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Notation

In what follows K is a local field, i.e., K is a complete non-archimedean discretely-valued
field. We will write Ok for its valuation ring and 7 is a uniformizer in its maximal ideal
m. We will write jg: Spec K < Spec Ok for the canonical open immersion. Finally, let
k := Ok /m be the residue field of Ok and let i: Speck < Spec Ok be the corresponding closed
immersion. When k is not perfect, its characteristic char k is positive and is denoted by p.

We will write K" for the maximal unramified extension of K inside a fixed separable closure
K®°P of K. Then K™ is again a local field and its valuation ring Oknx: is a strict Henselianization
of Ok which will be denoted by G .

When we consider the stalks for abelian sheaves on the étale site over Spec Ok, we use the
notations 77 for a geometric point over Spec K and s for a geometric point over Spec k and identify
the limit over étale neighborhoods of 77 with Spec K*°P and the limit over étale neighborhoods of
3 with Spec Oh.

For a finite separable extension L/K, which is always assumed to be a subextension of
K®P /K, L is again a local field in the above sense. We write L,, = L N K™ for the max-
imal subextension of L which is unramified over K. Note that L™ = LK™ is the max-
imal unramified extension of L inside K*®*°P and restriction-to-K™ induces an isomorphism
Gal(L"/L) = Gal(K"/Ly:). We denote the inertia subgroup of Gal(L/K) by I k. This
is the kernel of the canonical map Gal(L/K) — Autg(l). The inertia subgroup of Gal(K®*?P/K)
is denoted by Ik . If there is no risk of confusion, we will just write I for I.

For a scheme S, we denote the fiber of an S-scheme T at a point s € S by Ts. A base
change of a scheme T over an affine base Spec R will be written as a tensor product T ®pr R'.
For a Spec Ok-scheme T we denote the generic and the special fiber as Tk and 7Ty, respectively.
Similarly, a base change from Spec K to Spec L is usually only indicated with the index - and
we write Rp/ /g (-) for the Weil restriction from Spec R” to Spec R.

As usual, G,y denotes the multiplicative group over the scheme U. If U is affine, say
Spec R, then we just write G,, r. For an algebraic K-torus T' we denote the character group
Hom ser —grp (Tcser , Gy, iser ) by X (T'). This is a continuous Gal(K5°P/K)-module. If we view
the character group as an abelian sheaf, then we write X (7") for it. This sheaf is more precisely
the sheaf of rational characters.

In this work, sheaves are always abelian sheaves. By the étale site we mean the small étale
site as defined in [M, I1,§1]. The smooth site over a scheme X consists of the category of smooth
X-schemes with surjective families of smooth morphisms as covers.
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We will denote Néron models by calligraphic letters. So if S is a Dedekind scheme and 7 is
the scheme of the generic fibers of S, then the Néron model of a smooth, separated algebraic
n-group G, is denoted by G. For a point s € S, the group of components of the smooth
s = Spec k(s)-scheme G is denoted by ®(Gs).

If G,, is, moreover, commutative, we can also consider the Néron model as an abelian sheaf
on the smooth or étale site over S. This sheaf can canonically be identified with j.G,,, where
j:m — S is the canonical open immersion.

However, for an algebraic K-torus T, we will abbreviate the group of components ®(7%) of
the special fiber of its Néron model by ®(7T"). This should not lead to any confusion, since a
K-torus is always connected as a scheme over K.



Introduction

Let K be a local field, by which we mean a discrete and non-Archimedean valued complete field * .
In this work, we study (lft-)Néron models of algebraic K-tori over Spec O . In particular, their
groups of components will be described. Since group of components are defined fiber-by-fiber
and are invariant under completion, our descriptions also extend to global Néron models since
we do not impose any restrictions on the residue field.

Our interest in this problem comes from the fact that Néron models of algebraic tori are
among the basic building blocks of Néron models in general, because every commutative algebraic
K-group scheme can be written as a successive extension of group schemes which are abelian va-
rieties, unipotent group schemes or group schemes of multiplicative type. Further, algebraic tori
appear in the rigid-analytic uniformization of abelian varieties, whence Néron models of algebraic
tori can also be helpful in the description of Néron models of abelian varieties (see, e.g., [BX, §5]).

Now let T' be an algebraic K-torus. A Néron model 7 of T over O always exists. Let ® be
the group of components of the special fiber 7. If k is perfect, Xavier Xarles was able to give a
description of ® in his paper [X]. In [X, Theorems 2.1 and 3.1] he defined natural isomorphisms

Homz(®,Z) = HO(I, X)
ExtL(®,Z) = HY(I, X)
® = coker (Homz (X', Z) — Homz (M, Z))

where X is the character group of T', I is the inertia group of Gal(K**P/K) and M and X' can
be determined from an I-acyclic and torsion-free resolution of X (see loc. cit.).

Xarles proves this description, which generalizes the results of L. Bégueri [Be, Theorems 7.2.1
and 7.2.2], using cohomological methods. He interprets the Néron model as a sheaf j, T on the
étale and smooth sites over Ok and shows that R'j,T is trivial as an étale sheaf and also as
a smooth sheaf if 7" has multiplicative reduction. In this way he obtains from a short exact
sequence of algebraic tori a short exact sequence of their Néron models. He then applies the
functor Hom(-,4.Z) to the sequence of Néron models.

Now there exists a canonical isomorphism for ¢ = 0 in the étale topology and for ¢ = 0,1 in
the smooth topology

R'Hom(7,i,Z) = R Homz(®, Z).

Thus Xarles obtains a long exact sequence for the free parts Homz(®,Z) and the torsion parts
Exté(@,Z) of the groups of components of a given torus. Using such sequences he can reduce
his proof of the general case to the cases where T has multiplicative reduction or has the form

n algebraic number theory and arithmetric geometry, a local field is generally defined more restrictively : it
is required that the residue field k£ of O be perfect or even finite. However, we are particularly interested in the
case where k is not perfect.
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T = Z)‘{L/K(Gm,L).

In general, the above description is not valid in the case of an imperfect residue field. This
is reflected in Xarles’ proof via the fact that in the imperfect residue field case the étale sheaf
RY,.T is certainly not trivial.

We will establish the following statements in the general situation. The description in [X,
Theorem 3.1] applies to algebraic tori which are split by a tamely ramified extension. Further,
the validity of the description in [X, Theorem 3.1] is compatible with the formation of Weil
restrictions along finite separable extensions of K. The description of the free part in [X, Theorem
2.1] remains valid for algebraic tori which are split by a non-residually ramified extension. For
these tori, the description of the free part is also functorial, i.e. compatible with homomorphisms.
The prime-to-p part of the group of components can generally be written as in [X, Theorem 3.1],
i.e., the isomorphism given there holds true in the category of continuous Z [pfl] [Gi]-modules.

One can construct algebraic tori that split only over a residually ramified extension and pro-
vide counterexamples to the claims of [X, Theorem 2.1]. In general, the free part can be described
as an extension of a finite p-group by X (T')!. The torsion part of the group of components is
always annihilated by the order of the inertia group of a splitting extension. The same estimate
also applies to H!(Z, X(T')). For norm-one tori with respect to finite cyclic Galois extensions,
the torsion part of the group of components is bounded.

Our investigations of the Néron models of algebraic tori are structured as follows.

In Chapter 0 we cover some basics. We explain local and global Néron models. We show that
for a scheme S and a smooth and commutative S-group scheme G, the group of components of a
fiber G5 with s € S can already be determined via S by those of G and of the identity component
G on the smooth or the étale site.

Further, we repeat definitions and properties of diagonalizable group schemes and of group
schemes of multiplicative type. We consider Cartier duality, with which we can describe Weil
restrictions of algebraic tori on the character groups as an induction of Galois modules. We also
prove that Cartier duality converts short exact sequences of torsion-free character groups into
short exact sequences with respect to the smooth or étale topology. Finally, we explain Xarles’
proof [X] in greater detail.

In Chapter 1 we consider some specific algebraic tori for which we can determine their Néron
models quite explicitly: the case of algebraic tori with multiplicative reduction can be reduced
to the construction of the Néron model of G,, x using Galois descent. For Weil restrictions of
algebraic tori, we show that Weil restriction is compatible with the formation of the identity
component of the Néron model, whence the same holds for the group of components. Finally,
we construct the special fiber of the Néron model of a norm-one torus with respect to a cyclic
Galois extension of prime degree. This generalizes a computation from [, §5] and yields the
first counterexamples to a generalization of the description from [X].

In Chapter 2 we go back to the general situation and show that the group of components of a
local Néron model G of a smooth and commutative algebraic K-group Gk is finitely generated.
This answers a question of Lorenzini’s [L.I., §1.3]. To do this, we show that from a short exact
sequence of Néron models (in the smooth topology over Spec Ok)

0—G — G2 —0G3 —0
we obtain a short exact sequence of groups of components

0— & — ®(G2);,) — ©(G3),) — 0,



CONTENTS 9

where @ is a quotient of ®((G1),). The finite generation statement is obtained by considering
the short exact sequence defined by the embedding of the maximal torus with multiplicative
reduction in Gx. This sequence induces a short exact sequence of the corresponding lft-Néron
models. With the argument above, ®(Gi) is then an extension of a finite group by a finitely
generated torsion-free group, i.e., it is finitely generated. With the construction of the Néron
model of a subgroup we see that in the above situation ® must be a quotient of a finite subgroup
of ®((G1),,)-

In Chapter 3 we deal with integral models of algebraic tori. These are Og-models of K-tori
which are flat and separated Og-groups. This class includes the ft-Néron model of Chai and
Yu | |, but also the standard model considered by Moroz, Voskresenskii, Kunyavskii and
Popov. In order to make this literature useful, we include these models into the theory of Néron
models.

Since for an lft-Néron model G of a smooth and commutative algebraic K-group the group
® (G )iors s finite, we can find a smooth open subgroup G C G of finite type over Ok whose
special fiber is exactly that which contains the connected components that induce the torsion
part of the group of components.

We define this subgroup G as the ft-Néron model and show that it has a lifting property for
certain étale points as well as mapping property similar to the Néron mapping property. Further,
G™ is compatible with étale base changes and the formation of Weil restrictions. For algebraic
tori, our definition is of course consistent with that of Chai and Yu.

The standard model of a torus T" was introduced by Voskresenskii et al. and identified with
the schematic closure of 7" under the embedding

T — R x(TL) =Rk (G, 1) = Ro, jox (Gh 0,)

for a splitting extension L/K of T | , §5, Proposition 6]. Therefore, its smoothing is equal to
the ft-Néron model. Using an idea from [Fdi], we derive a criterion to decide when a monomor-
phism of algebraic tori induces a closed immersion of their Néron models. For an algebraic torus
T we can identify the ft-Néron model with the étale sheaf Hom(j. X (T"), G, 0, ), which gives us
a deeper understanding of Xarles’ description of tori with multiplicative reduction. In summary,
we can say that the ft-Néron models already describe the identity component and the torsion
of the group of components of the 1ft-Néron model and are therefore useful because they are, in
principle, easier to determine.

After this digression, in Chapter 4 we analyze the sheaf R'j,7 in the étale and smooth
topologies. This sheaf is always a p = char(k)-primary torsion sheaf. If T' splits over a tamely
ramified extension, then R'j,T = 0. In addition, we describe the functors j, and R'j, for étale
groups. In Chapter 5 we generalize approaches from [X], [BX] and [.L]. We show that, for ¢ = 0
and 1, in the smooth topology we have

R'Hom(7,i.C) = R Homz(®,C)

if C' is a constant, torsion-free abelian sheaf. In analogy to [X]|, we examine the torsion-free part
of the group of components, which we can only determine via an exact sequence

0 — X(T)! — Homz(®,Z) — E(T) — 0,

where FE(T) is a finitely generated p-primary torsion module, which we refer to as the defect
term.

The defect term can be written as a group of components of a subset of RYj, T’ for a suitable
torus T'. As abelian groups, Homz(®,Z) and X (T')! remain isomorphic, but can support non-
isomorphic Galois module structures. This means that the maps of the free parts of the group of



10 CONTENTS

components induced by homomorphisms of algebraic tori can only be described using the above
sequences.

We also consider the possibilities of constructing exact sequences of group of components
from an exact sequence of Néron models of algebraic tori. By refining the results from the
second chapter, we generalize an idea contained in the proof of [X, Theorem 3.1] and can further
describe the group of components of norm-one tori, showing that the defect terms for algebraic
tori that split over a non-residually ramified extension are trivial.

In the last chapter we provide a description of the group of components as far as possible. For
algebraic tori T" which split over a tamely ramified extension, we can transfer the results from [X]
to the smooth topology because RYj,T = 0. For algebraic tori that split after a non-residually
ramified extension, the description of the free part is still valid. Since in this case the Néron
model is no longer an exact functor, we can only see the finite part as an extension

0 — HY(I, X(T)) — Ext(®,Z) — Ext} (®(R'.T"),Z) — 0

for a suitable K-torus T".

Since R'j,T and E(T') are always p-primary torsion sheaves, it is reasonable to assume that
that part of the group of components which consists of prime-to-p-torsion elements does not
change. In fact, in general we can use the description from [X, Theorem 3.1] in the category of
Z[p~'][Gk]-modules by applying Xarles’ proof using the functor Hom(-,i.Z[p~*]).

However, in the category of Z [pfl] [Gk]-modules, not only the p-primary torsion of ® is anni-
hilated; also the isomorphism classes of the Galois structures become larger, since isomorphisms
with coefficients in Z[p_l] are now allowed.

Using norm-one tori, we give explicit examples of algebraic tori where the free part and X (T')
carry non-isomorphic Galois module structures.

I

For a complete description of the group of components, we still lack information about the
p-primary torsion component. Similarly to the situation with Néron models of abelian varieties
[ , Theorem 1], unfortunately we can only show that the p-primary torsion component of ® is
annihilated by the maximal power of p that divides the order of 7,k , where L/K is a splitting
extension of T. The same estimate also applies to H' (I, X(T')). In all the examples we know,
the above estimate is not optimal.

The following conjecture seems plausible to the author: the torsion part of ® is smaller, i.e.,
it is isomorphic to H*(I, X(T'))/E’, where E’ is some p-primary torsion module. In particular,
counterexamples to the description in [X, Theorem 3.1] only occur in the presence of residual
ramification.

This conjecture would be analogous to observations by Dino Lorenzini in the case of groups
of components of Néron models of Jacobian varieties.

Finally, T would like to thank everyone whose contribution and support made this work
possible. Above all, my thanks go to Professor Dr. Siegfried Bosch, who supervised my work and
always gave me encouragement and advice. I owe it to his appreciation of my work that I was able
to do my work as an employee of the Collaborative Research Center 478, "Geometric Structures
in Mathematics". I would like to thank the German research community and the Westphalian
Wilhelms University for the excellent working conditions at the Collaborative Research Center.

I would also like to thank my colleague and long-time friend, Dr. Jost Gottker-Schnetmann,
thank you for countless technical discussions. I would also like to thank Mr. Prof. Dr. Dino
Lorenzini and Mr. Dr. Sergei Popov for stimulating professional discussions, particularly during
their stays at the SFB 478.
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Chapter 0

Basics

This chapter explains some terms and constructions needed to describe the Néron model of an
algebraic torus and its group of components. We define Néron models and explain the connec-
tions between global and local Néron models. We also mention the most important existence
statements for Néron models and 1ft-Néron models.

We outline the construction of the group of components of a smooth group scheme. We
consider the group of components as a scheme and, in the case of a commutative group scheme,
also as a smooth and as an étale sheaf.

We define group schemes of multiplicative type, in particular algebraic tori, and cite important
properties of these group schemes. We consider here in particular the so-called Cartier duality:
for a connected, normal and locally Noetherian scheme S with a geometric point §, Cartier
duality induces an antiequivalence between the category of algebraic S-tori and the category of
continuous, finitely generated and torsion-free 71 (.S, §)-modules.

In the case that the base S is the spectrum of a field, we show that Cartier duality transforms
the Weil restriction functor into the induction of m;-modules. Using Cartier duality, we construct
exact sequences of algebraic tori in the smooth and étale topologies, which will be needed later
for determining the groups of components.

Finally, we give an overview of the work [X], in which the group of components of the Néron
model of an algebraic torus is described in the case of a local field with a perfect residue field.

0.1 Néron models

Let S be a Dedekind scheme, that is, a Noetherian normal scheme of dimension < 1. The local
rings of S are fields or discrete valuation rings. If S itself is a local scheme, i.e., the spectrum of
a local ring, we speak of the local case. Otherwise we speak of the global case. The scheme S
splits into a finite number of irreducible components \S;, whose generic points are denoted by 7;.
We call n := Spec(@®k(n;)) the scheme of the generic points of S. By definition, we have an open
immersion j: n — S. Using these notations, we can define an 1ft-Néron model:

Definition 0.1.1. Let G, be a smooth and separated n-scheme of finite type. A Néron model
of Gy, is an S-model G of G, that is smooth, separated and of finite type and has the following
property, called the Néron mapping property:

For all smooth S-schemes Y and every n-morphism ¢,: Y;, — G, there exists exactly one
S-morphism ¢: Y — G which extends ¢,,.

13
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An S-model G of G, that satisfies Néron’s map property and is separated and smooth but
only locally of finite type is called an Ift-Néron model of G,,.

We will also refer to a Néron model in the local case as a local Néron model. Similarly, in
the global case we speak of global Néron models. It follows from | , Proposition 1.2.4] that
global Néron models are composed of local Néron models. More precisely, for every closed point
s € S the Og s-scheme G x g Spec Og 5 is a Néron model of its generic fiber. On the other hand,
[ , Proposition 1.4.1] states that a global Néron model exists if, and only if, a global Néron
model exists over an open and dense subscheme S’ C S and the local Néron models exist at the
finitely many closed points in S — S’. By glueing these models together we obtain the Néron
model over S.

In the case of an n-group scheme G, the Néron model is an S-group scheme by the uniqueness
of the lifting. A smooth and commutative group scheme G,, can be understood as a sheaf on the
smooth and étale sites over 7 and its Néron model, if it exists, represents the sheaf j.G,, on the
smooth and étale sites over S. In the case of the smooth site, the Néron model as a scheme is
clearly determined by this sheaf, since the Néron model is contained as a smooth scheme in the
site.

In this work we will limit ourselves to local 1ft-Néron models. More precisely, we will consider
the case where n = Spec K for a local field K and consider 7 as the generic fiber of S := Spec Ok
In the local case, it is known under which conditions Néron models exist.

Theorem 0.1.2. | , Theorem 1.3.1] Let R be a discrete valuation ring with quotient field K
and strict Henselianization R and let K™ be the quotient field of R®". Let Gk be a smooth

K-group scheme of finite type. Then there exists a Néron model G of Gi over Spec R if, and
only if, G (K™) is bounded in Gk.

Consequently, Néron models always exist for smooth K-group schemes that are proper, e.g.,
for abelian varieties. In the above theorem, the restriction to models of finite type is very
important. For Ift-Néron models, a full solution to the question of existence has so far only been
achieved for commutative group schemes.

One can explicitly construct an lft-Néron model for the multiplicative group Gy, x [ ,
10.1.5] and show that the additive group G, x cannot have a Néron model | , 10.1.8]. Using
Descent and an explicit consideration of anisotropic tori and wound unipotent groups, one can
then show that a smooth and commutative K-group scheme Gk of finite type has an 1ft-Néron
model over Ok if, and only if, Gx ®x K™ does not have a subgroup of the form G, gnr | ,
10.2.2]. This lft-Néron model is of finite type, i.e., a Néron model, if, in addition, Gx ® x K™
does not contain a subgroup of the form G,, gnr | , Theorem 10.2.1]. Here, a subgroup U of
Gk is always a closed subgroup, because a subgroup, as a subscheme, is an open subscheme in a
closed subscheme. Thus U is also an open subscheme in its closure U. This is again a subgroup
of Gx. But now an open subgroup over a field is already closed, so that U = U follows.

