.
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Now let T be an arbitrary torus that splits after a non-residually ramified extension L/K.
Recall the sequence (8)

0 −→M −→ Q −→ T −→ 0,

where M has multiplicative reduction and Q is such that H1(I,X(Q)) = 0. Then Theorem 5.2.2
yields an exact and commutative diagram

HomZ(Φ(T ),Z) HomZ(Φ(Q),Z) HomZ(Φ(M),Z) N

X(T )I X(Q)I X(M) H1(I,X(T ))

where N = ker[Ext1Z(Φ(T ),Z) −→ Ext1Z(Φ(Q),Z)]. The diagram shows that N = H1(I,X(T )),
whence there exists a short exact sequence

0 −→ H1(I,X(T )) −→ Ext1Z(Φ(T ),Z) −→ Ext1(Φ(Q),Z) −→ 0.

Now, by the first part of the proof, we have Ext1Z(Φ(Q),Z) = Ext1Z(Φ(R
1j∗Q

′),Z), which yields
the proposition.

6.3 The prime-to-p part
The notation [p−1] always means the localization with respect to the multiplicative system{
1, p, p2, ..

}
. Further, Gk denotes the absolute Galois group Gal(ksep/k) of the residue field.

We now wish to determine the group of components as Z[p−1][Gk]-module by replacing Φ with
its localization Φ[p−1] ∼= Φ ⊗Z Z[p−1]. The action of the Galois group is the canonical induced
action. The p-primary torsion component of the torsion part is annihilated by the localization.
But the isomorphism classes also change, since Galois module homomorphisms with coefficients
in Z[p−1] are now permitted instead of just from Z. As we will see, in this coarser setting the
results from [X] can be generalized without difficulty.

We first examine how the localization behaves under the functor HomZ(·,Z).

Lemma 6.3.1. Let Φ be a finitely generated continuous Gk-module. Then we have the following
isomorphisms of Z[p−1][Gk]-modules

HomZ[p−1](Φ[p
−1],Z[p−1]) ∼= HomZ(Φ,Z[p

−1]) ∼= HomZ(Φ,Z)[p
−1]

Ext1Z[p−1](Φ[p
−1],Z[p−1]) ∼= Ext1Z(Φ,Z[p

−1]) ∼= Ext1Z(Φ,Z)[p
−1].

Proof. It is shown in [Wei, Proposition 3.3.10 and Lemma 3.3.8] that, for a noetherian ring R and
a finitely generated R-module A, HomR(A,B) and ExtnR(A,B) are compatible with localization.

This means that in the statement the first and third terms of the two lines are isomorphic as
abelian groups. These isomorphisms are compatible with the action of Gk since the action canon-
ically depends on the induced action on Φ (for the trivial action on Z or Z[p−1]). The isomor-
phism HomZ(Φ,Z[p−1]) ∼= HomZ(Φ,Z)[p−1] is clear. For the isomorphism Ext1Z(Φ,Z[p

−1]) ∼=
Ext1Z(Φ,Z)[p

−1], note that the canonical Z-injective resolution of Z

0 −→ Z −→ Q −→ Q/Z −→ 0

yields, upon tensoring with the flat Z-module Z[p−1], a Z-injective resolution

0 −→ Z[p−1] −→ Q −→ Q/Z⊗Z Z[p−1] −→ 0,
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because quotients of divisible abelian groups are divisible. Thus we obtain

Ext1Z(Φ,Z)[p
−1] = (HomZ(Φ,Q/Z)/HomZ(Φ,Q))⊗Z Z[p−1]

= HomZ(Φ,Q/Z)⊗Z Z[p−1]/HomZ(Φ,Q)⊗Z Z[p−1]

= HomZ(Φ, (Q/Z)⊗Z Z[p−1])/HomZ(Φ,Q⊗Z Z[p−1])

= Ext1Z(Φ,Z[p
−1]).

Thus we can determine Φ as Z[p−1][Gk]-module using the functors RiHomZ(·,Z[p−1]) for
i = 0, 1.

Now let T be an algebraic K-torus. Using Proposition 5.1.1, the short exact sequence

0 −→ j∗T
0 −→ j∗T −→ i∗Φ(T ) −→ 0

induces an isomorphism in the smooth and étale topologies

Hom(j∗T, i∗Z[p−1]) ∼= Hom(i∗Φ(T ), i∗Z[p−1]).

In the smooth topology, we also have an isomorphism

Ext1(j∗T, i∗Z[p−1]) ∼= Ext1(i∗Φ(T ), i∗Z[p−1]).

Using Propositions 5.1.3 and 5.1.4, we obtain the following equalities

Hom(i∗Φ(T ), i∗Z[p−1]) = i∗ HomZ(Φ(T ),Z[p
−1])

Ext1(i∗Φ(T ), i∗Z[p−1]) = i∗ Ext
1
Z(Φ(T ),Z[p

−1]),

where on the right-hand side the abelian sheaves are represented by the étale group scheme
associated to the respective Galois module.

For a finitely generated continuous Gk-module Φ, one has a canonical short exact sequence

Ext1Z(Ext
1
Z(Φ,Z),Z) ↪→ Φ↠ HomZ(HomZ(Φ,Z),Z),

which corresponds to the decomposition of Φ into a torsion part (as a submodule) and a free
part (as a quotient modulo the torsion part). As seen above, after tensoring with Z[p−1], the
above sequence becomes isomorphic to the sequence

Ext1Z(Ext
1
Z(Φ,Z[p

−1]),Z[p−1]) ↪→ Φ[p−1]↠ HomZ(HomZ(Φ,Z[p
−1]),Z[p−1]),

and this obviously corresponds to the decomposition of Φ[p−1] into a torsion part and a free part
in the category of Z[p−1][Gk]-modules.