0.2 The group of components of a smooth scheme

In | , VIa and VIb] the identity component of a smooth group scheme is defined. To review
this, let S be a scheme and let G be an S-group scheme. The identity component G° is defined
in | , VIb, Definition 3.1] as a subgroup functor

U/S ~ GU)={ueGU)|Vse S uU) G},

where G? is the identity component of G := G x g Spec k(s) as a k(s)-group scheme | , Vla,
§2].



0.2. THE GROUP OF COMPONENTS OF A SMOOTH SCHEME 15

If G is a smooth S-group scheme, it follows from | , VIb, Theorem 3.10] that G is
represented by an open and smooth subgroup. This is the union of the identity components of
the fibers and is of finite type over S (see loc. cit. 3.4-3.6). The identity component is fiber-
wise geometrically irreducible | , VIa, Proposition 2.4, i.e., all fibers G? are geometrically
irreducible.

Now let s € S be a point. In the fiber above s we have the group of components of G,
i.e., the quotient ®(Gy) = G4/GY. This quotient ®(Gy) is represented by an étale k(s)-scheme
[ , VIa, 5.5] and the associated morphism G5 — ®(G) is flat and surjective | , Vla,
Theorem 3.2].

The above quotient can be described in the smooth and the étale topologies, provided we
consider commutative group schemes G:

If G is commutative, one can form an exact sequence of abelian sheaves on the smooth site
over S

0— G’ —G— ®G) —0. (1)

For a point i: s < 5, * is an exact functor since difference kernels exist on the smooth site
(cf. |M, II, 1.13 and 2.6]). By [V, II, 3.1(d)], i*G° and i*G are represented by G? and G,
respectively, because G% and G are smooth group schemes. So we obtain an exact sequence

0— G — G, — i"®(G) — 0.

In the fpqc topology, the quotient G/G? is represented by the étale group scheme ®(Gy). The
restriction from the fpqc topology to the smooth topology is left exact, so that i*®(G) is a
subsheaf of ®(Gy). On the other hand, G? is a smooth scheme, so the morphism Gy — ®(Gy)
is surjective in the smooth topology. This means that ®(G;) = i*®(G).

We now look at sequence (1) over the étale site. Just as in the smooth case, i* is exact. We
factor i as the composition s — Spec Os.s 5, 8. By [M, 11, 3.1(d)], we have a canonical map
igG — Gog, which is induced by the map

igG — Gos’s
(f,9)=(feGU),g: U = U)— fge GU') =Go, (U,

where U’ — Spec Og s and U — S are finite étale morphisms. By | ,8.8.2] or | ,1.2.5],
for a map f: U'" — Gog, there exists an open neighborhood S’ C S of s on which a lifting
f:U —> Ggr of f exists with U — S’ étale. Conversely, for a pair (f € G(U),g: U — U) with
J9 =0 ¢€ Gog,(U') there exists an open neighborhood S’ C S of s such that f|s: = 0. This
shows that i5G is represented by Gog ,, and similarly i5G Y is represented by G(%S .-

Using the canonical morphism from [M, II 3.1(d)|, we obtain a commutative diégram

0 —— i;Go, . — isGos, — " ®(G) —— 0

| | !

0 GO G, B(G,) — 0.

The bottom row is left-exact as a restriction of an fpqc-exact sequence. The surjectivity of
Gs — ®(Gs) can be checked on the fiber over 5. By [M, II, 2.9(d)], for a sheaf represented by
a k(s)-group scheme of finite type H, the stalk at § corresponds to H(k(s)**P). The image of
a point x € ®(G,)(k(s)*P) in ®(Gs) has an open preimage U, in G which is not empty since
Gs — ®(Gy) is surjective. Since U, is smooth over k(s), Uy (k(s)*P) is dense in U, | ,
2.2.13] and therefore U, (k*P) is not empty. Since we can assume, after making a finite étale
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base change if necessary, that the image of = in G4 is geometrically connected, U, (k*P) must
contain a preimage of x, i.e., an element that maps to z.
Now [M, II, Theorem 3.2] yields the following for the fibers over s:

Gs = G(Og‘l,ls) =(isG); and Gg = GO(OE},]S) = (i:G0)§~

By | , 2.3.5], the morphisms G(Ofg%ls) = GOSSZ(OE}"S) — Gs(k(s)*P) and GO((’)LSJ’IS) =
Ggsh (0F) — G2(k(s)*P) are surjective, whence in the above diagram the maps o and j
S,s !

are surjective as well.

Thus there exists a map i*®(G) — ®(Gs) and this map is surjective by the surjectivity of
B and injective by the surjectivity of a. This means that ®(Gs) = i*®(G).

Summarizing, we obtain

Proposition 0.2.1. Let S be a Dedekind scheme and let G be a commutative smooth S-group
scheme. Leti: s — S be a point. Then the group scheme of components ®(Gs) of Gy represents
the sheaf i* (G/GO) on the smooth and étale sites over k(s) and is uniquely determined by this
sheaf on both of these sites.

Proof. We have established the representability above. It remains to be shown that the group
of components is uniquely determined by the sheaf.

In the smooth topology this is clear because ®(G5) is contained in the smooth site over k(s).
However, ®(G,) is not finite in general, whence ®(G;) does not belong to the étale site over k(s).
As an étale scheme, ®(G;) corresponds to the Gal(k(s)*P/k(s))-module ®(Gs)(k(s)*P) which,
by [M, II, Theorem 1.9], is uniquely determined by the étale sheaf represented by ®(Gs). O

In this work we will usually regard a group of components as a Galois module. For our
investigations we have to break up the group of components into a torsion part and a torsion-
free part. Since we will see later that the group of components of Néron models are always
finitely generated modules, the following considerations suffice :

Let T' be a profinite topological group and let ® be a finitely generated I'-module. If one
wants to decompose ® into a torsion-free part and a torsion part, this must be done taking the
I'-module structure into account. Following Xarles, to do this we can dualize, i.e., apply the
functor Homz(+,Z), and identify the torsion-free part with Homz(®,Z) and the torsion part
with Ext(®,Z). Of course, Z has the trivial T-module structure and, for two I'-modules A and
B, Homz(A, B) is equipped with the " module structure given by

o-f=pplo)ofopalc™?),

where 0 € I and f € Homz(A, B) and p(y denotes the I'-action as a representation p: I' —
Autz(~).

The action on Extlz(q), Z) is explained similarly, since one can compute Ext using an injective
resolution of Z. Since ® is finitely generated, the modules constructed in this way are again
continuous and finitely generated.

As Xarles shows [X, Lemma 2.7], we can dualize these parts again and find an exact sequence

0 — Extg (Ext}(®,Z),Z) — & — Homz(Homz(®,Z),Z) — 0.

This sequence can also be understood by considering the torsion part ®.,.s of ® as an abelian
group. This is already a I'-submodule, because the automorphisms with which I'" acts must
restrict to automorphisms of the torsion part. If we define the torsion part in this way, then we
can define the torsion-free part as the quotient of ® by its torsion part.
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0.3 Algebraic tori

Let S be a scheme and let G be an S-group functor from the category of schemes over S to the
category of sets. Consider the contravariant functor
D: (S— group functors) ~ (commutative S— group functors)

G~ D(G):=Homg_ . (G,Gpns).

D(G) is called the dual (or Cartier dual) of G and, by definition, for an S-scheme Y we have
D(G)(Y) := Homy _grp(Gy, G, v). The dual is compatible with base changes under morphisms
of schemes S" — S.

For an arbitrary group M and an arbitrary S-scheme X, let Mx be the constant X-group
scheme associated to M. As a scheme, this is equal to 11, pr Xy, where X, = X for allm € M.
For an X-scheme Y, Homy (Y, Mx) is equal to the set of locally constant maps from Y to M.
If M is an abelian group, then the functor D(Mg) is represented by an S-group scheme.

Definition 0.3.1. | , VIII, Definition 1.1] An S-group scheme G is diagonalizable if there ex-
ists an abelian group M such that G is isomorphic to the scheme D(Ms) = Homg_,,(Ms, G, s).

For a diagonalizable scheme, the points with values in an S-scheme Y are computed as follows:

D(Ms) (Y) = HomS(Y, D(Ms)) = HOIHS (Y,ms_grp(Ms, Gm,S))
= Homz(M,Homg(Y,G,,,y)).

Theorem 0.3.2. | , VIII, Theorem and Corollaries 1.2-1.4] Let M be an abelian group and
let S be a scheme. The canonical morphism Mg — D(D(Mg)) is an isomorphism and every
character x: D(Mg) — Gy, g corresponds uniquely to a locally constant map S — M.

If N is another abelian group, then there exists a natural isomorphism
Homg_gp(D(Ms) , D(Ns)) = Homg gy, (Ns, Ms)
If N is finitely generated, then the natural injection
(Homz(N,M))g < Homg_,,,(Ns, Ms)
is an isomorphism and therefore
(Homz(N, M))g = Homg_,(D(Ns), D(Ms)).

Proposition 0.3.3. (cf. | , VIII, Proposition 2.1]) Let M be an abelian group. Then:

~

The scheme D(Mg) is faithfully flat and affine over S. More precisely D(Mg) = Spec Og[M].
2. D(Mg) is of finite presentation <= D(Mg) is of finite type <= M 1is finitely generated.
3. D(Mg) is finite <= M is finite.

4. M =0 <= D(Mg) is the trivial group.

5

. D(Msg) is a smooth S-scheme <= M is finitely generated and the order of the torsion
part of M is prime to the characteristic of the field k(s) for every point s € S.

The functor D(-g) transforms direct sums into fiber products over S. Further, we have
D(Zg) = G5 and D((Z/nZ)g) = pin, s, so every diagonalizable group of finite presentation is
a fiber product of copies of the multiplicative group scheme and of groups of roots of unity.
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Theorem 0.3.4. | , VIII, Proposition 3.1] Let S be a scheme and let

0 M —— M —— M" 0
be an exact sequence of abelian groups. Then the dual of this sequence
0 — D(MY) %5 D(Ms) “> D(Mf) — 0

is exact, i.e., u' is flat and quasi-compact and v' induces an isomorphism of D(Mg) with the
kernel of u'.

Using Descent Theory, one can enlarge the category of diagonalizable group schemes to the
category of group schemes of multiplicative type. The latter are the group schemes that arise
from a diagonalizable group scheme through a flat and quasi-compact descent.

Definition 0.3.5. (see | , IX, 1.1]) Let S be a scheme and let G be an S-group scheme. Then
G is called a group scheme of multiplicative type if G is locally diagonalizable in the faithfully
flat and quasi-compact topology. That is, for every s € S there exists an open neighborhood
U of s in S and a faithfully flat and quasi-compact S-morphism U’ — U such that Gy is a
diagonalizable U’-group scheme.

The group G is called quasi-isotrivial if one can further require U’ — U to be étale and
surjective. If there exists an étale, surjective and finite morphism S’ — S such that Gg is
diagonalizable, then G is said to be isotrivial of multiplicative type.

Definition 0.3.6. (cf. | , IX, 1.3]) Let S be a scheme. An S-torus T is an S-group scheme
that is locally isomorphic, in the faithfully flat and quasi-compact topology, to the group scheme
G}, s for some integer r > 0.

By an S-torus T we will always understand an isotrivial (!) S-torus of finite type. Since
we will only consider fields or discrete valuation rings as basis 5, isotriviality is not an actual
restriction:

Proposition 0.3.7. | , X, 5.16] Let S be a normal and locally noetherian scheme. Then
every group of multiplicative type and of finite type over S is isotrivial.

The isotrivial group schemes of multiplicative type can be described using the theory of Galois
descent. To do this, we first Galois morphisms.

Definition 0.3.8. [\, I, §5] Let G be a finite group and let Y and X be connected schemes. Let
Gy denote the constant Y-group scheme G. A morphism of schemes Y — X is called Galois,
with Galois group G, if it is finite and faithfully flat and G acts on ¥ — X in such a way that
G acts trivially on X and the induced morphism

’(ﬁZGy:ngGyUHYXXY
y €Yy — (y,09)

is an isomorphism. In other words, Y is a G-torsor over X and the morphism ¥ — X is
necessarily étale.

For a connected scheme S with a geometric point § — S, one can construct the fundamental
group 71(S,8). This is a compact topological group which is a projective limit of finite discrete
groups. The fundamental group can be characterized by the property that it induces an equiv-
alence between the category of finite and étale S-schemes and the category of finite continuous
71(S, 5)-modules [M, I, §5, particularly Theorem 5.3].
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Proposition 0.3.9. | , X, 1.2] Let S be a connected scheme and let § — S be a geometric
point of S. Then the category of isotrivial S-group schemes of multiplicative type is anti-equivalent
to the category of continuous m1(S, §)-modules.

Via this anti-equivalence, an isotrivial group scheme of multiplicative type corresponds to its
character group:

Definition 0.3.10. (Character group) Let S be a connected scheme and let § be a geometric
point of S. Let T be an isotrivial S-group scheme of multiplicative type and of finite type. Then
the 71 (S, §)-module X5(T') :== Homs gp(T5, G 5) is called the character group of T'.

For a morphism of schemes S’ — S, we call Hom g/_g,(T's7, Gy, 57) the group of S’-rational
characters of 7" and X(T') := Homg (7, Gy s) the sheaf of rational characters.

The character group of an algebraic torus is a finitely generated, torsion-free and continuous
71(S, 3)-module. Since the group structure on T is also defined by Galois descent, X (T)(S’) =

Xg(T)ﬂl(S/’gl). Thus, in particular, the sheaf of rational characters is actually a sheaf on the
étale site over S.

If T is an isotrivial S-group scheme of multiplicative type, then a Galois extension S’ — S
over which T is diagonalizable is called a splitting extension of T

We now want to use the character group to construct sequences of algebraic tori, which can
be seen as exact sequences of sheaves on the étale or smooth site.

Proposition 0.3.11. Let S be a connected scheme with a geometric point § and let (Ti)izl,z,s
be isotrivial S-group schemes of multiplicative type. If there exists a short exact sequence of
71(S, 5)-modules

0— Xg(Tg) — Xg(T3) — Xg(Tg) —0 (2)

and X5(T3) is finitely generated and torsion-free, then the induced sequence
0—Ty — 1T — T3 —0
is a short exact sequence of abelian sheaves on both the smooth and étale sites over S.

Proof. By the anti-equivalence mentioned above, the homomorphisms of character groups induce
homomorphisms of group schemes 77 — T5 and 75 — T3. These, in turn, induce morphisms
of the corresponding étale (respectively, smooth) sheaves.

By isotriviality, there exists a finite, étale and surjective morphism S’ — S such that all
T; xg S" are diagonalizable group schemes. Without loss of generality, we may assume that S’
is connected.

After the indicated base change, the maps between character groups (viewed as m1(S’,5')-
modules with trivial action) induce maps T; xg S — T;11 X g S’. It follows from | , VIII,
Theorem 3.1] that the sequence

0—TixgS —ThxgS —Ty3xgS —0

is exact in the fpqc topology over S’. It is therefore certainly left-exact in the smooth and étale
topologies. By the assumption that X3(7}) is finitely generated and torsion-free, T is a smooth
S’ scheme, whence the map T — T3 is surjective in the smooth topology.

In the étale topology we can check surjectivity on the stalks. So let s’ € S’ be a point and
let & be a geometric point that lies over s’. Now let Ogr 5 = Og}}’s, be the limit of all étale
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neighborhoods of 5. Then, by [M, II, 2.9(d)], the sequence of stalks in 5 is isomorphic to the
sequence
0 — T1(Os,5) — T2(Osr ) — T3(Os1.5)

and this is isomorphic by Cartier duality to the sequence
0 — Homz (X5(T1), 0% &) — Homz (X5(T3), 0% ) — Homz (X5(T5), 0% o) -

Since (2) is exact and Xy (T1) is torsion-free, we have Ext} (X5 (T1), 0% 5) = 0. Consequently,
the sequence of stalks is surjective at T5(Og- 5 ).
Since S’ — S is a covering in the étale and smooth topologies, the sequence

0—Ty — 15 —1T53—0
is also exact on the corresponding sites over S. O

Proposition 0.3.12. Let S be a connected scheme with a geometric point 5. Let T be an
isotrivial S-torus of finite type. Then on the étale site over S we have:

Homg (-, 7") = Hom(X(T'), G, s) ,
where X (T') is the sheaf of rational characters of T.

Proof. Without loss of generality, we may assume that T x .5’ is diagonalizable, where S’ — S
is a Galois morphism. We can verify the isomorphism of the statement locally, so we may
assume that U = Spec A is affine and U — S is finite and étale. Further, let U’ be a connected
component of U xg S’. We may assume that U’ = Spec B is affine and Galois over U. Now T is
diagonalizable over U’, whence Ty = Spec B[X;(T')] and Ty comes from Ty via Galois descent
with respect to the finite group Gal(U'/U). More precisely, Gal(U’/U) acts on the algebra
B[X3(T)] via the canonical action on B and the induced action on X3(7"). Note that Gal(U'/U)
is a quotient of Gal(S’/5).
Thus

T(U) = TU(U) = Ty (U/)Gal(U//U)

— Homp (BIX(T)], B)¢*(V/Y) — Hom(X,(T), B*)¢(V"/V).

Conversely, Hom(X (T'),G,,,5)(U") = Homz(X5(T), B*), since for each sheaf F the iden-
tity Hom(Z, F) = F holds, where Z stands for the constant sheaf with value Z. Since U’ —
U is a Galois cover, it follows from the sheaf condition, i.e., the exactness of the sequence
Hom(X(T),G.s) (U) — Hom(X(T),Gn,s)(U') = Hom(X(T),Gyn,s)(U" xy U'), that we have

an isomorphism Hom (X (7T'),G,,.s) (U) = Homz(X5(T), B*)Gal(U//U).
According to the definition of diagonalizable group schemes, these isomorphisms are functorial
in U’ and therefore also in U. O

Incidentally, note that the reverse duality does not hold, i.e., the étale sheaf Hom(T,G,,, s)
is not isomorphic to Homg(-, X(T")) in general. For example, consider a perfect local field K of
characteristic p. By [M, III, 1.7(c)|, the sheaf Hom(G,, ', G k) is represented on the étale site
over K by the module

M = U HOHIH((KSGP)*, (Ksep)*) 7
H
where H runs through all open normal subgroups of Gal(K®P/K). If the reverse duality were
valid, then we should have M = Z. By the perfectness of K, for every x € (K®P)* there is
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exactly one p-th root in K and the map z — z'/? is an isomorphism. Thus for all open
normal subgroups H C Gal(K®P/K) we have

Z[p~'] — Homp ((K>P)*, (K*P)*)

n/p" — (x — w”/pr) ,

whence Z[p_l] Cc M.

0.4 Weil restrictions of algebraic tori

Next we want to describe the Weil restriction of algebraic tori. For simplicity, we limit ourselves
to tori over local fields.

If we work with a fixed separable closure of K, we do not explicitly specify a geometric point
5 in the fundamental group, since this must factor through the morphism Spec K*°* — Spec K.
For any field K, we have 7 (Spec K) = Gal(K®*P/K) [M, I, 5.2(a)].

We briefly recall the definition of the Weil restriction of a scheme:

Definition 0.4.1. Let S’ — S be a morphism of schemes and
X': (Schemes/S’) —» (Sets)
a contravariant functor. Then the contravariant functor

Rgys(X): (Schemes/S) — (Sets)
Y s X'(Y x5 S)

is called the Weil restriction of X’ with respect to S’ — S.

If X' is a representable functor, we also denote the representing S’-scheme by X’. If §" — S
is a finite, locally free and faithfully flat morphism, then the Weil restriction of a representable
functor is again representable | , Theorem 7.6.4]. In this case, Mg/ g(X’) also denotes the
representing S-scheme. For further properties of the Weil restriction please see | , 7.6].

To describe the character group of the Weil restriction of a torus, we need the concept of
induction.

Definition 0.4.2. Let G be a group and let H be a subgroup. Let M be an H-module. Then
the G-module Ind& M := M @] Z[G] is called the induction of M with respect to G > H. A
module of the form Z[G] ®z M is called an induced G-module.