Proposition 6.3.2. Let K be a local field and let T be an algebraic K-torus with character
group X(T ). Let L/K be a finite Galois splitting extension for T and let I be the inertia group
of Gal(L/K). Then

HomZ(Φ(T ),Z[p
−1]) ∼= X(T )I ⊗Z Z[p−1]

in the category of continuous Z[p−1][Gk]-modules. This description is compatible with homomor-
phisms of algebraic tori.



98 CHAPTER 6. MAIN RESULTS

Proof. Recall the sequence (6)

0 −→ T̃ −→ T −→ T I −→ 0.

This induces a long exact sequence of the Néron models from which we obtain an exact sequence

0 −→ j∗T̃ −→ j∗T −→ j∗T
I −→ K −→ 0,

where K ..= ker(R1j∗T̃ −→ R1j∗T ). If we split the latter sequence into two short exact sequences
as in 5.1.6 and apply the functor Hom(·, i∗Z[p−1]), we obtain

0 −→ Hom(N , i∗Z[p−1]) −→ Hom(j∗T, i∗Z[p−1]) −→ Hom(j∗T̃ , i∗Z[p−1]) = 0

and

0 = Hom(K, i∗Z[p−1]) −→ Hom(j∗T
I , i∗Z[p−1]) −→ Hom(N , i∗Z[p−1]) −→ Ext1(K, i∗Z[p−1]).

By Proposition 4.2.7, we have Ext1(K, i∗Z[p−1]) = 0. This means that

Hom(j∗T
I , i∗Z[p−1]) ∼= Hom(j∗T, i∗Z[p−1]) = Hom(i∗Φ(T ), i∗Z[p−1]).

Considering this in the étale topology over k, this induces an isomorphism X(T )I ⊗Z Z[p−1] ∼=
HomZ(Φ(T ),Z[p−1]) of the representing Galois modules.

Now let ψ : T1 −→ T2 be a homomorphism of algebraic tori. This corresponds to a homo-
morphism D(ψ) : X(T2) −→ X(T1) of the character groups. We now consider the exact and
commutative diagram

0 T̃1 T1 T I1 0

0 T̃2 T2 T I2 0.

ψ

The above diagram induces a commutative diagram

Hom(j∗T
I
1 , i∗Z[p−1]) Hom(j∗T1, i∗Z[p−1])

Hom(j∗T
I
2 , i∗Z[p−1]) Hom(j∗T2, i∗Z[p−1]).

∼=

∼=

Using the description of the group of components in the case of multiplicative reduction, re-
stricting to the étale site over k and passing to the representing Galois modules, we see that the
vertical maps above correspond exactly to the morphismD(ψ)I⊗ZZ[p−1] : X(T2)

I⊗ZZ[p−1] −→
X(T1)

I ⊗Z Z[p−1].

We now show that the description of the torsion part in the category of continuous Z[p−1][Gk]-
modules also remains valid:

Proposition 6.3.3. Let K be a local field and let T be an algebraic K-torus with character
group X(T ). Let L/K be a finite Galois splitting extension for T and let I be the inertia group
of Gal(L/K). Then

Ext1Z(Φ(T ),Z[p
−1]) ∼= H1(I,X(T ))⊗Z Z[p−1]

in the category of continuous Z[p−1][Gk]-modules.
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Proof. Recall the sequence (3)

0 −→ T ′ −→ R ..= RL/K(TL) −→ T −→ 0,

where L/K is a finite Galois splitting extension for T . From this sequence we obtain an exact
sequence by passing to the Néron models

0 −→ T ′ −→ R −→ T −→ R1j∗T
′ −→ 0

Note that, by Corollary 4.2.7, we have Exti(R1j∗T
′, i∗Z[p−1]) = 0 for i = 1, 2. Thus, if we split

the latter sequence into two short exact sequences and apply Hom(·, i∗Z[p−1]) to these sequences,
we obtain an exact sequence (cf. proof of Theorem 5.2.2)

Hom(T , i∗Z[p−1]) ↪→ Hom(R, i∗Z[p−1])→ Hom(T ′, i∗Z[p−1])→ Ext1(T , i∗Z[p−1]).

Now, if we restrict the above sequence to the étale site over k and pass from the Néron models to
their groups of components, we obtain by Proposition 6.3.2 an exact and commutative diagram
of Gk-modules

Hom(Φ(T ), i∗Z[p−1]) Hom(Φ(R), i∗Z[p−1]) Hom(Φ(T ′), i∗Z[p−1]) E

X(T )I ⊗Z Z[p−1] X(R)I ⊗Z Z[p−1] X(T ′)I ⊗Z Z[p−1] H,

where E and H denote, respectively, Ext1Z(Φ(T ),Z[p
−1]) and H1(I,X(T )) ⊗Z Z[p−1]. The

proposition follows immediately from this diagram.

We now establish the corresponding generalization of [X, 3.1].

Theorem 6.3.4. Let K be a local field and let T be an algebraic K-torus with character group
X(T ). Let L/K be a finite Galois extension such that T splits over L. Further, let I be the
inertia group of GK ..= Gal(L/K) and let

0 X(T ) J0 J1 J2 · · ·

be a resolution of X(T ) via torsion-free and I-acyclic GK-modules. Then

Φ(T )⊗Z Z
[
p−1
] ∼= coker

(
HomZ

(
(X ′)I ,Z

)
−→ HomZ

(
JI0 ,Z

))
⊗Z Z

[
p−1
]
,

where X ′ ..= ker(J1 −→ J2).

Proof. We consider the short exact sequence

0 −→ T ′ −→ R −→ T −→ 0

of algebraic K-tori, which arises via Cartier duality from the sequence

0 −→ X(T ) −→ J0 −→ X ′ −→ 0.

We can assume without loss of generality that J0 is an induced Gal(L/K)-module, i.e., the torus
R is a Weil restriction of a product of multiplicative groups. This means that the group of
components of the Néron model of R is torsion-free and we have R1j∗R = 0. So we obtain a long
exact sequence

0 T ′ R T R1j∗T
′ 0.
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This induces a sequence via Proposition 5.3.4

0 −→ Φ(T ′)∨∨ −→ Φ(R) −→ Φ(T ) −→ Φ(R1j∗T
′) −→ 0

of group of components, which is exact at Φ(T ). After tensoring with the flat Z-module Z[p−1],
we obtain R1j∗T

′ ⊗Z Z[p−1] = 0 and thus, by Proposition 5.3.5, a commutative diagram

Φ(T ′)∨∨ ⊗Z Z[p−1] Φ(R)⊗Z Z[p−1] Φ(T )⊗Z Z[p−1]

HomZ((X
′)I ,Z)⊗Z Z[p−1] HomZ(X(R)I ,Z)⊗Z Z[p−1]

α β

α

Since the p-primary torsion defect terms become trivial after localization, the vertical maps in
Proposition 5.3.5 become isomorphisms in this case. Since, a priori, the upper sequence may not
be exact at Φ(R)⊗Z Z

[
p−1
]
, we consider the isomorphism

Φ(T )⊗Z Z[p−1] ∼= Φ(R)/ ker(β)⊗Z Z[p−1]

∼=
(
Φ(R)/ im(α)/ ker(β)/ im(α)

)
⊗Z Z[p−1].

By dimension reasons, ker(β)/ im(α) must be a torsion group. Now the torsion components
of Φ(T ) ⊗Z Z

[
p−1
]

and Φ(R)/ im(α) are isomorphic via the map α constructed in Proposition
6.3.3. Since the torsion parts are finitely generated, i.e., finite, we must have (ker(β)/ im(α))⊗Z

Z[p−1] = 0 and thus the theorem follows.

6.4 The group of components for norm-one tori
In this section we describe the group of components of the special fiber of the Néron model of a
norm-one torus using exact sequences of the groups of components.

Proposition 6.4.1. Let TN be a norm-one torus with respect to a finite separable extension
L/K of local fields such that Lnr/Knr is a cyclic Galois extension. Let eL/K ..= νL(πK) be the
ramification index of L/K, let I ..= Gal(L/K) be the inertia group and let f ..=[Knr : K] be the
separable degree of the extension of the residue fields. Further, let ps be the degree of inseparability
of the extension of the residue fields, so that [Lnr : Knr] = pseL/K .

Then Φ(TN ) =
(
Z/eL/KZ

)f and H1(I,X(TN )) =
(
Z/pseL/KZ

)f . Further, there exists an
exact sequence of abelian groups

0 −→ Φ(TN ) −→ H1(I,X(TN)) −→ Φ(R1j∗TN ) −→ 0.

Proof. As shown in Proposition 5.3.6, after changing the base to Knr, the torus TN becomes
isomorphic to the f -fold product of the norm-one torus T nr

N associated to Lnr/Knr. Since group
of components and cohomology are compatible with fiber products, respectively, sums, it suffices
to consider the case K = Knr. Since the extension Lnr/Knr is cyclic, the norm-one torus
TN is isomorphic to the torus S with character group HomZ(X(TN ) ,Z) by [LL, Lemma 4.1].
Consequently, TN admits the resolution

0 −→ Gm,Knr −→ RLnr/Knr(Gm,Lnr) −→ TN −→ 0. (6.1)

The above sequence induces an exact sequence of Néron models which, by Proposition 5.3.1,
induces, in turn, an exact sequence of the associated groups of components

0 −→ Φ(Gm,Knr) −→ Φ(RLnr/Knr(Gm,Lnr)) −→ Φ(TN ) −→ 0.
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The latter sequence is isomorphic to

0 −→ Z −→ Z −→ Φ(TN ) −→ 0.

The Knr-valued points of the map Gm,Knr → RLnr/Knr(Gm,Lnr) is the inclusion (Knr)∗ −→
(Lnr)∗. However, as already seen, the groups Φ(Gm,Knr) and Φ(RLnr/Knr(Gm,Lnr)) are generated
by the images of the uniformizing elements, so that we must have Φ(TN ) = Z/eL/KZ.

The exact sequence (6.1) corresponds to the exact sequence of character groups

0 −→ X (TN ) −→ Z[I]
aug.−−−→ Z −→ 0,

that is, the group of characters of TN is the kernel of the augmentation map. The corresponding
long exact sequence in I-cohomology yields the exact sequence

· · · −→ Z[I]I
aug.−−−−→ Z −→ H1(I,X(TN )) −→ H1(I,Z[I]) = 0.

Now the I-invariant elements of Z[I] are of the form
∑
σ∈I keσ with k ∈ Z, whence H1(I,X(TN )) =

Z/pseL/KZ.
Now there exists a commutative diagram

j∗TN

0 j∗Gm,Knr j∗RLnr/Knr(Gm,Lnr) j∗TN 0

Gm,Knr Gm,Knr

R1j∗TN

(·)p
seL/K

The middle column corresponds to the long exact sequence of the Néron models associated to
the canonical sequence of the norm-one torus. The top row is the sequence of the Néron models
associated to (6.1). Since the norm map on (Knr)∗ corresponds to the exponentiation with
pseL/K , the diagram is commutative. After passing to the group of components, we obtain a
commutative diagram with exact rows

0 Z Z Φ(TN ) 0

0 Z Z Z/pseL/KZ 0

Φ(R1j∗TN ).