The G-module Coind2 M = Homgz;1(Z[G], M) is called the coinduction of M with respect
to G D H. A module of the form Homz(Z[G], M) is called a coinduced module.

By Shapiro’s lemma [Br, Proposition II1.6.2], we have H”(G, Coindg M) = H"(H, M) and

Hn(G, dZ M) =H,(H,M). If [G: H] is finite, then induction and coinduction are isomorphic
to each other [S, VIL, §1, p. 110]. If H C G is a subgroup, then an induced G-module is also
an induced H-module. If G is a finite group, then an induced G-module M is cohqmologically
trivial, i.e., for all k¥ € Z and every subgroup H of G, the Tate cohomology group H*(H, M) is
trivial.
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Proposition 0.4.3. Let L/K be a finite separable extension of local fields of degree n = [L: K]
and let T’ be a torus over L. Let Gk = Gal(K*P/K) and Gy, := Gal(K®P/L). Then the Weil
restriction Ry x(T') is a torus over K with character group

X (R (1) = nd G X (T").

Proof. We show the claim using the defining property of the Weil restriction for the torus of the
specified character group. So let M/L be a finite, Galois extension such that T splits over M.
Thus 77" ®1, M = Spec M[X (T")] and by Galois descent we have T" = Spec M [X(T’)]Gal(M/L).
For an affine K-scheme Y = Spec B we have

Ry k(T (V) = T'(Y @k L) = Homp (Y @k L, T') = Homp (Y @ M, T’ @, M)/

= Hom a1z (M[X(T")], B @ M) M/E)
= Homz (X (T") (B @5 M)*) &M/

Let d be the rank of X (T") and let eq, ..., eq be a Z-basis of X (T"). Let the elements of Gal(M /L)
be (Tk) =1, m» Where m := [M: L], and let the action of 7, on X(T") be represented by the
matrix (¢(k); ;) € GL(d, Z).

Then an element from Homz (X (T"), (B ®x M)")
ments b; €(B®g M)" for j =1,...,d such that

d
Tk (b]) = H bz(k)i'j,
=1

where 75, acts on B ® ¢ M via its canonical action on M.

Now let R be the K-torus with character group Indgf( X(T'). Then R splits over the finite
Galois extension M /K. In particular, we can redefine G, as Gal(M/L) and Gk as Gal(M/K)
without changing the Gal(K*°P/K)-action on Indgf{ X(T.

Let 01,...,0, € Gal(M/K) represent the G -coordinate classes in Gx. This gives us a
Z-basis for Indg; (ejp) with j=1,...,dand l=1,...,n.

An element { € Gg permutes the Gp-coclasses, i.e., there is a permutation ¢ of {1, ..,n} such
that {01G, = 0y, ;)G Further, for such § and every index [ there is an index k(¢,1) € {1,..,m}
so that

Gal(M/L) 45 determined by specifying ele-

§01 = Type (1) Th(e,1)
where T¢) € Gy, is as above. This allows us to compute the Gx-action on the basis e;;

d
€eji = TrenCimvet) = O LR(ED) i € e,
=1

where ¢(-); ; is defined as above.
Now we have R 2 Spec M [Indg; X(T")
Galois descent yields

HOI’IIK(K R) = HomM(Y QK M, R®k M)Gal(M/K)

Gal(M/K)
} and for an affine K-scheme Y = Spec B

= Homj, (Y QK M, SpeCM[Indgf(X(T’)DGal(M/K)

GL ) Gal(M/K)
= Homy/—ag <M [IndGKX(T )} B®g M)

o ) .\ Gal(M/K)
:Homz(lndG;X(T),(B ®x M) ) .
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A morphism 38 € Homk (Y, R) corresponds to the specification of elements b;; € (B ®x M) such

that for all £ € G we have
d

t(k(&,0)i,;
§00) = [ [ (brwey) : (0.4.3.1)
i=1
Without loss of generality, we may assume that the representative o; is the identity element of

Gk . It follows that
d

mi(bs) = [T Bi) ™
i=1
So a morphism S yields an element from T'(Y ®x L) represented by the given elements
<bj,1)j=1,4..,d from (B ®x M)*. This assignment is clearly functorial in ¥ and compatible with
the group laws on R and 7.
Conversely, we obtain a point (b;1) € T'(Y ®k L), by setting b;; = oy(b;1). Now let
je{l,.,d},£ € Gk and | € {1,..,n} be arbitrary. Then the following holds

§(bj1) = Ea1(bj1) = oy (1) Tr(ey (b))

d d
3J)isg _ (k(&,1)i,5
= Oye(l) (1_‘[(1%,1)“]6(5 s ) = H(bi7'¢g(l))t
i=1 =1

So all relations of the form 0.4.3.1 hold. Summarizing, we have an isomorphism R(Y)
T'"(Y @k L) = Rk (T") (Y) for affine K-schemes Y. By construction, this isomorphism
functorial in Y, so that R = Ry, /i (T").

L& IR

Using the above explicit description of the character group of a Weil restriction, we can obtain
interesting statements.

Proposition 0.4.4. Let K be a local field and let T' be an algebraic K-torus. Further, let L/ K
be a finite separable extension. Then there exists an exact sequence of algebraic K-tori in both
the smooth and the étale topology

0 —T — Ry/x(Ty) — T — 0. (3)

Proof. Let d be the rank of X(T'). Then X(T'), as a Z module, has a base (e;),_, 4 Let
M/L be a finite Galois extension of degree m := [M: L] such that T trivializes over M and
O1y-..,0m € Gal(M/K) are representatives of the G, := Gal(M/L) cosets of Gx := Gal(M/K).
Further, let the elements of G, be uniquely denoted by 71, ..., 7. Below we recall some of the
notation from the proof of Proposition 0.4.3 for the L-torus T7..
We define a Z-linear map
vt X(T) — Ind @ oy X(T})
vi— (o7 (v), 07 (V) ot (V)

This map is obviously injective. It is also compatible with the action of Gk. Indeed, as in the
previous proof, let ¢¢(l) and k(,) be represented by the equations {01 = oy, (1)Tr(e,1) in Gk-
Then for any v € X (T') we have
-1 -1
o’w{(l)fv = Ti(e,)0; V-

Now let ¢¢ := 1 ! be the inverse function. It follows that
(v) = (o7 ' (€0), .07 ' (€0), 03,1 (€0))

—1 —1 —1
= (Tk(€a¢£(1))g¢5(1)(v)7 O Th(Ede (1) T e (1) (€V) Tk(§,¢e<m>>%5<1)(€v)) :
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This is exactly £u(v) since the | = 1)¢(¢¢(l))-th component of £u(v) is Ty(e g, (1)) relative to the
¢¢(1)-th component of ¢(v).
The image of ¢ is saturated in Z¢[Gal(L/K)]. Thus when we add an 7 € N and compare

fori=1,...,n with v € X(T) and v; € Z%, then v must already be in 7X (T') because the o; are
isomorphisms.
So we have a short exact sequence of continuous and torsion-free Gal(L/K )-modules

0 — X(T) — Z%Gal(L/K)] — X(T') — 0. (4)

Thus the assertion follows from Proposition 0.3.11. O

By the universal property of the Weil restriction, there exists a map 7' — Ry x (Tr) which
corresponds to the identity of T7,. This map is a closed immersion, because it is a homomorphism
of group schemes and T is separated. Using the notations as above, on character groups this
corresponds to the map

G
IndZt X(Tr) — X(T')

(v1,...,0n) —> Zcri(vi) )

Proposition 0.4.5. Let L/K be a finite Galois extension of local fields with Galois group G.
Then every torsion-free and finitely generated G module X admits a G-acyclic resolution

X—J—J —. -

by torsion-free and finitely generated G-modules.

Proof. Let d be the rank of X and consider the embedding +: X — Z%[G] for X constructed
in the proof of Proposition 0.4.4. Since the group G is finite, the induced G-module Z¢[G] is
coinduced, hence (cohomologically) G-acyclic. So set J := Z¢[G] with the embedding t: X — J.

The quotient J/¢(X) is, as shown above, torsion-free and finitely generated as the quotient
of a finitely generated module. So, using the same construction as above, we can embed the
quotient in a torsion-free and finitely generated G-acyclic module J’. The assertion yields an
inductive continuation of this construction. O

We now want to define the so-called norm-one tori.

Definition 0.4.6. Let L/K be a finite separable extension of local fields. Then the norm-one
torus associated to the extension L/K is the K-torus T defined by the exact sequence (3)
corresponding to the choice T' = G,

0 —Tn — Rr/k(Gm,L) — G g — 0. (5)
By Proposition 0.4.4, existence is clear and we see that

X(Ty) = Coker (z — Tnd&r z) 7

where the map Z — Indgz Z corresponds to the diagonal embedding m +—— (m, ..., m).

The name norm-one torus is justified by the following observation.
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Proposition 0.4.7. Let Y = Spec B be affine and let L/K be a finite separable extension of
local fields. Further, set G := Hompg (L, K°P). Then the map

Rk (Gm,L) (V) — G (Y)
in the definition of the norm-one torus corresponds to the norm map

(B®k L) — B*

x— H(id@a)(X) e(B®x L)° = B.
oeG

Proof. Let M/L be a finite Galois extension and set n := [L: K|. Let o1,...,0, represent the
G = Gal(M/L) co-classes of Gk := Gal(M/K). An element 3 € Ry, x(Gm,1) corresponds to
giving elements (bj)j in B®g M such that, for all £ € Gal(M/K), the relations

=1,....,n

£(b5) = i) (bye ()

hold, where the elements are represented by the equation {o; = oy, (j)Tr(e,;) With Tre j) € GL
uniquely determined.

The relations imply that G, acts trivially on the b;, so the b; already come from B ®g L.
Further, b; = o;(b1) if we assume (without loss of generality) that oy = e. The map of the
character group is the diagonal embedding, so that the point (b;) is mapped to the product
H?:lbj € B*. 0

0.5 Néron models of algebraic tori

Let S be a Dedekind scheme and let 17 be the scheme of generic fibers of S. It is shown in | ,
10.1.6] that every algebraic n-torus has an lft-Néron model over S. Further, | , Theorem
1.2.4] also applies to 1ft-Néron models, i.e., a global 1ft-Néron model is obtained by glueing local
Ift-Néron models. Since the group of components is defined fiber by fiber, it suffices to examine
the group of components in the local case. Algebraic tori are connected, so one is interested
only in the group of components of the special fiber. Since Néron models are compatible with
completions and a completion is an isomorphism on the special fiber, it suffices to consider the
case of a local field.

From now on we only consider algebraic tori over a local field K. The lft-Néron model G
of G,k can be constructed explicitly (see. | , 10.1.5]) and can be described by an exact
sequence

0— Gm,OK — G — . Z — 0.

See also | , VIII, §6].

A finite unramified Galois extension L/K of local fields induces an étale and faithfully-flat
(even Galois) extension of the associated discrete valuation rings. So the Néron model of an
algebraic K-torus T which splits over L can be derived from the Néron model of T, = Gg% I-

Such tori are called algebraic tori with multiplicative reduction and have the following prop-
erties :

Definition 0.5.1. [NX, 1.2] Let K be a local field. An algebraic K-torus T' has multiplicative
reduction if one of the following equivalent conditions is satisfied:

1. X(T)! = X(T), i.e., the inertia group acts trivially on the character group X (7).
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2. T splits over an unramified extension of K.

3. There is a torus T over Spec Ok such that T2 = T.

4. The identity component of the Néron model of T is a torus over Spec Ok.

5. The reduction 7;0 of the identity component of the Néron model is a k-torus.
We now use Proposition 0.3.11 to define certain specific exact sequences of K-tori.

Proposition 0.5.2. Let K be a local field and let T' be an algebraic K-torus. Then there exists
a canonical mazimal quotient T of T which is a torus with multiplicative reduction. We have a
short exact sequence of algebraic K -tori in the smooth and the étale topologies

0—T—T—T —0. (6)

A homomorphism of K-tori ¢: Ty — Ts induces a commutative diagram of algebraic K-tori

0 T, T T! 0
[
0 Ty T T! 0

Proof. Let X(T) be the character group of 7. A quotient T/ of T which is a torus corresponds
one-to-one to a Gal(K%P/K)-submodule of X (T"). By the Definition 0.5.1, there exists a maximal
quotient with multiplicative reduction and it corresponds to the torus with the character group
X (T)f. This submodule is saturated, i.e., the quotient X (7")/X (T)! is a continuous and torsion-

free Gal(K*®°P/K)-module X (7). This gives us an exact sequence of continuous and torsion-free
Gal(K®°P / K)-modules B
0— X(T) — X(T) — X(T) — 0. (7)

A morphism ¢: T3 — T4 corresponds to a homomorphism of Galois modules D(¢): X (T2) —
X (Ty1) and, clearly, there exists an induced commutative diagram
0 —— X(Th)! —— X(Ty) —— X(Ty) —— 0
Pyt | ) |

0 —— X(T)! —— X(Ty) —— X(Ty) —— 0
Thus the assertion in the statement follows from Proposition 0.3.11. O

Proposition 0.5.3. (cf. [X, 2.13]) Let K be a local field and let T be an algebraic K-torus.
Then there exists an exact sequence of algebraic K -tori in the smooth and étale topologies

0—M-—Q—T—0, (8)

where M has multiplicative reduction and Q is such that H'(I, X(Q)) = 0, where I is the inertia
subgroup of Gal (K5P/K).

Proof. Tt suffices to construct the corresponding sequence of character groups. To do this, we
start with the sequence (4)

0 — X(T) — Z%Gal(L/K)] — X(R) — 0.
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and consider the preimage X (Q) of X (R)! in Z4[Gal(L/K)]. Then X(Q) is a torsion-free and
saturated Gal(L/K)-submodule and we have a sequence

0— X(T) — X(Q) — X(R) — 0.

By definition, this sequence is exact except, perhaps, at X(Q). All that remains to be shown is
that each element from the kernel of the map X (Q) — X(R)! comes from X (7). But this is
clear because the initial sequence was exact. By definition we have an exact sequence

0 — X(Q) — ZGal(L/K)] — X(R)/X(R)! — 0. (9)

Since the Galois action on X (@) factors through Gal(L/K) and X (Q) is torsion-free, we have
HY (G, X(Q)) = 0. By [S, VII, §6 Proposition 5| and the exactness of the direct limit functor, we
conclude that HY (I, X(Q)) = H* (IL/K, X(Q)) , where Iy, /k is the inertia group of the extension
L/K. Now, since H*(I1,x, X(R)/X(R)") = H'(Ip,k,Z%Gal(L/K)]) = 0, the long exact
I,/ k-cohomology sequence induced by (9) yields H* (IL/K, X(Q)) =0. O

Now we can explain the description of the group of components of the Néron model of an
algebraic torus given by Xavier Xarles in [X]. This description assumes that the residue field is
perfect.

So let K be a local field with a perfect residue field and let T" be an algebraic K-torus with
character group X (7). Let T be the Néron model of T over Spec O and let @ := ®(7;) be the
group of components of the special fiber of the Néron model. This is always interpreted as a
Gy, := Gal(k*°P/k)-module. Finally, let I := Gal(K®°P/K™) be the inertia group of Gal(K*P/K).
As we saw in Proposition 0.2.1, one can determine the group of components of the special fiber
of the Néron model of an algebraic torus T in the étale topology. Xarles also takes this approach.
In [X, Theorem 1.1] it is stated that ® = Homz(X(7T),Z) if T has multiplicative reduction.
Xarles proves this by explicitly determining the sequence

0—T7%° 7T —i®—0.

In [X, Theorem 2.1, Xarles shows that for any K-torus T there are natural isomorphisms
Homz(®,Z) = X(T)! =H(I, X(T)) (0.5.3.1)
Extl(®,2) = HY(I, X(T)) (0.5.3.2)

To prove these two statements, Xarles uses two basic tools. On the one hand, he uses that in the
étale topology the formation of the Néron model for algebraic tori is exact, whence R'j,7T = 0
[X, Lemma 2.3]. This means that Xarles obtains short exact sequences of their Néron models
from short exact sequences of algebraic tori.

On the other hand, Xarles identifies the sheaves

Hom(T,i.Z) = Hom(,®,7.2Z) = i, Homz (P, Z)
in the smooth and étale topologies and, in the smooth topology, the sheaves
Ext'(T,i.2Z) = Ext' (i, ®,i,Z) = i, Ext(®,Z).

These identifications are given in [X, Lemmas 2.2 and 2.12 and proof of Proposition 2.14].
With these tools, he gets the statement 0.5.3.1 from the sequence (6)

0—T—>T—T —0
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by applying the functors j, and Hom(-,7.Z) in the étale topology.
On the other hand, he gets the statement 0.5.3.2 from the sequence (8)

0—M-—>Q—T—0

by applying the functors j. and Hom(-,4.Z) in the smooth topology. For this he needs the
auxiliary results that R'j, T vanishes in the smooth topology for tori with multiplicative reduction
[X, Lemma 2.11], and that algebraic tori 7" with H'(Z, X(T')) = 0 have a torsion-free group of

components [X, Proposition 2.7], whence Ext'(j,R,i.Z) = 0. The statement [X, Proposition
2.7] is essentially based on properties of the Weil restriction [X, Proposition 2.6].
The main result of Xarles is [X, Theorem 3.1]. Here Xarles chooses an I-acyclic resolution

X(T)—J —J" " — -
of the character group with Z-free continuous Gal(K®°P/K)-modules and defines
X" i=ker(J — J").
This gives him the statement

Theorem 0.5.4. [X, Theorem 3.1] There exists an exact sequence of Gi-modules
0 — Homz((X")",Z) — Homz(M",Z) — & — 0.
Xarles proves this result by using the short exact sequence
0—X(T)—J—X —0
and Cartier duality to obtain a short exact sequence of algebraic tori
0—T —T;—T—0

and shows that the associated short exact sequence of Néron models induces a short exact
sequence of groups of components

0— ()" — d; — & —0.
Here (-)" = Homz(-, Z).

To understand the proofs in [X]| some remarks are necessary: Xarles uses the fact that the
isomorphism ® = Homz (X (T),Z) from [X, 1.1] is compatible with homomorphisms of algebraic
tori without proving this explicitly. This compatibility implies that the isomorphisms from [X,
2.1] are also natural, i.e. compatible with homomorphisms. This is also implicitly required when
computing ® in [X, Theorem 3.1].

Further, Xarles formulates his results without specifying a finite splitting extension of 7". This
leads to a problem with [X, Theorem 3.1]: the I-acyclic module J cannot be finitely generated
[Br, VI, Theorem 8.7(v)], since I is an infinite profinite group, and thus the Cartier dual of J is
not an algebraic torus.

To get around this problem, it is advisable to formulate the descriptions relative to a finite
Galois splitting extension L/K of T. To do this, we specify our notations: Ik is the inertia
group of Gal(K*?/K), Ir is the inertia group of Gal(K®P/L) and I, k is the inertia group
of Gal(L/K). Since L/K is Galois, I, is a normal subgroup of I and Iy, = Ix/I. Since
the action of Gal(K®°?/K) factors through the quotient Gal(L/K), it follows that X (T)/x =
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X (T)fr/x. Using the canonical inflation-restriction exact sequence |5, VII, §6 Proposition 5] and
the exactness of the direct limit functor, we obtain an exact sequence

0— H'(Irr, X(T)) — H'(Ix, X(T)) — H'(I, X(T)).

Since the profinite group I, acts trivially on the torsion-free group X (T'), we have H (I, X (T)) =
0. Thus we can also compute H! relatively. In particular, the Galois structure induced by
Gal (k*°P /k) — Gal(l/k) on the group H*(I1/x, X(T)) equals the canonical Galois structure
on the group H! (I, X (T)) (for i = 0,1).

Similarly, an I-acyclic resolution can also be understood as an I,/ k-acyclic resolution by con-
tinuous Gal(L/K)-modules. These are again transformed into continuous Gal(K*°P /K )-modules
by the projection Gal(K®*P/K) — Gal(L/K).