·eL/K

·ps

·pseL/K

The dashed arrow on the right-hand column exists by commutativity of the diagram and the
isomorphism on the left-hand column. The claim now follows via the snake lemma if one notes
that the map

Φ(TN ) −→ Z/pseL/KZ ∼= H1(I,X(TN ))

must be injective.
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In general, however, the groups H1(I,X(T )) and Φ
(
R1j∗T

)
are not related. To show this,

we consider the field K ..= F3(X )((π))nr and the extension L = K[Y ]/
(
Y 3 + 2πY +X

)
. This

extension is clearly separable and induces an inseparable extension of the residue fields. If
ȳ0 ∈ L is a solution of the equation, then ȳ1 ..= ȳ0 +

√
π and ȳ2 ..= ȳ0 + 2

√
π are solutions,

since
√
ππ + 2π

√
π = 3

√
ππ = 0. Thus the extension is not Galois and the normal closure

Lnor arises from the adjunction of a root of the unifomizing element. In particular, Lnor/K is
totally ramified. Since permuting the two roots of π also induces a permutation of the roots
of Y 3 + 2πY X, we have Gal(Lnor/K) = S3. By [LL, Proposition 4.17(c)], we conclude that
H1(S3, X(TN )) = 0 for the norm-one torus TN associated to the extension L/K. On the other
hand, it follows from Proposition 5.3.6 that Φ

(
R1j∗TN

)
= Z/3Z. Thus the group of components

of R1j∗TN can be nontrivial even if H1(I,X(TN )) = 0.

6.5 An example of the free part

Using our computations for norm-one tori with respect to totally ramified Galois extensions
of degree p, we will now construct a family of examples which show that, in general, the free
part is no longer isomorphic to X(T )I . So let p = char(k) be a prime number and consider a
(p+1)-dimensional torus T which splits over an extension L/K with Galois group Gal(L/K) =
Z/2Z×Z/pZ. More precisely, let σ be a generator of the first factor and let τ be a generator of
the second factor. Without loss of generality, we assume that the second factor ⟨τ⟩ corresponds
to the inertia group of L/K.

We now let Gal(L/K) act on X(T ) = Zp+1 via the matrices

Mσ
..=


0

Ip
...
0

1 . . . 1 −1

 Mτ
..=


0

Z
...
0

0 . . . 0 1

 ,

where Ip is the (p× p)-identity matrix and Z is the (p× p)-matrix that permutes cyclically the
basis vectors e1, .., ep. One computes that Mp

τ and M2
σ are each the identity matrix and that

MτMσ = MσMτ . So such an action of the Galois group is defined on X(T ). Now consider the
sequence

0 −→ (τ − Id)X(T ) −→ X(T )
p−→ X(T )I −→ 0. (6.5)

The image of τ − Id is a submodule because τ and σ commute. This submodule has rank p− 1,
which is easy to read off the explicit shape of the associated matrix. We define the linear map

ψ : X(T ) −→ Z2 (a1, . . . , ap, ap+1)
t 7−→

(
p∑
i=1

ai, ap+1

)t

Since τ permutes only the first p components, we have ψ◦τ = ψ, whence (τ−Id)(X(T )) ⊂ ker(ψ).
Conversely, let a⃗ ..= (a1, . . . , ap+1)

t ∈ ker(ψ) be given. Then ap+1 = 0 and
∑p
i=1 ai = 0. For the

vector

b⃗ =(b1, . . . , bp+1)
t ..=

(
−

1∑
i=1

a1,−
2∑
i=1

ai, . . . ,−
p−1∑
i=1

ai,−
p∑
i=1

ai, 0

)t
we have τ (⃗b) − b⃗ = (bp − b1, b1 − b2, . . . , bp−1 − bp, 0) = (a1, .., ap−1, ap, 0)

t
= a⃗. Thus, ψ cor-

responds to the projection X(T ) −→ X(T )I . The action of σ on X(T ) induces the action on
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X(T )I such that

(a1, a2, . . . , ap, ap+1)
t (a1, a2, . . . , ap,

p∑
i=1

ai − ap+1)
t

(

p∑
i=1

ai, ap+1)
t (

p∑
i=1

ai,

p∑
i=1

ai − ap+1)
t

σX(T )

ψ
ψ

σX(T )I

The τ -invariants of X(T ) are also isomorphic to Z2 and correspond to the span
⟨(1, . . . , 1, 0)t, (0, . . . , 0, 1)t⟩. We take these vectors as a basis. The action of σ on X(T ) in-
duces the following action on X(T )I

(a, b)t = a(1, . . . , 1, 0)t + b(0, . . . , 0, 1)t

7−→ a(1, . . . , 1, 0)t + (pa− b)(0, . . . , 0, 1)t = (a, pa− b)t.

In line with this, the long I-cohomology sequence induced by (6.5) is the sequence

0 −→ 0 −→ X(T )I
ψI

−−→ X(T )I −→ Z/pZ −→ 0

where, in the coordinates just chosen, the map ψI is given by

(a, b)t 7−→ ψ
(
(a, . . . , a, b)t

)
= (pa, b).

Now the actions of σ correspond to the matrices

MσX(T )I
=

(
1 0
p −1

)
Mσ(X(T )I )

=

(
1 0
1 −1

)
,

and these matrices are not conjugate over GL2(Z) since a conjugate matrix would have to be of
the form (

a 0
c p(a+ c)

)
,

i.e., with a non-invertible determinant in Z. This means that X(T )I and X(T )I are not isomor-
phic as Z[⟨σ⟩]-modules.

We now consider the short exact sequence of algebraic tori

0 −→ TI −→ T −→ T ′ −→ 0

that corresponds to the sequence (6.5) under Cartier duality. By Proposition 5.3.1, this yields
an exact sequence

0 −→ HomZ(X(T )I ,Z) −→ Φ(T ) −→ Φ(T ′) −→ 0.