As already mentioned in the Introduction, the results [X, 2.1 and 3.1] cannot be extended to
arbitrary local fields. The reason for this is that the formation of the Néron model is no longer
exact in general, since the Brauer group of K™ is no longer trivial when k is not perfect.

From a more general perspective, new interpretations of the proofs in [X] arise: the sequence
used by Xarles in the proof of [X, Theorem 1.1| can be defined for arbitrary tori and then has
the form

0— T — 7 — i ,HYI, X(T)) — -- -,

where T is the ft-Néron model of T' defined in Theorem 3.1.3.
The considerations from the proof of [X, Theorem 3.1] can be generalized. From any short
exact sequence of Néron models

0—N, — Ny — N3z —0
we can obtain a short exact sequence of groups of components
0 — O(N}) — B(N,) — B(N3) —> 0,

where ®(AN) is a quotient of ®(N;) by a suitable torsion subgroup. With this result one can
derive [X, 3.1] from the description 0.5.3.1 using [X, 2.7]. The description 0.5.3.2 then follows
as a corollary to [X, Theorem 3.1]. We will follow this method of proof in Theorem 6.1.1, for
example.
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Chapter 1

Néron models of some specific
algebraic tori

Let K be a local field and let T' be an algebraic K-torus. The Ift-Néron model T of T exists and
we denote the group of components of the special fiber of this model by ®(T") := ®(7x). Since
we are considering algebraic tori, Néron models in this chapter are always lft-Néron models.

First, we consider an algebraic torus 7" with multiplicative reduction. Starting from the
explicit construction of the Néron model of G,, g, we can describe 7 in this case via Galois
descent. We can identify the identity component 7 and the O g-torus Hom(X (T'), G,,.0, ). This
gives us an isomorphism ®(7') = Homz(X(T'),Z), which is compatible with homomorphisms of
tori with multiplicative reduction .

Next we consider the case where T' = Ry /i (T"), where L/K is a finite separable extension of
local fields and 7" is an L-torus. If 7" is the Néron model of 7", then R, /0, (T") is the Néron
model of T" and we will show that its identity component is equal to Ro, /0, ((T’)O). By the
exactness of the Weil restriction functor in the étale topology, it follows that Re, /0, (i« P(T")) =
1D (T).

Conversely, the Weil restriction on the character groups corresponds to the induction of Galois
modules. Thus [X, Theorem 3.1] holds for ®(T') if, and only if, it holds for ®(T").

After these direct generalizations of some of the results from [X], we want to provide a first
family of counterexamples. To do this, we generalize the calculation of the reduction of the
Néron model for norm-one tori with respect to a cyclic and totally ramified extension L/K of
degree p = char(k) from [L.1, §5].

For these tori, [X, Theorem 3.1] predicts a group of components of the form Z/pZ. If L/K
induces a trivial extension of the residue fields, this remains valid. However, our calculations
provide counterexamples if there is residual ramification. Specifically, in our examples the group
of components is trivial.

These examples also provide a counterexample to a generalization of [NX, Proposition 3.2],
since in the case of residual ramification we find that, instead of Gf;;l, we obtain a k-wound
unipotent group as the reduction of the identity component.

1.1 Néron models of tori with multiplicative reduction

Let T be an algebraic K-torus with multiplicative reduction and let 7 be the Néron model of
T. Then there exists a finite, unramified and Galois extension L of K such that the torus T

31
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trivializes over L, i.e. T, = G , = Spec L[ X(T')], where d = dim(T’). Since the formation of
Néron models is compatible with an unramified base change [ , 10.1.3], one can obtain the
Néron model 7 via Galois descent from the Néron model of G, ; over Op.

The Néron model Q%L of Gﬁ% ;, over Spec Oy, is constructed by gluing copies of

d

v v v,
71-Ll Gm,@L Xop 7rLQGW%OL XOp - X0oy 71-LdGWLOL = Gm7OL7

where v4,...,vq € Z, along the generic fibers.

On the generic fiber, the trivialization an, 1 = Spec L[X (T)] yields an effective descent datum
in the form of an action of the Galois group Gal(L/K) on Spec L[X(T)]: this action is defined
on the algebra L[X (T)] by the simultaneous canonical action on the scalars from L and on the
characters (as Gal(L/K)-module, since by hypothesis Gal(K*°P/L) acts trivially on X (T')). The
effectiveness is clear because the operating group is finite.

By the Néron mapping property, the action extends to an action on the Néron model ggL
and also yields an effective descent datum.

d ~

The isomophism Gj, ; = Spec L[X(T)] extends to an isomorphism

(68,) = Gf, 0, = Spec OL[X(T)].

The Galois group Gal(L/K) acts on L[X(T)] via K-automorphisms and these clearly are
limited to Ox-automorphisms of Oy [X(T)]. This means that the identity component of G is
stable under the descent datum and maps into the Og-torus Tp := Spec Oy, [X(T)]Gal(OL /0K)
(defined by X(T') as Gal(O3 /Ok)-module). So T° = Tp.

We now want to determine the short exact sequence

0—T%—T —i,®T)— 0.

We repeatedly use the decomposition theorem [M, II, Example 3.12, p. 75|, which states that
there exists an equivalence of categories between the category of abelian sheaves on the étale site
over Spec Ok and the category of triples (M, Ni, ¢), where Mk is a continuous Gal(K*P /K)-
module, Ny is a continuous Gal(k*P/k)-module and ¢: : N — M7 is a Gal(k*P /k)-module
homomorphism. For an étale sheaf F, under the equivalence Mg is the representing module of
j*F on the étale site over Spec K, Ny is the representing module of i*F on the étale site over
Speck and ¢ corresponds to the morphism i*F — i*j,j*F. Morphisms of sheaves correspond
to pairs of continuous homomorphisms of the Galois modules which commute with the maps ¢.

Proposition 1.1.1. Let T be an algebraic K -torus with multiplicative reduction and let T be its
Néron model over Og. Then there exists a commutative diagram in the étale topology

TO T

| |

where the inclusion on the top row comes from the canonical open immersion of the identity
component and the map on the bottom row is induced by the inclusion v: Gy, 0, — Gk coming
from the short exact sequence for the Néron model of Gy, k.

Proof. We first establish the isomorphisms. By Cartier duality, we have T' = Hom(X (T'), G,k )-
It follows that

T =j:T = jHom(X(T'),Gm, k) = Hom(j. X(T), j«Gm k) ,
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since X(T') = j*5.X(T).

Since T has multiplicative reduction, X (T') can be viewed as a sheaf over O by identifying
X(T) with the triple (X (T), X (T),id) = 5.X(T). By Cartier duality, it follows that 7° =
To = Hom(X(T),Gpm,0, ). To check commutativity, it suffices to check it on test schemes of
the following forms: U = Spec L', where L'/K is a finite and separable field extension, and
U = Spec Oy, for a finite and unramified field extension L’'/K. For schemes of the first form,
on the top row we have 7°(Spec L’) = T(L'), as well as T(Spec L') = T(L’), and the inclusion
T9 < T corresponds to the identity map id: T — T on the generic fiber. For the bottom row
we find

Hoim(]*K(T)? Gm7oK) (U) = HomU(X(T)‘U 5 Gm,U) and
m(j*g(T)aj*Gm,K) (U) = HomU(X(T”U aj*Gm,K|U) .

Since the pullback over U of the map G, 0,, — 7+Gm, K is the identity on G,, 7, both rows of
the diagram are isomorphic via Cartier duality.

We now consider test schemes of the second form, U = Spec O/, where L'/K is a finite
unramified extension. Without loss of generality, we may assume that the splitting extension L
was chosen so that L D L'.

On the top row we can use the U = Spec Op/,-valued points as the Gal(L/L')-invariant
Spec Oy -valued points, whereby the Galois action is derived from the trivialization

TO(U) = Hom Or (SpeC OL, G7dn7OL)Ga1<L/L/) — Homz(X(T)7 OZ)Gal(L/L/)
T(U) = Hom o, (Spec Oy, gfloL)Gal(L/L') — Hom (X (T), L*)Gal(L/L’)

Now the trivialisation 77, = Spec L[X (T")] induces the trivialisation Tp, = Spec Or[X(T)].
Thus the map Of < L* also induces the inclusion

TOU) = Homz(X (T),0%) S (X/E) s Hom (x(T), L) E/Y) — 7(1).

Let us now look at the bottom row :

A ¢ € Homy(j X(T)|y,Gmu) = Hom(jX(T),Gm 0,) (U) corresponds, according to
the decomposition theorem, to a pair (¢,,%s) with a Gal(K®**P/L’)-module homomorphism
Yy X(T) — (K°°P)* together with a Gal(K™ /L") - module homomorphism ¢,: X(T) —
((’);(h)* and a compatibility condition, namely that 1, on the I-invariants matches 1,. Since
X(T)! = X(T), 1, and 1, must already be equal. This means that ¢ is already uniquely
determined by ¥s. We obtain

Homy (. X(T)|y » Gm,v) = Hom a1y (X (T), (O52)*)

_ Homz(X(T), (O;(h)*)Gal(K"‘/L,)

and similarly, using the formula (.G, k), = (K™)*,
Hom (X (T), j+Gm,x) (U) = Homy ( . X(T)|y; » 3xCom, 1|y
= Hom gay (s /1) (X (1), (K™)*) = Homz (X(T), (K“r)*)Gal(Km/L )

Since T trivializes over L, in these descriptions we can always replace Gal (K™/L') by Gal
(L/L"). On the stalks above 5, the map G, 0, — j+«Gm, i corresponds to the canonical inclusion
(O3h)* — (K™)*, which shows commutativity. O

This gives us two important results:
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Theorem 1.1.2. (See [X, 1.1]). Let K be a local field and let T be a K -torus with multiplicative
reduction and character group X(T'). Then the sequence

which results by applying Hom(j. X (T),-) to the short exact sequence of the Néron model of
G, K, 1s exact and isomorphic to the sequence

0 — 5. 1% — j.T — i, ®(T) — 0.
In particular, ®(T) = Homz (X (T'),Z) for the group of components as a Gal(k*P /k)-module.

Proof. Proposition 1.1.1 yields the isomorphism of the sequences if the first sequence is exact,
for which we have to show that Ext'(j.X(T),Gm.0,) = 0.

Since T has multiplicative reduction, there exists a finite unramified and Galois extension
L/K such that T trivializes over L. This means that j*K(T)\SpeC o, 1s equal to the constant
sheaf Z¢, where d = dim 7.

Thus, for an étale morphism U — Spec Oy, , we have

Exty (X (D)l Gm,oxly) = H (U, Gpir)*

Since these cohomology groups vanish locally, Ext' (j.X(T'), G, 0, ) must vanish since it is the

sheafification of the presheaf V — Exti, (5:X(T)|y , Gm, 0k ly)-
Finally, the sheaf Hom (j,X(7T),4.Z) is a skyscraper sheaf and its preimage in the étale site
over Speck is given by Homz (X (T'),Z) (as a Gal(k**P /k)-module) (cf. [M, Example IT1.1.7(c)]).
O

Secondly, this description is even functorial, which more precisely means the following;:

Theorem 1.1.3. Let ¢: Ty — T» be a morphism of algebraic K -tori with multiplicative re-
duction and let D(¢): X(Ta) — X(T1) be the associated map of character groups. Then
the map j.éd: T1 — To between the Néron models induces a map ®(Ty) — P(Tz) of the
group of components, which via the above identification is equal to D(¢)Y: Homz (X (Ty),Z) —
Homz(X(Ty),Z).

Proof. The map D(¢) induces a sheaf homomorphism j,X(T5) — j.X(71) and thus a mor-
phism of functors Hom(j.X(71),:) — Hom(5,X(T3),-). This morphism of functors induces a
commutative diagram of étale sheaves

Hom (5. X(T1),Gm 0,) —— Hom(j,.X(T1),G) — Hom(j.X(T1),.2)

ol : |

We claim that the above diagram is isomorphic to the diagram

0 —— (juT1)° 5T i ®(T1) — 0
j*¢70l j*fl{ él

Note that the identity component 7,° maps under the group homomorphism j.¢ into the
identity component 75, making the last diagram well-defined.
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It is clearly enough to show the equality of the first two vertical maps. Using the argument
from Proposition 1.1.1, one sees that the maps ¢ and ¥° are clearly determined by their “generic
fibers" 1, or ¢2 . These correspond, via Cartier duality over K, to the morphism ¢: T3 — T5.

Conversely, the morphisms j.¢ and j,¢° are also uniquely determined by their generic fibers,
by the Néron mapping property and Cartier duality, respectively. O

1.2 Néron models of Welil restrictions

Theorem 1.2.1. Let K be a local field, let T be an algebraic K -torus and let L/ K be a finite sep-
arable extension. Assume, in addition, that there exists an L-torus T' such that T = Ry, i (T").
Then the description from [X, Theorem 3.1| holds for ®(T") if, and only if, it holds for ®(T).

To establish this theorem, we must first prove two lemmas. First we generalize [N X, Propo-
sition 2.4]:

Lemma 1.2.2. Let L/K be a finite separable extension of local fields and let T’ be an affine
smooth Spec Of,-group scheme with connected fibers, i.e. T' :=T'®p, L and T} =T @0, | are
connected. Then R, 0, (T') also has connected fibers.

Proof. On the generic fiber we obtain
moL/oK(T/) Rop K = %L/K(T/ ®o, L) = mL/K(T/) .

It can be shown that a Weil restriction along a separable extension of an affine, smooth and
connected group scheme over a field is again connected. Let K be an algebraic closure of K and
let Gk = Homp (L, K) be the group of K-embeddings of L into this closure. After tensoring
with K we obtain:

Ry (T') @K K =Ry, g 5 (T @1 L@k K)

GrL/k Gr/k
~ !/
GrL/k
Since T}, is connected, HGL/K T is connected as well by | , VIa, Lemma 2.1.2]. This means

that the generic fiber is geometrically connected, i.e., connected a fortiori.

Since Ro, /0, (T") @0k k = Ro,eo, k/k(T' ®o, (O ®o k)), we first need to determine
Or ®o, k. Since the Weil restriction functor is compatible with subextensions, it suffices to
consider the following particular cases: L/K is unramified and L/K is totally ramified.

In the first case O ®o, k = [ and [/k is a separable field extension. This is entirely
similar to the situation on the generic fiber. So assume that L/K is totally ramified. Then
0L Qo, k= 1[X]/(X®) is a radicial extension of k. By | , Vla, Lemma 2.1.2]

T' @0, (0L ®o, k) =T/ @ 1[X]/(X°)

is a smooth, affine and connected k-group scheme. It now follows from | , XVII, Appendix
III, Proposition 5.1] that the Weil restriction is connected since [[X]/(X¢) is a radicial extension
of k. -
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Lemma 1.2.3. Let L/K be a finite separable extension of local fields and let E/L be a finite
Galois extension. Let X(T') be a finitely generated continuous Gal(K®P/L)-module on which

Gal(KseP/f/) acts trivially. Let Iy, be the inertia group of Gr, == Gal(L/L) and similarly let I
be the inertia group of Gal(L/K). Now let
00— X(T) —J)—J —J — ...

be a resolution of X (T") by finitely generated continuous Gal(K®P /L)-modules, which are torsion-
free and I -acyclic. Further, let X' :=ker[J} — J2] and set (as in [X, Theorem 3.1])

&y, = coker[Homz ((X")'*,Z) — Homz ((J)"*,Z)].

Then, for X = Indgt X(T") and J* :=IndG- J} with Gk := Gal(L/K),
0—X—J" —J' —J2 — ...
is a resolution of X by finitely generated continuous Gal (K*P/ K )-modules on which Gal (KSEP/E/)
acts trivially. Further, the J* are torsion-free and Ik -acyclic and we have
® := coker [Homz (XéK, Z) — Homz((JO)IK,Z)} = Indgi‘" ®r,

where Xg = kelr[J1 — JQ], Ly, denotes the mazimal unramified extension of K in L and
Gr, = Gal(E/Lm).

Proof. Tt is clear that the J* are torsion-free. Since L/K is a finite extension, induction and
coinduction are isomorphic with respect to the inclusion G C Gg. We can now decompose
the field extension L/K into a chain L D Ly, D K. Then, for a finitely generated continuous
Gr-module N, we have

ImdS: N = Indgi nd&:  N.

Obviously Iy, is a subgroup of finite index in I and, via restriction to the category of Ix-modules,
the induction Indgi N is isomorphic to Indﬁf( N. Thus, for any j € N, we have

(1, Ind s N) = B (I, nd gl nd & N)
G ; G ;
= Tnd Gl HY (IK, Ind 2 N) — nd Gl H (I, N),
where Shapiro’s lemma was applied in the last step. This makes it clear that the J? are again
Ii-acyclic.
Since the induction is an exact functor, it follows that
Xo = ker (Ind @, Jf — md &L JZ) = nd & X'

and thus, after decomposing the induction and applying Shapiro’s lemma, X éK = Indgf("" (X7)1e

and (JO)/x = Indg’; (JP)!r. Next, the following isomorphism is valid for any finitely generated
continuous G, -module N:

Hom (Indg;m N, z) ~ Ind - Homz (N, Z).

Since the induction is an exact functor, it follows that ¢ = Indgf(‘“q) L- O
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Proof of Theorem 1.2.1. The formation of Néron models is compatible with Weil restriction: if
T' is the Néron model of T over Spec Op, then T = Rop, /0, (T') is the Néron model of
T = Ry g(T'). Further, the Weil restriction with respect to a finite morphism is an exact
functor on the étale site. Therefore the exact sequence

0— (T — T —i®T)—0
induces an exact sequence
0—Ro, 0. (T)°) — T — Ro, jo, (1:2(T")) — 0.

We will show that Ro, /0, ((T')°) is the identity component of 7. The identity component
(7" is a smooth, affine and open subgroup of the Néron model 7. Since the Weil restriction
of a group scheme is again a group scheme and the Weil restriction is also compatible with open

immersions (see, e.g. | , 7.6]), we see that R, /0, ((T’)O) is a smooth and open subgroup
of the Néron Model 7.
By | , VIb, Lemma 3.10.1], we have 7% C R, /0, ((T')°) and necessarily 7° =

Ro, ok ((7")0)0. Since R o, /0, ((T')°) has connected fibers by Lemma 1.2.2, we must have
T0 = %o, j0, (T)°).

Summarizing, ® = Ro, /0, (1+P(T")) is the group of components of 7. Since the Weil
restriction can be computed successively via subextensions, we first decompose the extension
L/K into a chain L D Ly, D K, where L/L,, is totally ramified and L,,/K is unramified.
The totally ramified extension is solvable, so it can be broken up into subextensions which are
either totally ramified with trivial residue field extension or totally residually ramified. Since
we only have to determine the Weil restriction as an étale sheaf, it suffices to determine the
Gal(k**? /k)-module

q)(ksep) _ m(’)L/OK (i*(I)(T/))(ksep) — (I)(T/)(ksep Rk (OL ®OK k)) .

We consider first the case where L/K is unramified, i.e., the residual extension [/k is separable.
Set Gy/p, = Homy(l, k*°P). Then

J5ep ®k(0L R0k k’) = k5P @, | = H JSep
Gi/k

regarded as an [-algebra.

Let us now understand the effect of a o € Gal(k*P /k) = Autg(k*P) on ®(k*P). To do this,
let z € [ be a primitive element for [/k and write [ = k[X]/(f(X)), where f(X) is the minimal
polynomial of z. Then k%P @, | = k*°P[X]/(f(X)) and therefore f(X) factors through k*P as
f(X) =1II(X — 7;(X)) for suitable representatives 7; € Gal(k*P/k) of Gyy.

A Galois morphism o € Gal(k*P /k) now induces a permutation of the zeros 7;(X), more pre-
cisely the component associated to 7;(X ) is mapped to the component of the zero o(7; (X)) =: 7/ (X)
while leaving [ fixed, i.e., via the [-morphism 7'171 oo o7j. This yields

Se Se G l(ksep/l) Se
O (k*P) = [ @(T7) (k) = Ind oy een )y @ (T7) (K5°P) .
Gi/k

The case where L/K is totally ramified with trivial residue field extension is covered in [X, §2.6].
In this case the Galois module is ® = ®(T"). If L/K is totally ramified and induces a purely
inseparable residue field extension I/k, then we have an isomorphism Gal(k®°P/k) = Gal(I%°P /1),
which yields [°°P =2 k5P @, (.
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Further, without loss of generality, [L: K] = [I: k], so that O ®e, k = . Tt follows that
O (k5P) = O(T')(I5°P).
Thus, for an arbitrary finite and separable extension of local fields L/K, it follows that
~ 1., 1Gal(L™ /L)
® = Indgey on ) @(T)
Now the isomorphism Gal(L™ /L) = Gal(K™/L,,) together with Lemma 1.2.3 yields the equiv-
alence of the validity of [X, Theorem 3.1] for the two groups of components. O

1.3 The norm-one torus of a cyclic extension of prime degree

If K is a local field with algebraically closed residue field, the article [L.1] describes the norm-one
torus associated to a cyclic and totally ramified Galois extension L/K of degree p = char(k). In
analogy to the work of Liu and Lorenzini, in this section we assume that p > 0 and k = k5P
is separably closed. In [LL, 5.5 and 5.6], the reduction of the Néron model of such a norm-one
torus is described explicitly. We will show that this description is also valid in the imperfect
residue field case provided there is no residual ramification.

Proposition 1.3.1. Let L/K be a totally ramified Galois extension of local fields of degree p =
char(k) such that the corresponding residue field extension is separable and therefore necessarily
trivial.

Then the norm-one torus Ty of L/K has a Néron model that is isomorphic to

Spec OK[X(), ..7Xp_1} /(G(Xo, ..,Xp_l)) s

where the polynomial G(Xo, .., Xp—1) € Or[Xo, .., Xp—1] is congruent modulo m to X2, — uX,,
for some u € O and m € {0,1,..,p — 1}.

Proof. The proof in [LL] covers [op.cit., Lemmas 5.3 and 5.4 and Theorems 5.5 and 5.6]. The
following statements about the extension L/K are assumed (see [LL, 5.2]):

1. The extension is of Eisenstein type, i.e., it has the form
L=K[/(t? —sit? " + ...+ (=1)Ps,),

where the s; are elements in 7x O and s, has valuation vk (s,) = 1. Further, the class of
t in L is a uniformizing element in Of.

2. The classes of 1,¢,...,tP~! in L constitute a complete basis of O, over O.

3. The different is computed as

v (D) = Oglglgig_l{pVK(Si) +p—1—i}=(p—Dvp(a(T) —1),

where sg := p and o is an arbitrary (fixed) generator of Gal(L/K).

In the imperfect residue field case, the facts that L/K is totally ramified and I/k is trivial still
imply that the extension is of Eisenstein type. See [S, I, Proposition 18]. As an Eisenstein
extension, it is therefore clear that (1, t, .., tpfl) is a complete basis.

It follows from [S, III, Corollary 2 to Proposition 11| that, for every monogenic extension
B = A[X]/f(X) of a complete discrete valuation ring A, the different may be computed as
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vi(Dryx) = v(f(X)) with  equal to the class of X in B. The class of ¢ in B remains a
uniformizing element and vy, (X) = prg(X) for all x € K. In this case it follows that

v (Dyyic) = | amin {vr (pt" 1) vn (0 = i)sp-it” ')}

= Juin {prrc(sp—i) +p—1 -1}
(with s := p). This leads to the first formula for the different. The second formula follows from
the same corollary if we note that

fx)y= [ X-o(T) sothat f(T)= II (T) —t
ceGal(L/K) TeGal(L/K)\{id}
and exploit that the order [L: K] is prime, whence v (7(T) —t) = v (o(T) —t) for every 7 # id.
Thus, in the proof, the hypothesis of an algebraically closed residue field can be replaced by
the hypothesis of a trivial residue field extension (with a separably closed residue field) and the
rest of the proof remains valid without changes. O

In the case of a totally ramified extension L/K with a non-trivial inseparable residue field
extension, one can proceed in a similar manner to [LL]. Thus, let L/K be a Galois extension of
local fields of degree p which induces a purely inseparable extension of degree p of the residue
fields. We have

L=K[}t]/(t? — sit? "+ sot? 2+ 4 (—=1)Psy)
with suitable s; € K. Since the associated extension of discrete valuation rings is monogenic, we
can write without loss of generality

Op = Ok[t]/(t? — s1t?™ ' + sot? 2 + .+ (=1)Ps,) ,

Thus we may assume that s; € Og. The extension of the residue fields must have the form
I =E[t]/(t? —5p), that is, s, € Oj but s; € TgOk for i =1,..,p— 1.

The extension has ramification index one, i.e., v.(X) = vg(X) for all z € K. We further
identify ¢ with its image in L. In contrast to the above, ¢ is now an element of O7. Due to the
form of the extension, one can determine the different similarly to the minimal polynomial f of
t:

p—1
vr(Dryk) = vi(f(T)) = V(Z(P— ')tp1l5i> = min {v(p),vk(si)}
P 1=1,..,p—1
Note that the residue classes of T form a basis of I/k, so that an arbitrary sum is Zf;ol a;tt
with a; € O3 U {0} in O}, provided that there is at least one a; # 0. Therefore v, (Dy/x)
cannot be smaller than the minimum of v, («;).

Now v, (Dy,/x) must again be equal to (p — 1)vz(o(T) —t). So we set vy, := v (D, k) and

r:=vy/p— 1. Clearly r > 1 in all cases.

Proposition 1.3.2. Let L/K be a totally ramified Galois extension of local fields of degree p
with a non-trivial purely inseparable extension of residue fields. Then the Néron model of T has
the form

Spec (9}([)(07 .oy Xp—l] /(G(XO, oy Xp—l))

with a polynomial G(Xo, .., Xp—1) € Ok [Xo, .., Xp—1] that is congruent modulo 7 to

p—1 j
S s XP 4 3 Trox(t )ij
i=0

mlm
{7li=0,v(s;)=vm}

where sy == p.
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Proof. As in [L1], then the following holds

Lemma 1.3.3. [LL, 5.3]. Let A = Z[s1,..,5p, Yo, --» Yp—1] be a polynomial ring in 2p variables
and set B = Afu]/(uP — syuP~' + ..+ (=1)Ps,). Let t be the image of u in B and set N :=
Npja (yo +yt+ ..+ yp_ltpfl). The following holds:

(1) N is homogeneous of degree p in the variables yo,y1, ..., Yp—1.
(2) Let0 < j <p—1. Then the coefficient ofyj-9 in N is equal to sg; and for j # 0 the coefficient
p—1 j
of yo " y; equals Trp (tj).

(3) The coefficients of y3° . . yp” 11 in N lie in the ideal (psy, $1,. .., Sp—1), provided that Ao <
p—2.

First, we will show
Lemma 1.3.4 (analogous to [LL, 5.4]). Let
b=(1+ap)+ait+..+a, 1tP 1€l
with a; € K and Nk (b) = 1. Then, for 0 <i <p—1, we have
via;)) >r

Proof. Since the norm of b is in Ok, we have b € Oy,. Since the powers of ¢ form a full basis, all
a; lie in Ok . Thus Lemma 1.3.3 applies

1=Npk(b) =(1+ao)’ +spal + ..+ 5 ab_| + term from IJ
with the ideals I :=(p, s1,..,5p—1) and J :=(a1,..,ap—1). Thus it follows that

v(14ao)’ =1+ spal + .. +s571a) ) > 1<€I1<11171 1{1/(31) v(p)}+ 1<Ijn<1;1 {v(a;)}-

By definition, the first minimum equals v, with the choice 1 < jo < p — 1, so that the second
minimum equals v(aj,). It now follows that

py(ajo)ZV((1+a0) — 1+ spal + .. + sh~ 1 p )zym+y(ajo),

because the residue classes of 1, s,,..,s6~! form a k-basis of I. Hence v(aj,) > vm/(p—1) =
Thus, if 1 < j < p —1, then the following holds in general:

pr(a;) > v(1+ao)’ — 1+ spal + .+ sh 7 ab_y) > vm + v(aj,) > v + 1

Thus v(aj) = (vm +7)/p=[(p—Dr+rl/p=r.
It remains to consider v(ag). Let ¢’ := v(p)/(p — 1). According to the definition of v,,, we
have ¢’ > r = v,,,/(p — 1). Thus, in the case v(ag) > €/, there is nothing to prove.

Otherwise (p — 1)v(ao) < v(p) and since p | () we conclude that

v(a?) = pr(ag) < 1/<(]]z> a’g> = u(p) + kv(ao) .

This yields v(1+ ag)’ — 1) = V(uo Sr_ ( )a ) = pv(ap). It follows similarly as above that

pr(ag) > v((1+ao)’ — 1+ spal + ..+ sh~ab

Ay, 1)va—|—’l“,

whence v(ag) > r also. O
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In the representation Ty = Spec K[z, .., Zp—1] /(NL/K (1 + f;ol TI:EZ-) — 1) we substitute
x; = n" X; and obtain

p—1
F(Xo, Xpo1) = Ny [ 14) 70X, | — 1.
j=0

Using yo =1+ x9 =1+ 7" X as well as y; := x; = 7" X;, Lemma 1.3.3 yields

p—1 p—1
F(Xo,..,Xp_l) 1+Z(Z>ﬂ-kTX’(§+7TpTX(})71+ZS;7TPTXip
k=1 =1

p—1
+ ZTrL/K (TI)(l + 7ero)p_1 7" X,
i=1

p—1

+ Za)“”"’)‘?—1(1 + 7r7‘)(0))\0 H 7TT/\i7

=1

where in the last sum the indices \; > 0 satisfy A\g < p — 2 and Zi:o _____ p—1 A; = p and the coef-
ficients ay,,....x,_, are chosen appropriately. If one looks closely, one can see that the coefficients
of the monomials of F' always have a valuation > pr. Indeed:

Since v(sp) = 0, we have v(sim?") = pr and therefore each of the monomials of the form X?
has a coefficient with valuation pr.

Further, we have v(p) > vy, = (p — 1)r, whence v((})7*") > pr 4+ (k — 1)r. Therefore, the
middle terms in the first row have a valuation greater than pr, except for pn” X in the case that
v(p) = v

The following identity holds for 1 < j < p — 1 (see proof of [LL, 5.5]).

Trouc () + (<15 = > (<1 s To e (7).

1<1<j—1

This shows that Z/(TI‘ L/K (TI )) > v, always. More precisely, the equality holds if, and only if,
v(8;) = Vm. This also applies in the case i = 0 if one sets sg := p = Trz/x(1).
After multiplying, we obtain terms of the following form on the third line

-1
(p . )TrL i (TT) 7t Xk X
Thus the coefficients of these terms have minimum valuation for £ = 0 and v(s;) = vy, and this
valuation is v, +r = pr .

The terms on the last line have coefficients

Ao
kr__r . i
a,\07___7)\p1(k T 2195;7—1 ,

where 0 < k£ < A\ and Zl§i<p—1 A; is at least 2. Further, according to Lemma 1.3.3, the factors
@x,,...x,_, belong to the ideal (p, s1,...,5,_1), so they have valuation at least v,,,. Consequently,
only coefficients with a valuation greater than or equal to v, + 2r = pr + r > pr appear.

This means G(Xo, .., Xp_1) == 1 P"F(Xo,..,Xp-1) € Or[Xo, .., Xp—1] is congruent modulo

7 to )
p— J
dosXP+ Y Loy () >Xj,
i=0

TYm
{ilIs;)=vrm}
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where above we set sg = p.
This substitution can be interpreted as follows: If we pass from T to the Og-model

T := Spec OK[.’lﬁo, ..,.’Iﬁpfl] /(NL/K(1 +xo+try+ ..+ tp_ll'pfl) — 1)

and blow-up the zero section (x¢g = 1,21 =.. = z,_1; = 0) of the special fiber r times, then we
obtain as dilatation the scheme

Tsm = Spec OK[X(), ..,prl] /(G(Xo, ..,prl)) .

Note that T is an Og-group scheme, because on Ty one obtains the multiplication map. Indeed,
in the polynomial ring
2 2 3 3
L{Xé >,..,X1§_)1} ®r L{Xé [.,,Xf,_ﬂ

one can certainly write the product
2 2 —14(2 3 2 —1y(3
M= (X x4 X)) (3P x4 e x )

in the form

p—1
2 2 3 3
M= (X, X2 X0, X2 ) T
=0

with polynomials f; en K [X(()Q), . x?

1 X(()3), - ng?i)l}. Then the multiplication

KIX§Y, L, x D/, x M)

|

2 2 2 2 3 3 3 3
KXP, o xP1/(NxP, L xP)) ox KIXS, o xP0/ v x D))

is given by Xl(l) — fi (X((f), . X;z_)l, Xé?’), - X]S?)—)l)' Since the minimal polynomial of ¢ only has
coefficients in Ok, the polynomials f; only have coefficients in Og and thus one can extend the
group law on Ty to a group law on 7. Similarly, the zero section and the formation of inverses

can also be extended to T, since these are defined over Of; for the latter, note that

(Xo+tX1 + .. +#71X, 1) = I1 T(Xo + X1 + . + 771X, ).
reGal(L/K)\{id}
Thus, by | , 3.2.2d], 7™ := Spec Ok [Xo, .., Xp—1] /(G(Xo, .., Xp—1)) is a group scheme. It

is even an integral model of Ty because it is separated and flat. The latter holds because 7 is
not a divisor of G(Xo, .., Xp—1).
By the hypothesis Ox = O3}, Lemma 1.3.4 shows that the canonical map 7™ ((’);}h) —

Ty (K™) is surjective. It now follows from [ , 7.1.1] that 7™ is the Néron model of T if it
is smooth. The latter follows from the Jacobi criterion because
Tr ti
dG = Z L()d X;

{j‘V(sj)zl’m}

(9
with Tir%}fn(t) € Oy for all j with v(s;) = vp,. O
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Using the above representation, we obtain the following

Corollary 1.3.5. Let L/K be a cyclic totally ramified extension of local fields of degree p =
char(k). Assume that the corresponding extension of residue fields is purely inseparable of degree
p and let Ty be the norm torus with respect to L/ K.

Then the group of components of the Néron model of Tx is trivial and the reduction of its
identity component is a k-wound unipotent group.

Proof. The special fiber of the Néron model has the form
Esm = Speck [X(), ..7Xp,1] / (G (Xo, .oy prl)) 5

where
p—1

G- Zszxgur Z HL/K Do) e

p
V(51) V7n

is obviously a p-polynomial.
After blowups, the group law over O results from the following calculation:

(1 +0XP 4t X 4 tpfleXﬁﬂ) ® (1 40X 4t Xx® 4y tP*WXﬁ)I)
p—1

=147y 1! (1 X2+ xP @ 1) + wQ’T(Xff), X,f,?i)l) ,
=0

) € O [XSQ),...,X;?J ® Ok [Xg?’),...,xffl}. After

splitting into powers of ¢ and dividing by #", we obtain modulo 7 the law XZ(Q) — 1®Xl(3)—|—Xl(2)®1
for0<i<p-1.

Thus the special fiber is a subgroup of Gg’k

The principal part of G has no non-trivial rational zero: after choosing the extension L/K
we have s, =P in [.

A root of the principal part now corresponds to an equation

for some appropriate I‘(X((,2)7 et 7X;(,3—)1

spab + ..+ sh~tab_; =0 with a; € k

This equation can also be read in [ as
(t%0)" + ..+ (" tap_1)” = (t%0 + .. + P a,_1)" = 0.

Since [ is a field, this already means that agt® + .. + ap_ltpfl = 0 and therefore a; = 0 for
every i, because the powers of ¢ are a basis of [/k. So the only rational zero is the trivial one.

The claim now follows from Proposition A.1, provided that for an i € {0,...,n} the linear
term to X, is trivial. Thus let L = K[t] with v(p) = v (s1) = --- = v (sp—1) so that all linear
terms appear. In particular, char(K) = 0. But since Ty does not depend on the particular
choice of t € L, we can replace ¢ with the (also generating) element T’ := ¢ — (s1/p). Note that
s1/p € O, so that T" is integral. Now if x(X) = X? — s; XP~ '+ .. 4+(—1)Ps, is the minimal
polynomial of ¢, then the minimal polynomial of t — % equals

$1 s1\? s1 p-l
X(X—i—) =<X—|-) —81<X+> +..+(=1)s,
p p p

= XP 4 xp~1 <psl — sl) + further terms .
p
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Thus if we carry out the construction with T, the result is a polynomial G’ that does not contain
a linear term containing X;. O

Finally, we sketch the (well-known) tamely ramified case: let L/K be a finite totally and
tamely ramified extension of local fields of degree q. The extension is also an Eisenstein extension
L =K[t]/Y ] ,sT" with s; = 1,50, ..,5,-1 € (k) and vg(sg) = 1. Since we assumed that
k = k°P  we may assume by Hensel’s lemma that there exists a uniformizing element 7 € Op,
such that 77 € Og. It follows that we may assume the Eisenstein equation to be of the form
te — TK.

This means that for ag, ..,aq—1 € Ok the equation is

qg—1
Nk <Z aiTI> = af mod (k)
i=0

and we find the smooth Ox-model for T
q—1
Spec OK[X(), ey qul] / (NL/K (Z XZ»TI> — 1)
i=0

with special fiber Spec k[Xo, .., Xq—1] /(X — 1). Thus, the group of components is equal to
Z/qZ.



Chapter 2

Groups of components of Néron
models

In this chapter we will study the group of components of the special fiber of a (local) lft-Néron
model of a smooth and commutative algebraic K-group. Our first main result is that the group
of components is a finitely generated module (see Theorem 2.3.2). This answers a question of
Lorenzini’s [L.I., Remark 1.3].

To do this we show that, given a smooth and commutative algebraic K-group Gk, there
exists an exact sequence of smooth and commutative algebraic K-groups

0—Tr — G — G — 0,

where T7 is a torus with multiplicative reduction and G’ ® x K™ does not contain a subgroup of
the form G, gnr. Further, Gg ®x K™ does not contain a subgroup of the form G, gnr if, and
only if, this is the case for G’ ®x K™. Now, if Gk has an lft-Néron model, we obtain a short
exact sequence of the associated lft-Néron models in the smooth topology

0—T1—G—G —0.

Now, as in [BX, §4], we define the functor that assigns to a smooth sheaf over Spec Ok its identity
component. More precisely, after restriction to the special fiber, this functor is represented by
the identity component there. As in the formal setting, this functor is right-exact, so we have a
short exact sequence of groups of components

0— & — B(Gy) — ®(Gr) — 0,

where ® denotes a suitable quotient of ®((77),). This then yields our description of the Néron
models of algebraic tori with multiplicative reduction and [ , Theorem 10.2.1] is our first
main result.

Our second main result is that a homomorphism G; — G5 of smooth and commutative
algebraic K-groups which is a closed immersion induces a homomorphism ®((G1),) — ®(G2),)
between groups of components of their 1ft-Néron models (if these models exist) with a finite
kernel.

This is based on the fact that the induced homomorphism G; — G5 of the 1ft-Néron models
is quasi-compact because a dilatation is a quasi-compact morphism. Later, using finiteness of
the kernel, we will describe the exact sequence of group of components in the case of 1ft-Néron
models of algebraic tori in more concrete terms.

45



46 CHAPTER 2. GROUPS OF COMPONENTS OF NERON MODELS

2.1 The maximal subtorus with multiplicative reduction

Let S be a scheme and let G be an S-group scheme of finite type. Then we can define a maximal
(sub-)torus of G as follows:

Definition 2.1.1. | , XII, Definition 1.3] Let S be a scheme and let G be an S-group
scheme of finite type. A subgroup scheme T of G is called a mazimal torus of G if the following
conditions hold:

1. T is a torus.

2. If s is any point of S and 5 denotes the spectrum of an algebraic closure of k(s), then T
is a maximal torus of Gy, i.e., an algebraic subgroup which is a torus and is maximal with
respect to this property.