After changing base to Knr, the torus T ′ is isomorphic to the norm-one torus of the extension
L/Knr, which can be seen from the character groups: the norm-one torus of a cyclic extension
of degree p has character group X (TN ) = Zp/Z(δ1 + · · ·+ δp), where δ1, . . . , δp is a basis of Zp.
The Galois group Z/pZ = ⟨τ⟩ acts through τ(δi) = δi+1 for 1 ≤ i ≤ p− 1 and τ(δp) = δ1 on the
basis of Zp and this action induces the action on X(TN ).
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Now we have for (τ − Id)(X(T )) ⊂ X(T ) = Zp+1 a basis (ẽi)i=1, ...,p−1 with ẽi ..= ei − ep.
The assignment

δ1 7−→ ẽ1

δ2 = τ(δ1) 7−→ τ(ẽ1) = τ(e1 − ep) = e2 − e1 = ẽ2 − ẽ1
δ3 = τ(δ2) 7−→ τ(ẽ2 − ẽ1) = ẽ3 − ẽ1 − ẽ2 + ẽ1 = ẽ3 − ẽ2

...
δp−1 = τ(δp−2) 7−→ ẽp−1 − ẽp−2

δp = τ(δp−1) 7−→ τ(ep−1 − ep − ep−2 + ep) = ep − ep−1 = −ẽp−1

induces a surjective linear map Zp −→ (τ − Id)(X(T )), which can be seen from the matrix that
represents it. Further, a vector

∑p
i=1 aiδi is mapped to zero if and only if all ai agree. By

construction, this map is compatible with the action of Gal (L/Knr), so that altogether we have
an isomorphism of Galois modules

X(TN ) ∼= (τ − Id)(X(T )) = X(T ′) .

However, as we saw in the explicit calculation of the Néron model of norm-one tori with
respect to Galois totally ramified extensions of degree p, T ′ has a trivial group of components if
L/Knr induces a degree p purely inseparable extension of the residue field. In this case we must
have HomZ(Φ(T ),Z) ∼= X(T )I , which is therefore not isomorphic to X

(
T I
)
.

6.6 The p-primary torsion part and open questions
Unfortunately, with the results obtained so far it is not yet possible to provide a comprehensive
description of the group of components of the Néron model in the general case, as we still know
too little about the p-primary torsion part. However, we can estimate the order of the elements
of the p-primary part.

If the group of components Φ(T ) of an algebraic torus T can be described using the results of
Xarles, then Ext1Z(Φ,Z) = H1(I,X(T )) for the inertia group I of a splitting extension of T . This
means that every element of the torsion part of Φ(T ) is annihilated by multiplication by the order
of I [S, VIII, §2, Corollary 2]. In particular, the p-primary torsion part is annihilated by the
highest power of p that divides the order of I. We can also establish this estimate independently
of the validity of the description found in [X]:

Proposition 6.6.1. Let T be an algebraic K-torus and let L/Knr be a finite Galois splitting
extension of TKnr . Let n be the order of I ..= Gal(L/Knr). Then the torsion part of Φ(T ) is
annihilated by n. In particular, the p-primary torsion component is annihilated by the order of
the p-primary part of I.

Proof. It suffices to consider the torus TKnr . Thus let K = Knr. We define R ..= RL/K(TL) and
consider the canonical immersion T ↪→ R. We set G ..= Gal(Ksep/K) and GL ..= Gal(Ksep/L)
and denote by σ1, . . . , σn a representative system for the GL-cosets of G.

The map T ↪→ R has the following form on the character groups

IndGL

G X(TL) −→ X(T ), (x1, .., xn) 7−→
n∑
i=1

σi(X ).

Conversely, we can define a canonical map R −→ T which, on character groups, has the form
(Proposition 0.4.4)
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X(T ) −→ IndGL

G X(TL) , x 7−→
(
σ−1
1 (X ), .., σ−1

n (X )
)
.

The composition T ↪→ R −→ T induces the multiplication by n on the character groups, so that
the corresponding map of the tori is also the multiplication by n (in additive notation of the
group law on T ).

By the Néron mapping property, we obtain morphisms of the corresponding Néron models
and these induce morphisms between groups of components

Φ(T ) −→ Φ(R) −→ Φ(T ).

Now one can see from the proof of Proposition 1.2.1 that Φ(R) = IndGL

G Φ(TL). Since TL is split,
Φ(TL) cannot have torsion. So Φ(R) has no torsion either.

This means that, a fortiori, the torsion part of Φ(T ) is in the kernel of the map

Φ(T ) −→ Φ(R) −→ Φ(T )

and this is the multiplication by n map.
The statement about the p-primary torsion part is elementary.

The above result is an analogue of [ELL, Theorem 1], which, to our knowledge, is the only
general result on the p-primary torsion part of groups of components of Néron models of abelian
varieties.

Finally, we would like to formulate the solutions we assumed as hypotheses for some obvious
open questions and show cross-relationships and consequences of these hypotheses.

The first important unsolved problem is the question of whether the order of the torsion part
of the group of components, as is the case in the examples with the norm-one tori, is bounded.
One approach to test this is provided by the following conjecture:
Conjecture 6.6.2 (generalization of [X, 2.7]). Let K be a local field and let T be an algebraic
K-torus whose character group satisfies H1(I,X(T )) = 0. Then Φ(T ) is torsion-free.

This conjecture would enable a description of the torsion part of the group of components as
in [X, 2.14]:

Proposition 6.6.3. Let K be a local field and let T be an algebraic K-torus. Suppose further
that Conjecture 6.6.2 holds. Then the torsion part of the group of components of the Néron model
of T can be written as a quotient

Ext1Z(Φ(T ),Z) = H1(I,X(T ))/E,

where E is an appropriate p-group. Further, E is trivial if T splits over a non-residually ramified
extension.

Proof. Recall again the sequence (8)

0 −→M −→ Q −→ T −→ 0,

where M is a torus with multiplicative reduction and Q is a torus such that H1(I,X(Q)) = 0.
Since R1j∗M = 0, we obtain from Theorem 5.2.2 a commutative diagram of Gk-modules

E(T ) E(Q) 0

0 HomZ(Φ(T ),Z) HomZ(Φ(Q),Z) HomZ(Φ(M),Z) Ext1Z(Φ(T ),Z)

0 X(T )I X(Q)I X(M)I H1(I,X(T ))

∼=
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The surjectivity at the end of the middle row follows from the conjecture. The surjectivity at
the end of the bottom row follows from the vanishing H1(I,X(Q)) = 0. By the commutativity,
the diagram can clearly be prolonged without losing commutativity with a map E(Q) −→ 0 on
the first row.