Maximal tori exist for smooth algebraic groups over a field:

Theorem 2.1.2. | , XIV, Theorem 1.1] Let K be a field and let G be a smooth algebraic
K-group. Then G has a mazimal torus T and therefore a Cartan subgroup C = Cq(T).

By | , XII, Corollary 1.15], a commutative group scheme can have at most one maximal
torus.

Lemma 2.1.3. Let K be a local field and let T be a K-torus with character group X(T). Then
there exists in T a maximal subtorus Ty — T with multiplicative reduction. The formation of Tt
1s compatible with unramified extensions.

Proof. Let L/K be a finite Galois extension such that T' splits over L. Let I,k be the inertia
group of L/K. We now look for a maximal torsion-free quotient of X (7") with trivial I, s action.
To do this, consider the map

Trp: X(T) — X(T)' = X(T)'w%, x> 12

TGIL/K

The above map is well-defined since Iy, is a normal subgroup of Gal(L/K). Further, it is a
homomorphism of Gal (K% /K)-modules. We obtain a short exact sequence

0 — ker(Tr;) — X(T) — Im(Try) := X(Ty) — 0

of continuous and finitely generated Gal(K*?/K)-modules. As submodules of torsion-free mod-
ules, ker(Trr) and im (Try) are torsion-free. By definition, I,/ acts trivially on X (7). We now
show that X (77) is maximal with this property.

Let ¢: X(T) - X’ be a homomorphism of Gal(L/K)-modules such that X’ is torsion-free
with trivial Iy, g-action. Then ¢(Tr;(X)) = ny)(X), where n is the cardinality of I ,r. Thus
ker(Try) C ker(¢)) since X' is torsion-free. Thus we have a homomorphism X (77) - X'. Now,
by | , VIII, Proposition 3.2] and | , VIII,Corollary 5.5], the map X(T) — X(T7)
corresponds to a homomorphism 77 — T of algebraic tori which is a closed immersion.

Finally, since an unramified extension does not change the action of the inertia group, it is
clear that the formation of 77 is compatible with such extensions. O

Proposition 2.1.4. Let K be a local field and let Gx be a smooth and commutative algebraic
K-group scheme. Then G has a maximal torus T1 with multiplicative reduction and the quotient
G’ := Gk /Ty is represented by a smooth and commutative algebraic K -group.

Further, G' @ g K™ contains no subgroup of the form Gy, gnr. Moreover, G' @ K™ has a
subgroup of the form G, gxr if, and only if, Gk ®x K" has such a subgroup.
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Proof. The K-group Gk has a unique maximal torus 7. This is a subscheme, so the homo-
morphism 7" — Gk must be a closed immersion. Using the lemma above, we have a maximal
subtorus 77 of T' with multiplicative reduction and this is a subtorus of Gx. By | , Vla,
§5.4, Theorem]|, the commutative algebraic K-group schemes form an abelian category, i.e., we
have an (fpqc)-exact sequence

0— T — Gk — G —0.

The K-torus 77 is smooth and flat over K and after changing bases with 77 the K-groups Gx
and G’ are isomorphic. Thus, by descent, G’ is also smooth over K.

We now consider this sequence after a base change with K™. The preimage of a closed
subgroup U of G’ ® x K™ is a closed subgroup of Gx @k K™ as well as an extension of U by
Ty Qg K™ & Gmem. Suppose G’ ® k K™ has a subgroup of the form G, gn»r. Then Gx @ K™
has a subgroup that is an extension of Gy, gnr by G, gor. By | , XVII, Proposition 7.1.1],
this extension is a group scheme of multiplicative type. Now, by Cartier duality, the extension
corresponds to an extension of Z by Z" as I = Gal(K®*P /K" )-modules. Since Ext}(Z",Z) =
H(I,Z)" = 0, this extension is trivial. So Gx ®x K™ has a subgroup of the form G;nﬂ{n
However, this is a contradiction to the fact that T is the maximal subtorus with multiplicative
reduction of T'.

If Gk ® x K™ has a subgroup of the form G, g»r, then this also holds for G’ @ x K™ because all
homomorphisms from G, g»r to G, g are trivial, so that the quotient map on such a subgroup
is an isomorphism.

Conversely, assume that G’ ® x K™ has a subgroup of the form G, gnr. Then Gx ®x K™

has a subgroup that is an extension of G, gn»r by Gy, ke However, by [ , XVII, Theorem
6.1.1 A(ii)], such an extension is trivial and we can find a subgroup of the form G, g»r in
Gk @ K. O

2.2 The identity component of a smooth sheaf

In analogy to [BX, 4.7], we will define a subsheaf of an abelian sheaf on the smooth site over the
spectrum of a Henselian discrete valuation ring R that we will interpret in a certain way as an
identity component. Incidentally, this definition only makes sense in the smooth topology, since
a similarly defined étale sheaf would be trivial on the special fiber.

In this section, we let K be the quotient field of R and write k for the residue field of R.

Definition 2.2.1. Let S = Spec R be the spectrum of a Henselian discrete valuation ring and
let F be an abelian sheaf on the smooth site over S. We define FY to be the subsheaf that
assigns to every smooth S-scheme T the sections f € F(T') for which the following holds: for
every étale point u: Spec A — T there exists

1. a valuation ring R’ that is étale over A (and thus étale over R),
2. a fiberwise geometrically connected smooth S-scheme T’ with a section g € F(T"') and

3. R’-valued points uf, u}: Spec R — T’ such that 9|ug =0 and g|u,1 factors through f],,.

Proposition 2.2.2. For a smooth sheaf F over a Henselian discrete valuation ring R, F° is
a subsheaf of F. Further, j*F = j*F°, where j: Spec K — Spec R is the canonical open
immersion. If F is represented by a smooth R-group scheme F and i: Speck — Spec R is the
(closed) immersion of the special fiber, then

P FO=i*(F°).
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Further, if F' has a connected generic fiber, then
FO=F".

Proof. Let T be a smooth R-scheme. If T' = Ty, then T has no étale points, so F(T) = F(T).
This means that j*F = j*F°. Now let T be arbitrary. For a morphism v¢: U — T we denote
the restriction morphism of the sheaf F by py.

We have 0 € F°(T'), because for an étale point u: Spec A — T we have p,(0) = 0 and this
is equal to p,/(0) for w’': Spec A — Spec R. Since R is geometrically connected, the conditions
of the definition hold.

Now let 7: T1 — T be a morphism in the category of smooth R-schemes. Then every étale
point of Ty induces an étale point of Ty and thus p, FO(Tz) C FO(Ty).

Consequently, F° is a subsheaf of sets. Now let f,g € F°(T). Then, as explained in [3X,
after Definition 4.7], we have f — g € F°(T). This means that F° is a subsheaf of groups.

Now let F be a sheaf represented by a smooth group scheme. We will show that a section
f € FOT) corresponds exactly to a morphism 7" — F, so that in the special fiber we have a
factorization Ty, — F) — Fj.

A section f € FY(T) corresponds to a morphism f: T — F and for every étale point
u: Spec A — T there exists a geometrically connected smooth scheme T, a morphism g: T/ —
G and étale points up, uj: Spec R — T, such that g o ug factors through the unit section of
G and f owuo(Spec R — Spec A) is equal to g o u}. This means that f ou factors through F°.
Since the étale points have a dense image in the special fiber of T, fi: T, — F} must factor
through Fp.

For a section f: T'— F such that f factors through F}? and an étale point u: Spec A — T,
consider the geometrically connected scheme T’ := F°®pr A and, as étale points, the unit section
up: Spec A — T’ and the point ) induced by u: Spec A — T, which by definition means
that f € FO.

If the generic fiber of F' is connected, the existence of a factorization T, — F? — Fj is
equivalent to a factorization T'— F° — F. Thus we have F0 = FO.

In general we have an inclusion i*F° = i* (FO)O — *FO. Here (FO)O means the identity
component (as defined above) of the sheaf represented by F°. Conversely, we can construct
all sections of i* FO from sections T — F for which 7" has no connected component without
an étale point. Thus we may compute i* on the subsheaf F° and i*F° — i* F is therefore
surjective. O

Thus, with this subsheaf, we can examine the identity component of a Néron model on the
special fiber. For algebraic tori, this sheaf also represents the identity component of the Néron
model over Q. We now investigate how this subsheaf is compatible with morphisms of smooth
sheaves.

Proposition 2.2.3. Let R be a Henselian discrete valuation ring and let ¢: F — G be a
morphism of abelian sheaves on the smooth site over S = Spec R. Then this morphism induces
morphisms 0 = 1| o : FO — G and ¢: ®(F) := F/F° — &(G) :=G/G°.

Proof. Since 1 is a morphism of functors into the category of abelian groups, given a section
f € FoT) with a fiberwise geometrically connected scheme T’ and étale points u,up,u} (as
required in Definition 2.2.1), their images under 1 also satisfy the conditions in Definition 2.2.1.
Thus the first assertion is clear. This means that v induces a map of presheaves F/F° — G/G°.
Since sheafification is an exact functor from the category of presheaves to the category of sheaves,
the second assertion follows. O
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The functor F ~ FY satisfies the following

Proposition 2.2.4. [BX, 4.8] Let ¢: F' — F be an epimorphism of abelian sheaves on the
smooth site over S. Then the induced morphism (]—")0 — FO is also an epimorphism.

Proof. The proof of [BX, 4.8] carries over verbatim to our situation since there is only something
to show on the special fiber. O

2.3 The sequence of groups of components

Let h: G — G2 be a homomorphism of smooth group schemes over an arbitrary base scheme S.
This map induces a homomorphism h%: G — G between the identity components. Therefore
h also induces a homomorphism between the group of components. We can understand this
globally as a morphism h: ®(G;) — ®(G>) of smooth or étale sheaves, or locally for s € S as a
homomorphism h: ®(G1),) — P((G2),) of étale k(s)-groups. We now want to investigate the
effect of this map on short exact sequences.

Proposition 2.3.1. Let K be a local field and let
0— G — Gy — Gs —0

be a short exact sequence of smooth and commutative algebraic K -groups whose lft-Néron models
G, exist over Spec Ok . Assume further that the induced sequence of Néron models

O—>91492—>93—>0

is ezact in the smooth topology and set ®(G;) := G;/G?, where G? is the subsheaf from Definition
2.2.1. Then there exists a short exact sequence of sheaves

0— G1/t71(G9) — ®(G2) — ®(G3) — 0.
Further, there exists an exact sequence of continuous Gal(k*°P/k)-modules
0—&— (G2),) — ©((Gs),) — O,

where ®((G;),.) is the group of components of the k-groups (G;), and ® is a quotient of @(G1))-

Proof. In the smooth topology, we have an exact and commutative diagram

0 —— NG — G —— G —— 0
[ [
0 g1 - Go g3 0.

More precisely, commutativity follows from proposition 2.2.3 and exactness of the top row is
verified as follows. Exactness at rl(gg) holds because the preimage of a subsheaf is already a
subsheaf (cf. [\, I1,2.12 ¢)]). By proposition 2.2.4, the top row is also exact at GY. Exactness
at G then follows from the exactness of the second row and the commutativity of the diagram.
The snake lemma applied to the above diagram yields a short exact sequence of cokernels that
corresponds to the claimed sequence

0— G/ (G9) — ®(G2) — ®(G3) — 0.
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The restriction i* of this sequence to the smooth site over s := Speck is exact. In particular, the

quotients ® are mapped to the (actual) group of components, since i*G? is represented by (QZQ) X
The restriction to the étale site over Spec k is exact by [M, III, Proposition 3.3]. By proposition

0.2.1, this restriction corresponds to an exact sequence of continuous Gal(k*?/k)-modules

0— & — ®(Ga),) — D(Gs),) — 0.

By the exactness of restriction, ® is a quotient of D((G1)y)- O

Theorem 2.3.2. Let K be a local field and let G be a smooth, commutative and separated
Spec Ok -group scheme which is an Ift-Néron model of its generic fiber Gi. In particular, Gg
is a smooth and commutative algebraic K-group. Then the group of components ®(Gy) of the
special fiber of G is finitely generated as a Galois module.

Proof. By Proposition 2.1.4 and | , Theorem 10.2.2], we have an exact sequence of smooth
and commutative algebraic K-groups

0—T; — Gk — G —0,

where T7 is a torus with multiplicative reduction and G’ @ x K™ does not contain subgroups of
the form G, gnr or G, gor. By [X, Lemma 2.11], R'j,. T = 0, whence proposition 2.3.1 yields
an exact sequence B

0— & — ®(Gy) — ®(G1) — 0,

where ® is a quotient of the sheaf ®(77). Now, by | , Theorem 10.2.1], the Néron model of
G’ is quasicompact, whence ®(G},) is represented by a finite Gal(k**P/k)-module. By Theorem
1.1.2, ® is represented by a finitely generated Gal(k**P/k)-module. This means that ®(Gy) is
also represented by a finitely generated Gal(k*P/k)-module. O

Recall that a morphism f: X — Y of schemes is called quasi-compact if there exists an open
affine covering (V;);.; of Y such that the inverse images f ~1(V;) in X are quasi-compact.

Proposition 2.3.3. Let K be a local field and let Gy be a smooth algebraic K-group with an
Ilft-Néron model Gy over Spec Ok . Let Gy be a smooth K -subgroup of Gs.

Then there exists an 1ft-Néron model G of G1 and the map G —> Go induced by the inclusion
on the generic fiber is quasi-compact.

Proof. By | , Theorem 10.1.4], the lft-Néron model of G; exists and can be obtained as a
group smoothing of the schematic closure of G; in G. So we have a diagram

) EO R
Gi=¢M 2 . gW LG G,

where the 6 are dilatations of appropriate closed subgroups of the special fiber. This follows
from | , Lemma 7.1.4] since it suffices (after making an étale base change if necessary) to
construct the group smoothing on G1 N GY.

According to | , 3.2], a dilatation of a scheme can be constructed locally and the dilatation
of an affine scheme is affine. This means that a dilatation is quasi-compact. A finite combination
of quasi-compact morphisms is also quasi-compact.

By construction, we have a quasi-compact map G; —> Go which corresponds to the inclusion
GG1 C G on the generic fiber. Thus the assertion follows from the Néron mapping property. [

We can now show that in the situation of Proposition 2.3.1 the quotient ®((G1),) — ® has a
finite kernel.
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Proposition 2.3.4. Let K be a local field and let Go be a smooth algebraic K-group with 1ft-
Néron model Gy over Spec Ok . Let Gy be a smooth (closed) K -subgroup of Go. Then the corre-
sponding map of Néron models induces a homomorphism of Gal (k*P/k)-modules

(G1)x) — 2(G2))

with a finite kernel.

Proof. The morphism G; — G5 induces a quasi-compact morphism ¢: (G1), — (G2),. Since the
identity component (QS) ., 1s of finite type over k, it is quasi-compact and therefore its preimage
is quasi-compact. Thus we can cover rl((gg)k) with finitely many connected components of
(G1),,- Since every connected component over kP decomposes into a finite number of translates
of (Q?)k, only finitely many elements of ®((G),) lie in the kernel. O
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Chapter 3

Integral Models

In this chapter we consider the problem of extending a smooth and commutative K-group scheme
of finite type to an integral model, i.e., a separated and flat Og-group scheme. This is motivated
by the fact that the literature considers integral models of algebraic tori that are not Néron
models. In | , §4], a so-called ft-Néron model is defined for algebraic tori T which is a
smooth integral model 7 for which T&((’)%h) corresponds to the maximal bounded subgroup
of T(K™). On the other hand, in | ], [P] and [PV], Voskresenskii et. al. define a standard
model which is an integral model with similar properties to the ft-Néron model. We will show
that in the Ift-Néron model there exists a unique open subgroup that induces the torsion part of
the group of components, which we will define as the ft-Néron model.

We will show that for a smooth and commutative K-group scheme of finite type G a maximal
bounded subgroup of Gk (K™") exists if, and only if, Gx does not contain a subgroup of the form
Ga, K, i.e., if, and only if, it admits an Ift-Néron model G. We will identify the maximal bounded
subgroup with the image of the points from G (O;(h) that are mapped to torsion elements in the
group of components.

Thus, our definition for algebraic tori is equivalent to that of Chai and Yu and an ft-Néron
model exists if, and only if, an 1ft-Néron model exists. We will show that the ft-Néron model is
caracterized by the lifting property for the étale points from the maximal restricted subgroup of
K™ -valued points and also has an extension property analogous to the Néron mapping property.

We will show that ft-Néron models are compatible with étale base change and Weil restriction.
The advantage of the ft-Néron model lies in the fact that it is easier to compute than the 1ft-
Néron model. For an algebraic torus 7', this model is affine and can be obtained as a group
smoothing of the schematic closure of T' in Rop, /0, (Gzz,OL)’ where n = dim(7T") and L is a
splitting extension of 7.

This schematic closure, which is itself an integral model of T', corresponds to the standard
model of Voskresenskii et. al. Using an idea from [Edi], we establish a criterion for when
a monomorphism of algebraic K-tori induces a closed immersion of the corresponding Néron
models.

We will show that on the étale and the smooth sites the ft-Néron model is a left-exact functor.
We will define a measure on the group of K™ -valued points of a torus and identify these points
with maps of the character group into the units of a splitting extension L/K™ of Tkxr. A point
belongs to the maximal bounded subgroup of T(K™) if, and only if, the corresponding map
¢ takes its values in 0. This will be the case exactly when ¢ restricted to X (7T')! has this
property. Therefore, regarded as an étale sheaf, we have T = Hom(j.X(T"), Gy o4 )-

The above means that the sequence constructed in Xarles’ proof of [X, Theorem 1.1] is a

53
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particular case of the canonical sequence
0— T4 — T — Hom(j.X(T),i.2Z).

In Appendix B we will discuss the right-exactness of the ft-Néron model.

3.1 Integral models and Néron models

Let K be a local field and let Gx be a smooth K-group scheme of finite type. By an integral
model of Gk we mean a flat and separated Og-group scheme G whose generic fiber as a group
scheme is isomorphic to G.

The most useful type of integral models are probably the Ift-Néron models: for algebraic tori,
the Néron model always exists in our situation; one can even specify an explicit construction
(cf. | , Proposition 10.1.4]). Namely, if T is an algebraic K-torus, then there exists a finite
Galois extension L/K such that T ®x L =2 G], ;. This means that there is a closed immersion
T — Rk (G%’L) through which 7' can be identified with a subgroup of Ry /x (GZ%L). Now
there is an 1ft-Néron model of G, 1 and thus also an Ift-Néron model R of Ry /k (G%’L). Then
the group smoothing of the schematic closure of T" in R is an Ift-Néron model of T.

What is important in this construction is that the schematic closure is an integral model of
T. Regarding this model, we cite the following result:

Lemma 3.1.1. | , VIII, 7.1] Let R be a discrete valuation ring with quotient field K and
set S := SpecR. If G is an S-scheme and H is a closed subscheme of Gk (so that H is a
subscheme of G ), then the schematic closure H of H exists in G. This is a flat S-scheme with
generic fiber Hy = H and is the only closed subscheme of G with these two properties.

This construction is functorial with respect to such pairs (H,G) and commutes with fiber
products. In particular, if G is an S-group scheme and H is a K-subgroup of Gy, then H is an
S-subgroup of G.

Since the scheme R is no longer quasi-compact and the Ift-Néron model of a torus T is
generally neither affine nor quasi-compact, this construction is rather unwieldy for explicit calcu-
lations. That is why Ching-Li Chai and Jui-Kang Yu counsider in [ , 83| a so-called ft-Néron
model. They write T(K™)"® to denote the maximal bounded subgroup of T(K™) and define
their ft-Néron model as a smooth integral model 7™ of T which satisfies 7 (O5F) = T(K™)".
They state that this model can be constructed as a group smoothing of the schematic closure of
T under the embedding

T — Ry k(TL) =Rk (G 1) = Roy 0k (Gmo,) -

This construction corresponds to the construction of the Ift-Néron model, except for the fact
that the Néron model R is replaced by its identity component Ro, 0, (an,oL) (cf. [NX, 2.4]).