Now apply the snake lemma to the two middle columns. This produces an exact sequence

E(Q) −→ H1(I,X(T )) −→ Ext1(Φ(T ), i∗Z) −→ 0.

Since E(Q) is a p-group as a defect term for Q, the statement follows. The last assertion in the
statement is clear since in this case Q also splits over a non-residually ramified extension, giving
E(Q) = 0.

A counterexample to the conjecture 6.6.2 naturally also yields a counterexample to the con-
clusion from this theorem. Perhaps an answer to this conjecture could be found through further
study of the explicit construction of Néron models.

From the conjecture above, it is easy to derive the following weaker conjecture:
Conjecture 6.6.4. Let K be a local field and let T be an algebraic K-torus which splits over a
finite Galois and non-residually ramified extension L/K. Then R1j∗T is connected.

The validity of this assumption would imply that deviations from Xarles’ description can only
occur if the torus under consideration splits over a residually ramified field extension.

Proposition 6.6.5. Assume that conjecture 6.6.4 holds. Let K be a local field and let T be an
algebraic K-torus which splits over a finite Galois and non-residually ramified extension L/K.
Then the results of Xarles apply to T .

Proof. In Proposition 6.2.1 we showed that HomZ(Φ(T ),Z) = X(T )I . By the conjecture it
follows from Proposition 6.2.2 that Ext1Z(Φ(T ),Z) = H1(I,X(T )), so the description of the
torsion part remains valid. For the generalization of [X, Theorem 3.1], we consider the sequence
(3)

0 −→ T ′ −→ R ..= RL/K(TL) −→ T −→ 0,

which arises from the resolution X(T ) −→ IndGal(L/K) Z −→ · · · . Theorem 5.3.4 and Proposition
5.3.5 yield a commutative diagram

Φ(T ′)∨∨ Φ(R) Φ(T ) Φ(R1j∗T
′) = 0

HomZ(X(T ′)I ,Z) HomZ(X(R)I ,Z)

α

Since the defect terms vanish, the vertical maps are isomorphisms. A priori, the top row is exact
except perhaps at Φ(R), i.e., we only have an isomorphism

Φ(T ) ∼= Φ(R)/ ker(β) ∼= [Φ(R)/ im(α)]/[ker(β)/ im(α)].

Now, as seen above, the free and finite parts of Φ(T ) agree with the free and finite parts of
Φ(R)/ im(α) (correspondingly). For reasons of rank, ker(β)/ im(α) must be a torsion group.
Since all groups considered are finitely generated, the torsion parts must be finite and by the
equality of the torsion parts as abelian groups, the quotient ker(β)/ im(α) must be trivial. So
we have an isomorphism

Φ(T ) ∼= coker
(
HomZ

(
X(T ′)I ,Z

)
−→ HomZ

(
X(R)I ,Z

))
as in the representation from [X, Theorem 3.1].
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Wound unipotent groups

Let K be a field with characteristic p > 0. Then a connected unipotent K-group G is called a
K-wound group if every homomorphism Ga,K −→ G is trivial.

In the case that G is also smooth and commutative and the multiplication by p = char(K) is
the zero map, one can see G as a closed subgroup of the Gn+1

a,K with n = dim(G) (see [BLR, Propo-
sition 10.2.10] and [T, III, §3]). More precisely, G has the form SpecK[T0, . . . , Tn] / (F (T0, . . . , Tn))

with F (T0, . . . , Tn) =
∑n

i=0

∑mi

j=0 ci,jT
pj and the principal part

∑n
i=0 ci,mi

T p
mi has no non-

trivial K-rational zero. Here the specific form of F is necessary so that F is compatible with the
group law of Gn+1

a,K .
We need the converse of this statement:

Proposition A.1 (cf. [T, III, 3.3.5]). Let G ..= K[T0, . . . , Tn] /(F (T0, . . . , Tn)) be a subgroup of
Gn+1
a,k , where F =

∑n
i=0

∑mi

j=0 ci,jT
pj is a p-polynomial. Then G is smooth if ci0,0 ̸= 0 for some

i0 ∈ {0, .., n}. Further, G is connected if for some i0 ∈ {1, .., n} exactly one of the ci0,j ̸= 0. In
this case, G is K-wound if the principal part of F has no nontrivial rational zero in An+1

k .

Proof. By definition, it is clear that G is unipotent as a subgroup of a unipotent group. We
will show smoothness using the Jacobi criterion [BLR, Proposition 2.2.7]: G is viewed as a
closed subscheme of the smooth scheme Gn+1

a,K generated everywhere by the ideal sheaf (F ) and
dF =

∑n
i=0 ci,0dTi. Let x ∈ G be a point and let z ∈ Gn+1

a,K be its image. The stalk of
Ω1

Gn+1
a /K

in z has the basis (dTi)i=0,...,n. If there is an i0 ∈ {1, .., n} with ci0,0 ̸= 0, then(
(dTi)i=0,...,î0,...,n

, dF
)

is a basis.
Now for an i0 ∈ {1, .., n} let exactly one ci0,j ̸= 0 and let f ∈ K[T0, . . . , Tn] /(F ) be an

idempotent element. We will show that f is 0 or 1, i.e., that G is connected. We take f as the
residue class of a polynomial f̃ ∈ K[T0, . . . , Tn]. By the idempotence, f̃ p

j ≡ f̃ mod F . Now
we can use f p

j

as an element of the subring K[T0, . . . , T
pj

i0
, . . . , Tn]/(F ) ⊂ K[T0, . . . , Tn] /(F ).

However, By the requirement on F , this subring is isomorphic to K[T0, . . . , T̂i0 , . . . , Tn], so it
contains only 0 and 1 as idempotents. So f is 0 or 1.

Now suppose that there is a non-constant map Ga,k −→ G. This corresponds to an algebra
homomorphism

k[T0, . . . , Tn] /(F ) −→ k[T ] Ti 7−→ ϕi(T ) ..= ai,siT
si + . . .+ ai,0 ∈ k[T ],

where at least one of the polynomials ϕi must be nontrivial. Since it is well-defined, we must
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have

F (ϕ0(T ), . . . , ϕn(T )) =

n∑
i=0

mi∑
j=0

ci,jϕi(T )
pj

= 0 ∈ k[T ].

Let N ..= maxi=0,...,n sip
mi . This is clearly the highest power of T which appears in

F (ϕ0(T ), . . . , ϕn(T )). Set bi = ai,si if sipmi = N and zero otherwise. Then the coefficient
of TN equals

n∑
i=0

bp
ni

i ci,mi .

But this is the principal part of F evaluated at the position (Ti = bi)i=0,...n. Since the principal
part only has the trivial k-rational zero, all bi would have to be zero, contradicting our choice.
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Right-exactness of the ft-Néron
model

In this section G denotes the lft-Néron model of Gm,K . From the definition of the ft-Néron model
and our description of the corresponding étale sheaf, one obtains a long exact sequence for an
algebraic K-torus T :

0 −→ Hom(j∗X(T ),Gm,OK
) −→ Hom(j∗X(T ),G) −→ Hom(j∗X(T ), i∗Z)

−→ Ext1(j∗X(T ),Gm,OK
) −→ Ext1(j∗X(T ),G) −→ Ext1(j∗X(T ), i∗Z) −→ · · · ,

the beginning of which can be identified canonically with the sequence

0 −→(j∗T )
ft −→ j∗T,

so that we obtain an inclusion

coker
(
(j∗T )

ft −→ j∗T
)
= i∗Φ(T )

∨∨ ⊂ Hom
(
X(T )I , i∗Z

) ∼= i∗ HomZ

(
X(T )I ,Z

)
.

We now want to examine the Ext1 terms that appear above in more detail. The sheaf j∗X(T )
is represented by an étale group scheme. By Proposition 5.1.3, it follows that

Ext1(j∗X(T ), i∗Z) = i∗ Ext
1
Z

(
X(T )I ,Z

)
= 0,

because X(T )I is torsion-free. Next we want to examine Ext1(j∗X(T ),G).

Proposition B.1. Let K be a local field and let T be an algebraic K-torus. Then, in the étale
topology, Ext1(j∗X(T ),G) ∼= R1j∗T .

Proof. Since the torus T splits over a finite Galois extension L/K, Ext1(j∗X(T ),G) is a skyscraper
sheaf, because for every étale morphism U −→ SpecL we have

Ext1U ( j∗X(T )|U ,G|U ) = Ext1U
(
Zd,Gm,U

)
= H1(U,Gm,U )

d
= 0,

where d is the dimension of T .
Let U = SpecOK′ −→ SpecOK be an étale morphism, where K ′/K is a finite unramified

extension. Then Ext1U ( j∗X(T )|U ,G|U ) is the group of isomorphism classes of extensions of
sheaves

0 −→ G|U −→ E −→ j∗X(T )|U −→ 0
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on the étale site over U . By [M, II, 3.12], we can write this as an extension of triples

0 −→

 (Knr)∗

(Ksep)∗

(Knr)∗
id−→ (Knr)∗

→
 Es̄

Eη̄
ψ : Es̄ → EIη̄

→
 X(T )I

X(T )

X(T )I
id−→ X(T )I

 −→ 0.

This means that the top and middle rows are exact sequences of continuous Gal(Knr/K ′)-modules
and Gal(K sep/K ′)-modules and that the top row forms a commutative diagram (with the mor-
phisms from the bottom row) with the sequence of I-invariants of the middle row. By the
local-to-global spectral sequence for Ext1 on the étale site over UK ..= SpecK ′, one obtains an
exact sequence

0 −→ H1(UK ,Hom(j∗X(T )|UK
,G|UK

)) −→ Ext1UK
(j∗X(T )|UK

,G|UK
)

−→ H0
(
UK ,Ext

1(j∗X(T )|UK
,G|UK

)
)
.

As seen above, the last term must be trivial, so by Cartier duality we have a functorial
isomorphism

H1(UK , T ) = Ext1UK
(j∗X(T )|UK

,G|UK
) ∼= Ext1Gal(Ksep/K′)(X(T ), (Ksep)∗).

By [M, III, 1.13], the sheafification of the presheaf U 7−→ H1(UK , T ) is equal to R1j∗T and the
sheafification of the presheaf U 7−→ Ext1U ( j∗X(T )|U , G|U ) is equal to Ext1(j∗X(T ),G). So we
have to show, in a functorial way, that

EU ..= Ext1U ( j∗X(T )|U ,G|U ) = Ext1UK
(j∗X(T )|UK

,G|UK
) =: EUK

,

so that the isomorphism classes of extensions of triples are the isomorphism classes of extensions
of X(T ) by (Ksep)∗ as Gal(Ksep/K ′)-modules.

To do this, we define a map F that maps an extension of triples to their middle row as an
extension of X(T ) by (Ksep)∗. This assignment is clearly compatible with isomorphisms, so that
we obtain a map F : EU −→ EUK

on the Ext groups.
An extension ofX(T ) by (Ksep)∗ (as Gal(Ksep/K ′)-modules) induces a commutative diagram

with exact rows via Hilbert’s Theorem 90

0 (Knr)∗ EIη̄ X(T )I 0

0 (Ksep)∗ Eη̄ X(T ) 0

This gives us a map G : EUK
−→ EU since the construction is compatible with isomorphisms of

extensions.
One immediately sees that F ◦ G = id. Conversely, an extension E of triples is uniquely

determined by the middle row and the isomorphism Es̄ ∼= EIη̄, and this isomorphism induces an
isomorphism between the extension E and its image under G ◦ F .