We want to define the ft-Néron model in general, determine its properties and compare it
with the lft-Néron model. Naturally, in the case that a Néron model of finite type exists, we also
want to understand it as an ft-Néron model. Thus, in analogy to the considerations from | ,

10.2], we investigate the case of smooth and commutative K-group schemes of finite type.

Proposition 3.1.2. Let Gk be a smooth and commutative K-group scheme of finite type. Then
there exists a mazimal bounded subgroup of Gx (K™) if, and only if, Gk contains no subgroup
of the form Gg i .
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A mazximal bounded subgroup GK(Km)bd exists if, and only if, an lft-Néron model G of G
exists. This subgroup corresponds to the preimage of the torsion part of ®(Gy) under the canonical
surjection

Gr(K™) = G(OR) — Gr(k*P) — @(Gr) (K*P) .

For every bounded subgroup C of G (K™), we have C C Gy (K™)".

Proof. Since G has no subgroup of the form G, i if, and only if, Gx ®x K™ has no subgroup
of the form G, g=r, we may assume, without loss of generality, that K = K"". We now assume
that a maximal bounded subgroup B C Gk (K) exists. Suppose that there exists a K-subgroup
Uk = Gq,x — Gi. Since we are considering K-group schemes, Uk is a closed subgroup. This
means that BN Uk (K) is a bounded subgroup of Ux(K) = K.

By the boundedness of B, there exist a finite covering by open affine subschemes (V;);.; of
Gk, closed immersions V; — A%f and a decomposition B = |J,.; B; such that the B; C V;(K)
correspond to bounded subsets of Ay (K'). This means that (Ux N'V;),; is an open affine cover
of Uk, which shows that BN Uk (K) is bounded in Uk.

The multiplication g on Gg induces by restriction a group homomorphism Ug X xGg — G .
All subgroups 7/Ox C K = Ug(K) with | € Z are bounded, but Ux (K) itself is unbounded.
So there exists an [ € Z such that 7' Ok is strictly larger than B N Uk (K). Now 7O x Bis a
bounded subgroup of Ux X i Gk, so by | , 1.1.4] the image of this subgroup under g must
be a bounded subgroup of Gk (K™), which contradicts the maximality of B.

Now assume that Gk does not have a subgroup of the form G, x. This means that there
is an lft-Néron model G of Gi. This model has a group of components ®(Gy) which is finitely
generated as an abelian group. Its torsion part is therefore a finite subgroup. Since G is smooth
and Ok is Henselian, the map

Gr(K™) = G(O5F) — Gr(k*P) — ®(Gx) (K*P)

is an epimorphism of abelian groups. In G (K ), consider the preimage B of the torsion part of
®(Gy). This preimage is equal to the Og-valued points of the subscheme G of G, which consists
of the generic fiber and all connected components of G, that are mapped onto a torsion element of
®(Gy). Since ®(Gy) becomes constant after a finite separable extension of &, there exists a finite
Galois extension O — Ok such that G ®o, Or is a union of the generic fiber and finitely
many translates of the identity component of G ®p, Or. Since the identity component is a
quasi-compact open subscheme, G must therefore already be an open quasi-compact subscheme
of G. In particular, G is of finite type. Therefore B must be a bounded subgroup of G (K)
[BLR, 1.1.7].

Suppose C'is a bounded subgroup of Gi (K). By | , 1.17 and 3.1.4], there exists a smooth
Ox-scheme H of finite type with generic fiber Gk such that C' C im(H(Og) — Hgi(K)). Using
the Néron mapping property, we obtain a morphism H — G and an identification of C' with a
subset of the Ok -valued points of the image of H. However, the image of H in Gy, is quasi-compact
and can therefore be covered by a finite number of connected components of Gi. Since every
connected component decomposes into a finite number of translates of the identity component
over 032, the image of C in ®(G)(k*°P) is finite. But, according to the requirement, it is also a
subgroup. Thus, we must have C' C B, thereby proving that B is the maximal bounded subgroup

Next, we identify the ft-Néron model with an open subgroup of the lft-Néron model and show
that an ft-Néron model can be characterized by a lifting property for certain étale points and a
mapping property that is similar to the Néron mapping property.
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Theorem 3.1.3. Let Gk be a smooth and commutative K-group scheme of finite type and
assume that Gk contains no subgroup of type Go k. Let G be the Ift-Néron model of Gx and let
®(Gy) be the group of components of Gi. For a smooth integral model of finite type G of G,
the following are equivalent.

(1) We have G*(O3}) = Gr(K™)*Y | where G (K™)* is the mazimal bounded subgroup of
Gr(K™).

(2) Let Z be a smooth Ok -scheme and let ux: Zx — Gi be a K-morphism inducing a map
Zic(K™) — Gg (K™). Then there exists a unique extension of ug to a morphism of
O -schemes u: Z — G™.

(3) The model G* is isomorphic to the open subgroup G of G with generic fiber Gx whose
special fiber consists of the connected components of G whose image under G, — ®(Gy)
lies in the torsion part of ®(Gy).

Such an integral model is called an ft-Néron model of Gx. It exists under the conditions of
the theorem, and without those conditions none of the given descriptions would make sense.

Proof. Based on the description (3), we first establish the group structure. By | , Theorem
10.2.2], under the stated assumptions there exists an lft-Néron model of Gx and its group of
components ®(Gy) is finitely generated as an abelian group, whence the torsion part of ®(Gy)
is finite. As we saw in the proof of proposition 3.1.2, the subset G of G defined above is in
fact an open subscheme of finite type. The unit section trivially factors through G. The inverse
on G must be an isomorphism of G, since the torsion part of ®(Gy) is a subgroup scheme of
®(Gy,). In an analogous manner, multiplication must also factor through G*. Conversely, if Gx
has a subgroup of the form G, g, then neither an Ift-Néron model of G nor a maximal bounded
subgroup of Gk (K™) exist. We now show the equivalence of the three descriptions:

(1) = (2): This follows using the idea in the proof of | , 3.5.3|. Let Z be a smooth Og-
scheme and let wuy,: Zx — G be a K-morphism such that Zx (K™) C G (K)". Without
loss of generality, we may assume that Z is of finite type. Now let I' be the schematic closure of
the graph of ugx in Z x G™. Further, let p: T' C Z x G — Z be the projection onto the first
factor.

Since Z and G™ are of finite type and Ok is Noetherian, I' is of finite presentation. By
Chevalley’s theorem, we conclude that the image of py: I'y — Zj, is constructible. By (1), the
image contains the dense subset of all points z; € Zi(k®°P) that lift to a point z € Z((’)%h).
Thus, for every irreducible component of Zj, its generic point must also lie in the image of p.
This means that such a generic point 7 has a preimage ¢ € I' and the local ring Or ¢ dominates
the discrete valuation ring Oz ,. Since p is an isomorphism on the generic fiber and I' is flat,
the associated localizations must be isomorphic via 7x, and Or ¢ = Oz ,. This means that p
is an isomorphism in an open neighborhood of 1, and we therefore obtain an Og-rational map
Z — G,

Since G is a smooth and separated group scheme, the existence of an O g-morphism u: Z —
G' which extends ux follows from Weil’s extension theorem | , Theorem 4.4.1]. This is unique
because it is based on the dense subset of points z;, € Zj (k) that lift to points z € Z(Ok ), which
already determines it | , 11.10].

(2) = (3): By the universal property of the 1ft-Néron model G, there exists a map G — G
which extends the identity on Gg. Since G is quasi-compact, the image of G is also quasi-
compact and can therefore be covered by a finite number of translates of the identity component.
Since this map has to be a group-scheme morphism by Néron’s mapping property, it must factor
through G* — G.
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By proposition 3.1.2, the group of O3l-valued points of G is equal to the maximal bounded
subgroup of Gg. Therefore, by (2), the identity on Gk lifts to a map G'* — G™. By the
uniqueness of these maps, we must have G = G,

(3) = (1) : This implication is clear by proposition 3.1.2. O

In order to investigate the ft-Néron model for algebraic tori, it is advisable to first describe
the maximal bounded subgroup of K™ -valued points. To do this, we want to define a modulus
I]| in a suitable manner.

So let T be an algebraic K-torus with character group X (7) and let L be a finite and separable
extension of K™ over which T splits. Then, by Cartier duality,

T(L) = Homz (X(T), (K*°)") S /D) = Homz (X(T), L*)
T (K™) = Homz (X(T), (K*P)*) ) = Hom gy gem) (X(T), L)

Since T splits over L, there exists a trivialization 77, = G

( ) ) mL = Spec L[ X (T)]. Using a Z-basis
X1,---,Xn) of X(T'), we can write

LIX(T) | =L[Xy,....Xp, 2] /(X1 -...- Xp- Z = 1)

with variables X; for each x;. Via the above a point € T(L) = Homz(X(T'), L*) becomes
identified with a morphism

x: LIX(T)] — L, X; — z(x:) € L*.

To determine the size (i.e., modulus) of a point z € T'(K™), it suffices to determine (using | ,
Proposition 1.1.5]) the size of x as a point in T, (L).

Via the above identification, a point z € Homz(X(T),L*)Gal(L/Km) is identified with a
Gal (L/K™")-equivariant map underlying a map of abelian groups z: X (T) — L*. According
to definition | , 1.1.2], we consider the closed immersion

Ty — A’L”rl LiXy,., X0, Z)] — L[Xy, X, 2]/ (X1-...- X - Z —1)
and define the modulus of z as
1

Hi:l,...,n z (Xi) } .

We will write the group law on a torus multiplicatively. After trivialization, the multiplication
on T becomes the component-wise multiplication on G7, ;. This shows that, for / € N and
z,y € T(L), we have

]| = maX{Iw Oals -l ()l

o =
U™ = mind |z 1 x —
||I H = {| (X )|7..,| (Xn)|’|1—‘[i_1’”nx(xi) }
lzyll < [[=[lyll-

Thus the subgroup generated by an element x is bounded if, and only if, all z(x;) have modulus
one. By component-wise multiplication, two such elements again produce a bounded subgroup.
Therefore, we have

T(K™)" = Homz (X (T), 0F) ¢ E/E™) (3.1.3.1)
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Based on the first description from Theorem 3.1.3, one can see that the ft-Néron model can
be constructed similarly to the usual Néron model as a group smoothing of an integral model
which T(K™)"? lifts. In the case of algebraic tori, one can explicitly describe such an integral
model.

Proposition 3.1.4. The ft-Néron model of Gy, k s G, 0, - If L/K is a finite separable exten-
sion of local fields and G’ is a smooth and commutative algebraic L-group with ft-Néron model
(G, then Ry k(G') has an ft-Néron model and this is isomorphic to Ro, 0, ((G')"). The
ft-Néron model is compatible with étale base changes.

Proof. After constructing the Ift-Néron model of G,, g, it is clear that the ft-Néron model of
G, i is equal to Gy, 0y -

Now let G’ be as stated. The Ift-Néron model G’ exists and contains (G’)® as an open and
quasi-compact subgroup. The Weil restriction is compatible with open immersions and respects
group scheme structures. Thus Rp, /0, ((g' )ft) is an open subgroup of the 1ft-Néron model
Ro, 0k (G) of Ry (G'). Since O is Noetherian, the Weil restriction is also compatible with
quasi-compactness, so this subgroup is also of finite type. Finally, Ro, /0, ((g’)ft) is trivially
smooth.

Now we have an exact sequence

0— (6N — ¢ — i, @G —0
on the étale site over 0. By the exactness of the Weil restriction functor, the above sequence
induces an exact sequence

0— %OL/OK ((g/)ft) — ’Y'ROL/OK (g/) — %OL/OK (Z*(I)(g;)vv) —0

over O. Now ®(G!)" is torsion-free and the Weil restriction of this group is an induction of
®(G!)"" as we saw in the proof of Theorem 1.2.1. This means that it is torsion-free again, so that
the image of Ro, /o, ((Q')ft) ((’)f{h) in the group of components of Ry, j0, (G") o, k contains
the torsion part. By its quasi-compactness, the image cannot be larger than the torsion part,

which means that we have shown that
Ry (G) (K™ = Ro, 0, ((6)") (0FF) -

Now the claim follows from Theorem 3.1.3.

Since boundedness is compatible with finite separable base changes, the argument in | ,
1.2.2(c)| can also be applied to ft-Néron models. These are therefore compatible with étale base
changes. O

Proposition 3.1.5. Let T be an algebraic K-torus with a finite Galois splitting extension L.
Consider the sequence of inclusions

T = Rpr(TL) =Rk (G, ) = Roy ok (Cro,) -

Let T be the schematic closure of T in Ro, /o, (G?R’OL). Then T is an affine integral model of
T that us independent of the choice of L. Regarding the choice of T', it is compatible with étale
base changes. Further, T(O3) = T(K™)",

Proof. The closed immersion T' — Ry, /i (1) is a homomorphism of group schemes which maps
T(K™)* into Rk (Gh.L) (K™)"®. These points lift to O$2-valued points of Ro, 0k (G0, )-
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This means that all points of T (K nr)bd lift to O§P-valued points of T. By construction, 7T is an
affine scheme of finite type since Ro, 0, (GZ%OL) and T are affine schemes. By | , VIII,
Lemma 7.1], T is an integral model of T'. This means that no other points of T(K™) can lift to
O3h-valued points of T because these points would induce unbounded subgroups.

For independence from the choice of L, consider a finite extension M /L. Then the em-

bedding T" — Ro,, /0 (G%,OM) factors through the closed immersion Ry, /0, (G"m,OL) —
Roy 0k (GZLOM) induced by the closed immersion Gy, », <= Ro,, /0, (GZLOM).
Finally, let K'/K be an unramified extension. Since the schematic closure is compatible with

flat base change, T ®0,. Ok is the schematic closure of Tk in
£RC)L/(DK (G?H,OL) ®OK OK/ = moL®oKOK//OK/ (GHL,OL ®OK OK/) .

Since K'/K is unramified, Of, ®o, Ok = H[LmK' K] Oy, where L’ is the composite of K’
with L. We obtain similarly (see [NX, Proposition 2.2])

Ro, /0 (Gmo,) o Okt =[] Ro, 0. (GZ,OL,)
[LNK': K]

and the embedding of Tk~ here factors through the diagonal embedding

A:Ro,, /0, (G”m,oy> — H Ro,, /0 (an,oy)
[LOK': K]

Since the schemes considered above are separated, the diagonal embedding is a closed immersion,
whence the schematic closure also factors through A. O

3.2 Néron models and closed immersions

Proposition 3.2.1. The ft-Néron model of an algebraic K-torus T' is equal to the group smooth-
ing of the schematic closure T of T under the immersion T — Ry (TL) = Ry /k (Gnme) —
Ro./0x (G?R,OL)' Further, the following are equivalent:

(1) T is smooth.

(2) The canonical map T — Ro, /0, (Gl 0, ) is a closed immersion.

(3) The canonical map T — Ro, jo, (G8,) is a closed immersion.
Further, G5, s the lft-Néron model of G7, | over Of,.

Proof. (1) = (2): Since T is an integral model of finite type, the group smoothing 7% of T
exists. By Proposition 3.1.5, 7' is an ft-Néron model of 7. If T is already smooth, then the
smoothing is not necessary and the canonical map 7% — Ro, 0k (GZMOL) corresponds to the
closed immersion T — Ro, 0k (G%,OL)'

(2) = (3): Similarly, 7 is the group smoothing of the schematic closure of T"in Ro, /0, (ggL).
Since this schematic closure is an O -group scheme, it is smooth if it is smooth in a neighborhood
of the identity. The latter can be checked on the open subgroup Ro, /0, (G%OL). By (2) and
the uniqueness statement in | , VIII, 7.1], the schematic closure in a neighborhood of the
identity equals the canonical embedding 7% — Ro,/0x (G:,EL’OL) and is, therefore, smooth.
This means that no smoothing is necessary and the canonical morphism is a closed immersion.

(3) = (1) Again by | , VIII, Lemma 7.1], the schematic closure of T'in Rop, /0, (Q{Q‘L)
is smooth. Since the schematic closure is locally determined, T is an open subscheme of this
schematic closure, hence, in particular, smooth. O
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In | , §5, Proposition 6], the schematic closure T just considered is identified with the
so-called standard model (see loc. cit. and [PV, P]). By the proof of the last two propositions, it
is clear that the group smoothing of this closure corresponds to the ft-Néron model (cf. [P, §10,
Proposition 8] and | , §5, Proposition 7]). In [Edi, Constructions 2.3 and 2.4], Edixhoven
defined for a finite Galois extension S’ — S and an S-scheme X an action of G := Gal(S5’/5)
on X' :=NRgys(X xgS5"). He then considered the functor of G-invariant points of X" [Iidi, §3]
and showed that, for a separated X, this functor is represented by a closed subscheme. From
the explicit construction one sees that the canonical closed immersion X — g, g(X xg5")
corresponds to the immersion (X’)¢ — X’ of the representing scheme of G-invariant points.

Now if T is an algebraic K-torus with a finite Galois splitting extension L, then we have
on Ry /k(TL) = Rk (G‘me) an equivariant G := Gal(L/K)-action so that 1" corresponds to
the subscheme of G-invariant points. By the equivariance, this action extends canonically to an
action on Ro, /0, (ng,OL)'

The closed subscheme of G-invariant points of Ro, /0, (ng,,oL) is an Og-model of T" and
by [Edi, Proposition 3.4] one can see that this model is smooth if L/K is tamely ramified. By
[ , VIII, Lemma 7.1|, this model must already be the schematic closure of T. In particular,
the standard model is then equal to the ft-Néron model.

As an application we obtain the following statement:

Proposition 3.2.2 (cf. | , Theorem 7.5.4] and [Edi, Theorem 6.1]). Let ¢: Ty — T3 be a
monomorphism of algebraic K-tori and assume that Ty splits over a tamely ramified extension
of K. Then the induced map T — T2 of the Néron models is a closed immersion.

Proof. Let L/K be a common splitting extension of T and T5. Then we have a commutative
diagram
TNe——— T

| |

R/ k(1)) — Ry (T2)L)

in which all maps are closed immersions. For the top horizontal map one uses that monomor-
phisms of diagonalizable group schemes are closed immersions and closed immersions are compat-
ible with descent. The vertical maps are the canonical embeddings, which are closed immersions
by the separation of the tori 7;. On the bottom row we use the compatibility of the Weil
restriction with closed immersions.

Let R be the Néron model of Ry, k (12),). By assumption, the schematic closure of 71 in R
is smooth and equal to the Néron model of T7. This embedding now factors through the map
7+t between Néron models induced by ¢

T 25T

R
This means that j.. must be a closed immersion, since 7o — R is separated [I1, II, Example
4.8 and Corollary 4.6(e)]. O

3.3 The ft-Néron model of a torus as a sheaf

The formation of the Néron model corresponds to the left-exact functor j, on the étale and smooth
sites over Spec K. In this sense, a short exact sequence of commutative K-group schemes induces
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a left exact sequence of Néron models on the corresponding site over Spec Ox. We now show
that this also applies to the ft-Néron models.

Proposition 3.3.1. Let K be a local field and let
0— Gy — Gy —G3—0

be a short exact sequence of smooth and commutative algebraic K-groups for which 1ft-Néron
models exist. Then the above sequence induces a left-exact sequence on the étale and smooth sites
over Ok of the corresponding ft-Néron models

ft ft ft
0—G' — Gy — G,

where the morphisms between the sheaves are extensions of the corresponding morphisms between
the K-group schemes via the universal property of the ft-Néron model.

Proof. If Z is a smooth Og-scheme, Z — gl.ft is an Og-morphism and ug: Zx — G; is a
K-morphism, then the Oxg-morphism u: Z — G, that extends ug is the composition Z —
gift < G. Thus the exact sequence 0 — G; — Go — G3 induces a sequence of étale sheaves

f1 f1 f1
0— G' — Got — G3Y,

where the intervening maps are as in the statement. Further, a morphism ug: Zx — G; with
an extension Z — G induces a K-morphism Zx — G,41 with an extension Z — G ,,
because the image of a bounded subset is bounded again and the morphism G; — G,y is a
group homomorphism.