An étale and surjective OK-morphism U ′ −→ U with connected U ′ corresponds to an un-
ramified field extension K ′ ⊂ K ′′ such that U ′ ∼= SpecOK′′ .

The restriction of a sheaf with respect to U ′ −→ U corresponds, at the level of the Galois
module, to the restriction of the inclusion Gal(Ksep/K ′′) −→ Gal(Ksep/K ′), so EU ∼= EUK

(functorially in U).
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Lemma B.2. Let K be a local field and let T be an algebraic K-torus with character group
X(T ). Then coker[Hom(j∗X(T ),G) −→ Hom(j∗X(T ), i∗Z)] ∼= E(T )pd, where E(T )pd means
the étale sheaf induced by the Pontryagin dual of the defect term.

Proof. We consider the canonical exact sequence (6) in the smooth topology

0 −→ T̃ −→ T −→ T I −→ 0.

This induces an exact sequence

0 −→ j∗T̃ −→ j∗T −→ j∗T
I −→ K.

By Proposition 3.3.1, we can complete this sequence and transform it into an exact and commu-
tative diagram using the corresponding ft-Néron models

0 j∗T̃ j∗T
ft Gdm,OK

0 j∗T̃ j∗T j∗T
I K

0 Φ(T ) Hom(j∗X(T )I , i∗Z)

β

α

Let d = rankX(T )I . By the commutativity of the diagram, we obtain a map

α : Φ(T )∨∨ −→ Hom
(
j∗X(T )I , i∗Z

)
.

This is a map of sheaves represented by étale group schemes. Thus we can determine α after
restricting to the étale topology. In that topology, we have a commutative diagram

j∗T = Hom(j∗X(T ),G) j∗T
I = Hom(j∗X(T I),G)

Hom(j∗X(T ), i∗Z) Hom(j∗X(T I), i∗Z)
∼=

since the inclusion X
(
T I
)
= X(T )I ↪→ X(T ) becomes an isomorphism after applying i∗ ◦ j∗.

Thus α corresponds to an inclusion

im(Hom(j∗X(T ),G) −→ Hom(j∗X(T ), i∗Z)) ⊆ Hom(j∗X(T ), i∗Z) .

Applying the snake lemma we obtain a short exact sequence

0 −→ coker(β) −→ K −→ coker(α) −→ 0.

If we then apply the functor Hom(·, i∗Z) in the smooth topology, we obtain a long exact sequence

Hom(coker(β), i∗Z) −→ Ext1(coker(α), i∗Z) −→ Ext1(K, i∗Z) −→ Ext1(coker(β), i∗Z) .

Now Hom(Gm,OK
, i∗Z), Ext1(Gm,OK

, i∗Z) and Hom
(
j∗T

ft, i∗Z
)

are all trivial, whence
Hom(coker(β), i∗Z) = 0 and Ext1(coker(β), i∗Z) = 0. By definition, the restriction of
Ext1(K, i∗Z) to the étale site is represented by the defect term E(T ). Thus, by restricting to the
étale site and dualizing again using Proposition 5.1.3, the assertion follows, because coker(α) is
represented by an étale group scheme.
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The above immediately gives us the statement

Proposition B.3. Let K be a local field and let T be an algebraic K-torus with character group
X(T ). Then there exists an exact sequence

0 E(T ) Ext1(j∗X(T ),Gm,OK
) R1j∗T 0.

In particular, Ext1(j∗X(T ),Gm,OK
) is trivial if the residue field is perfect or if T splits over a

tamely ramified extension. In general, the above sheaf is a p-primary torsion sheaf.

With these considerations we can see that in principle one could also determine the free
part via the inclusion j∗T

ft ↪→ j∗T . Then the defect term would be defined as E(T ) ..=
ker
(
Ext1(j∗X(T ),Gm,OK

)↠ R1j∗T
)
. However, this definition is more difficult to compute than

our definition.
Applying the functor Hom(j∗·,Gm,OK

) to an exact sequence of character groups yields a
sequence that contains the associated sequence of the ft-Néron models, but it is generally difficult
to describe what the next term in this sequence should be. If j∗ is exact on the character groups,
a simple solution exists.

Proposition B.4. Let K be a local field and let

0 −→ T1 −→ T2 −→ T3 −→ 0

be a short exact sequence of K-tori. If

ker
(
H1(I,X(T3)) −→ H1(I,X(T2))

)
= 0,

then the long exact sequence of the ft-Néron models is isomorphic to the sequence

0 −→ Hom(j∗X(T1) ,Gm,OK
) −→ Hom(j∗X(T2) ,Gm,OK

)

−→ Hom(j∗X(T3) ,Gm,OK
) −→ Ext1(j∗X(T1) ,Gm,OK

) −→ · · ·

Proof. Under the stated conditions, the associated short exact sequence of the character groups
induces an exact sequence

0 −→ j∗X(T3) −→ j∗X(T2) −→ j∗X(T1) −→ 0.

By applying the functor Hom(·,Gm,OK
), we obtain a long exact sequence, the beginning of

which corresponds exactly to the sequence of the ft-Néron models. More precisely, by Proposition
3.3.3, the Hom(j∗X(Ti),Gm,OK

)-terms are isomorphic to the corresponding ft-Néron models and
a homomorphism between these as sheaves is already clearly determined on the generic fiber.
There the isomorphism is clear after defining the sequences.

With the notations as in the last sentence, the following holds. For an exact sequence of
algebraic K-tori with ker

(
H1(I,X(T3)) −→ H1(I,X(T2))

)
= 0, the sequence of ft-Néron models

is exact precisely when

E ..= ker
(
Ext1(j∗X(T1) ,Gm,OK

) −→ Ext1(j∗X(T2) ,Gm,OK
)
)
= 0.

If, additionally, Φ(T2) has no p-primary torsion and H1(I,X(T3)) = 0, then Φ(T3) = Φ(E ). This
can be seen as a generalization of Proposition 6.2.2 in the case where H1(I,X(T )) = 0.
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