To examine the exactness of this sequence in the étale topology, it suffices to look at the
stalks. The sequence of stalks at the generic fiber is exact by assumption and the sequence of
stalks at the special fiber corresponds to the sequence

0 — Gl(Knr)bd i> G2(Knr)bd ﬁ) Gg(Knr)bd

with canonical arrows. It is clear that the sequence at Gy (K nr)bd is exact. For the exactness at
Gq (K “r)bd we need only check that Ima D ker 8. By the left exactness of the sequence of the
Ift-Néron models, an z € ker 3 has a preimage z € G1(K™). But since {z' |l € Z} C Go(K™)
is bounded by assumption and G; — G5 is a closed immersion, its preimage {zl |l e Z} must

also be bounded in Gy, whence z € Gy (K nr)bd. In the smooth topology, we also need only check
that Ima D ker 3. So let Z be a smooth Og-scheme and let fo: Z — G be a morphism whose
composition with GI* — GI* is trivial. By the left-exactness of the sequence of the 1ft-Néron
models, fo factors smoothly-locally through a section of G, over G;. However, the image of
these factorizations can only affect components of (G1), which are in the torsion part of ®((G1),)
because, under the quasi-compact group homomorphism (G;), — (G2),,, these components map
exactly into the torsion part of ®((Gz),). O

In Appendix B we will address the question of right-exactness (in the case of algebraic K-tori).

We now want to examine the étale sheaf represented by the ft-Néron model in more detail in
the case of an algebraic K-torus T. Up to this point we have tested the boundedness of a set of
points from T(K™) on the whole character group. However, according to Xarles’ description of
the free part, the boundedness (at least for perfect residue fields) should be tested on X (T')! =
Homgz(®,Z). In fact, we have



62 CHAPTER 3. INTEGRAL MODELS

Proposition 3.3.2. Let T be an algebraic K -torus with character group X(T'). Let L/ K™ be a
finite Galois splitting extension of T @ K™ with Galois group I = Gal(L/K™). Then

T (K™)™ ={f € Homz(X(T), L)' | f(X) € (O)" Jorz € X(T)'},

i.e., the mazximal bounded subgroup consists exactly of those points which, under the canonical
map T — TT, are mapped to a point that generates a bounded subgroup of TI(Km).

Proof. Recall the sequence (6)
0—T—T—T —0
and its Cartier dual (7)
0 — X(T) — X(T) — X(T) — 0.
Taking K" -valued points in the above sequences, we obtain an exact sequence of abelian groups
0 — Hom; (X(T), L*) — Hom, (X (T), L*) — Homgz (X (T)! (K™)").

Since X (T)! is a saturated submodule of X (T'), there exists a Z-basis (x1,...,xn) of X(T)
such that (y1,...,xq) is a Z-basis of X(T)!. Now a point z € T(K™) = Homz(X(T),L*)"
belongs to the maximal bounded subgroup of T'(K™) if, and only if, every z(x;) lies in Oj.
Thus it can be shown that for a point = with (x1),...,2(xa) € O; it necessarily follows that
x(Xd+1) g 7x(Xn) € OE

Since the modulus is compatible with exponentiation, it suffices to show the above for 2’ := 2",
where r =[L: K™] is the cardinality of I. Now a’ corresponds to the map induced by the map
xi + z¥. Further, z1,...,74 € (O3})* since z is an I-morphism and the xi,...,xq are I-
invariant.

Consider the map y € Homz (X (T'), L*) = T (L) which is induced by the assignment

X1 T1ye s Xd = Tdy Xd+1 > Loy X > Lo

The map ' = [[,¢;0 oy is invariant under the action of I, i.e., y' € T(K™). For the I-
invariant characters (x;);—; 4, we have o oy(x;) = o(y(c7*(xi))) = o(y(xs)). Consequently,
Y (xi) = Npjgor(2;) for i = 1,...,d. But since z; € (O32)*, we have y/(x;) = @ fori =1,...,d.
The remaining characters (Xj)j: ds+1,...n are obviously mapped to products of powers of elements
of the form o(x;) with 0 € I and i = 1,...,d. Since the z; are in (O3})*, these characters must
also have their images contained in (O5F)*.

Now the map T(K™) — TT(K™) is the restriction to X (T)!, so 2’/y’ lies in the kernel of
this map. By left-exactness of sections over K™, 2’ /y’ must therefore lie in the image of f(K .

Now T ® K™ is an anisotropic torus, whence

T(K™) = HomI(X(f),L*) = Homz (X (T)/X(T)!,L7)"

is bounded | , Theorem 10.2.1]. This means that all maps in Homz (X (T')/X(T)?, L*)I are
induced by assignments
Xd+1 7 Td+1y- -3 Xn > Tn

with values z441,...,2, € OF.
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The map TV(K“T) — T(K™) corresponds to the assignment x1,..,xq4 — 1. For i = d +
1,...,n, we conclude that

v =2’ (xi) =y () (@' (xa) /' () € OF
whereby the x; are actually in O7. O

We can now describe the ft-Néron model as an étale sheaf:
Proposition 3.3.3. Let K be a local field and let T be an algebraic K -torus with character group
X(T). Then the sheaf Hom(j.X(T),Gm,0,) on (O)e is represented by the tt-Néron model of
T:
Hom(j.X(T),Gm,0,) = Hom (o, (=, T™).
Proof. Tt suffices to check the statement for connected étale Og-schemes U. If U = Spec K’ for
a finite separable field extension K’/K, then Cartier duality yields a natural isomorphism

Hom(j.X(T),Gm,0x) (U) = Homp (X(T), G ) = T(K').

The ft-Néron model 7% has as its generic fiber the torus T itself, so the claim holds on the
generic fiber.
If U = Spec Ok for a finite unramified extension K'/K, then we have

Hom(j.X(T),Gm.0,) (U) = Homo,, (5:X(T),Gm.0,.) -

We will investigate the right-hand side of the above equation using the decomposition theorem
[M, II, Theorem 3.10].
A morphism 9 from j,. X (T) to Gy,,0, corresponds to a pair of morphisms

by X(T) — (K
vs: X(T)! —  (O58) )°

where ¢ is a Ggr = Gal(K®P/K’)-morphism and 95 is a G = Gal(k**P/k’) morphism. In

addition, the diagram

X(T) — (052)*

H [

X(T)! o (7)) — K
commutes. But this means that Hom (j,X(T'),G,0,,) (U) consists exactly of pairs (wﬁ, ¢ﬁ|X(T)I)
for which 5] (1)1 assumes values in (’)IS}‘,. The restriction of a morphism 5 must be understood
as the image under the morphism

Homz (X (T), (K*?)*)%" — Homz (X(T)!, (K*%)")

= Homz (X (T, (K™)*)"'

induced by the inclusion X (7')f — X(T)).
Thus the elements of Hom (j, X (T'),Gm,0,., ) (U) correspond exactly to the points of T(K') =

Homz(X(T), (Ksep)*)GK' which yield characters on X (7)! that only assume values in O3%,. But
these are exactly the points of the maximal bounded subgroup of T'(K’), whence

Hom (4. X(T),Gm.0,,) (U)=TH{U).

Via Cartier duality on the generic fiber, one sees that this identification is natural, i.e., it induces
a sheaf isomorphism. O
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Chapter 4

Exactness properties of the Néron
model

If one examines the Néron model of an algebraic torus T" using cohomological methods, as Xavier
Xarles does in his work [X], it is important to know under what conditions the formation of the
Néron model is an exact functor, i.e., when R'j,T = 0.

We first consider this problem in the étale topology. Since j, is the identity on the generic
fiber, R!4,T is a skyscraper sheaf, so one can test the triviality of R'j,7 in the stalk at 5. Using
a base change theorem and Hilbert’s Theorem 90, we see that relative to a splitting extension
L/K™ of Tkxr this stalk can be determined as H'(Gal(L/K™),Homz(X(T), L*)). Note that,
as a cohomology group with respect to a finite group, (Rl j*T)g is a torsion group.

In the case of a perfect residue field or in the case that L/K™ is tamely ramified, the norm
residue group of L/K™ is trivial, so that L* is a cohomologically trivial Gal(L/K"")-module.
Since X (T') is torsion-free, the same applies to Homz(X(T),L*), whence R'j,T = 0. Via
a spectral sequence argument, we conclude that the property R'j.T = 0 also holds for Weil
restrictions of T'.

For arbitrary tori we can decompose the splitting extension L/K™ into a part of order a
power of p and a tamely ramified part. We thus see that both the norm residue group of a finite
separable extension of K" and (R1 j*T)g are p-primary torsion groups.

Finally, we show that for a norm-one torus T with respect to L/K™ the group (Rl j*TN)g is
equal to the norm residue group of this extension. We use examples to show that norm residue
groups are generally infinite and can be non-trivial even when there is no residual ramification.

Next we consider R'j,T in the smooth topology. This is necessary, since the torsion part of
the group of components can only be determined in the smooth topology via Xarles’ methods.
The existence of a short exact sequence of groups of components in the étale topology also
requires the vanishing of a certain smooth sheaf R'j,.T;.

We show that R'j, vanishes for the multiplicative group and for Weil restrictions of the
multiplicative group. In the first case we use the definition of R!j.G,, x as a sheafification of
certain cohomology groups, which we can consider as Picard groups. We trace the second case
back to the first one using a spectral sequence argument. Using the Hochschild-Serre spectral
sequence, we can relate R'j,T for any tori T to R'j.G,, r and show that R!j,T is a[L: K™]-
torsion sheaf if L is a splitting extension of T'knr.

To see that R'j,T is, in fact, a p-primary torsion sheaf, we show that the smooth sheaf
R'j, T restricted to the étale site is equal to the étale sheaf R!j, T, since this restriction is exact
and R'j, can always be written as the cokernel of a homomorphism of Néron models. Since the
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identity component of a smooth group scheme is an [-divisible sheaf for every I € N such that
p 1 1, there would have to be a non-p-primary torsion part of R'j,T that factors through the
group of components and can therefore be computed étale-wise. Thus R!'j,T is, as in the case
of the étale topology, a p-primary torsion sheaf.

This also implies that R'j,T = 0 if T trivializes over a tamely ramified extension. Further,
we see that in the smooth topology we have Hom(le*T7 i*Z) = Extl(le*T, i*Z[p_l]) =0.

We give an explicit example that R'j,T # 0 can happen, even if the residue field is perfect
but T only trivializes over a wildly ramified extension. As a supplement, in the last section we
give a brief description of the functors j, and R'j, applied to étale group schemes.

4.1 RY,.T as an étale sheaf

Proposition 4.1.1. Let K be a local field and let T be an algebraic K-torus with character
group X (T). Further, let L/K™ be a finite Galois extension such that Ty is split and let
I = Gal(L/K™). Then, in the étale topology, R'j.T is a skyscraper sheaf and (le*T)g =
HY(I,Homz(X(T),L*)).

Proof. Tt is clear that R'j,T is a skyscraper sheaf. The stalk in the special fiber can be determined
using [M, III, Theorem 1.15]. We obtain

(RULT), = HY(Gal(K?/K™) T(K*))

Let L/K™ be a finite Galois extension with I := Gal(L/K™") such that T splits over L. Then,
by the exactness of the direct limit functor, the canonical inflation-restriction sequence yields an
exact sequence

0 — B! (1, T(K*)% ) — B (G, T(K™P)) — H'(Gp, T(K™)),

where Gr, = Gal(K*®/L) and Ggn := Gal(K®P/K™). By Cartier duality, it follows that
T(K®P) = Homz(X (T), (K%P)*). Since G, acts trivially on X (T'), we have

H' (G, T(K*P)) = H' (G, (K*P)*) = 0
by Hilbert’s Theorem 90, where d is the rank of X (7). O

We immediately get some interesting corollaries.

Corollary 4.1.2. In the étale topology, (le*T)g is compatible with étale base changes. For
products of algebraic tori, we have

(R'j. Ty xk To), = (R'j.Th), @ (R').Ts)

S s 5°

Proof. Since an étale base change does not change the Gal (X3P /K™ )-module structure of the
character group, the first assertion is clear. The second assertion follows from the fact that
X (Ty xg Tz) = X (Th) @ X (T») (in the category of Galois modules) and both Homz(-, L*) and
H!(I,-) are compatible with finite sums. O

Corollary 4.1.3. In the étale topology, R'j.T is a torsion sheaf. In particular,

Hom(R'j,T,i.Z) = 0.
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Proof. Since (Rl j*T)g is a cohomology group with coefficients in a finite group I, multiplication
by the cardinality of I annihilates every element of (R1 j*T)g. Clearly this also applies to every
section of the skyscraper sheaf R, T. 0

By [S, IX, §5, Theorem 9], for a finite group G and two G-modules A and B, Homz(A, B)
is a cohomologically trivial G-module if either A or B is a cohomologically trivial G-module and
Ext% (A, B) = 0. Since the character group of an algebraic torus is torsion-free, ExtL (X (T'), L*) =
0. This shows that for any algebraic torus T over a local field with a perfect residue field we
have R'j,T = 0, because L* is cohomologically trivial as a Gal(L/K"")-module for every finite
separable extension L/K™. This follows from the fact that the absolute Brauer group of K™ is
trivial. Note that this no longer holds for an arbitrary residue field, but we still get:

Lemma 4.1.4. Let L/K be a finite Galois and tamely ramified extension of a discretely valued
and non-archimedean strictly Henselian field. Then the norm residue group K*/Np i L* is
trivial. In particular, L* is a cohomologically trivial Gal(L/K)-module.

Proof. For the norm map we have an exact and commutative diagram:

0 Ox L sz 0
JNL/K lNL/K JNL/K
0 Ok K 5z 0.

Because of the (total) tame ramification, Ny, (1) is a uniformizing element in O . This means
that the norm map on the value groups is bijective and the snake lemma yields an isomorphism

K* /Ny L* = O% Ny, OF.

Thus it suffices to check that the norm is surjective on integral units. Restricted to elements
from Of, the norm map is the exponentiation by e := [L: K|. By assumption p t e, so that for
any ¢ € O} the polynomial X¢ — z is a primitive and separable polynomial. Modulo 7, this
polynomial splits into linear factors since, according to the assumption, k is separably closed and
Z # 0. Using Hensel’s lemma, X ¢ — x must then split into linear factors in O . This means that
there is even a preimage of x in Ok under the standard map.

Thus for L* the zero-th (Tate) cohomology group with respect to Gal(L/K) is trivial, whence
L* is cohomologically trivial by Hilbert’s Theorem 90 and [S, IX, §5, Theorem 8]. O

Corollary 4.1.5. Let L/K be a finite separable and tamely ramified extension of local fields and
let T be an algebraic K -torus that splits over L. Then R'j.T = 0 in the étale topology.

Proof. Without loss of generality, we may assume that K = K™ and L/K is Galois. By [5, IX,
§5, Theorem 9] and the argument above, it suffices to check that L* is a cohomologically trivial
I := Gal(L/K)-module. But this is the assertion of the previous lemma. O

The property that R'j,T = 0 is compatible with Weil restrictions relative to finite separable
extensions of local fields. We will show this using an idea from the proof of [BX, 4.2]:

Proposition 4.1.6. Let L/K be a finite separable and tamely ramified extension of local fields
and let T' be an algebraic L-torus such that R*(jr).T' = 0 in the étale topology over Or. Then
R'j R,k (T") = 0 in the étale topology over Ok.
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Proof. We consider the commutative diagram

Spec L LN SpecOr,

o

Spec K SN Spec Ok

and regard Ry, (1) as the étale sheaf (px), T’. By the above diagram, we have p. o(jr), =
J« o(pK), on the respective étale sites. Further, flabby sheaves are acyclic for direct images and
the direct image of a flabby sheaf is flabby again [M, III, 1.14 and 1.19]. Thus we may consider
Leray spectral sequences [M, III, Theorem 1.18]:

By [M, II, Proposition 3.6], the Weil restriction as a functor h, for a finite morphism of
schemes h is exact in the étale topology. In particular, p, and (px), are exact functors.

So we obtain the following exact sequence of terms of low degree from the Leray spectral
sequence for p,. o(jr),:

0— (R'p.) (i), T — R' (pu o (jr),) T" — pR' (ji), T'.

Since p, is exact, the first term of this sequence vanishes. By the hypothesis on T’, the third
term must also vanish. Consequently

R'(ji. o(pk),) T' =R (pio(jr),) T' = 0.

Now, from the Leray spectral sequence for j. o(px), we obtain the exact sequence of low degree
terms

0 — (R')(pk), T — R'(ju o(pk),) T' =0,

which yields the proposition. O

In order to obtain further results, we investigate how extensions of local fields can be decom-
posed.

Proposition 4.1.7. Let L/K be a finite Galois extension of local fields. Then, possibly after
making a finite separable extension of L, one can find a sequence of fields K C K™ C Kips C
Ky CL such that

e all extensions are finite and separable

o K™ /K is Galois and unramified.

o a uniformizing element in K is also a uniformizing element in Ki,s and the extension
Kins /K™ is totally ramified with purely inseparable residue field extension (we say that it
is residually ramified)

o K/ Kins is totally ramified of p-primary degree with trivial residue field extension.

o L/K ) is totally and tamely ramified.

Moreover, it is necessary to make an extension of L only if the associated extension of residue
fields has an inseparable part.
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Proof. The existence of the extension K C K™ is well-known. By [AS, Appendix, Corollary 2],
it follows that one can find a finite extension Kj,s of K" such that the corresponding extension
of the residue field is purely inseparable and a uniformizing element of Ly, is also a uniformizing
element in Kj,s. However, Kj,q is a priori only a subfield of a finite separable extension L' of L,
but the extension Kj,s C L' does not ramify residually.

Now we replace L with the normal closure of L. The extension Kjns C L induces a (possibly
trivial) separable extension of the residue fields. By correspondingly increasing K™ and Kips,
Kins C L is then totally ramified and Galois with a trivial extension of the residue field.

By [S, IV, §2, Corollary 4], there exists in G := Gal(L/Kj,s) a cyclic subgroup Z of order
prime to p = char(k) and a normal subgroup N of p-power order such that G = N x Z. But this
means that there is an intermediate field Kins € L? C L such that Gal(L/LZ) is equal to Z,
i.e., it is totally and tamely ramified, and Kj,s C LZ is totally and wildly ramified of p-primary
order, but in general without inseparable part. If we set K, := LZ, the claim follows. O

Corollary 4.1.8. Let K be a strictly Henselian local field and let L be a finite Galois extension.
Then the norm residue group K* /Ny g L* is a p-group.
Proof. Without loss of generality, we can enlarge L so that there is a decomposition of L/K as
in proposition 4.1.7, because such an extension at worst increases the norm residue group.

The norm residue group of the tamely ramified extension K(,) C L is trivial and therefore
K*/Np (L") C K*/NK(p)/K(K(*p)). Since K = K™, this is an extension of p-primary order
and the norm residue group must be a p-group. O

Proposition 4.1.9. Let K be a local field and let T be an algebraic K-torus. Let p = char (k).
Then, in the étale topology over O, R'j, T is a p-primary torsion sheaf. More precisely, there
exists a power p”, with r € N, such that the multiplication by p” on R'j,T is the zero map.

Proof. Without loss of generality, we may assume that K = K™. Let L/K be a finite Ga-
lois splitting extension of 7T'. Using proposition 4.1.7, let K,y be an intermediate field such
that K(,)/K is an extension of p-primary degree and L/K(,) is tamely ramified. We set
G:=Gal(L/K),H = Gal(L/K(p)) and J := Homz(X(T), L*).

Now (R'j.T), = H'(G,J) and H'(H,J) = 0 because L* is a cohomologically trivial H-

module. Further, the composition
HY(G,J) = Y (H,J) =5 HY(G, J)

is multiplication by (G: H) = p" := [K(,: K| (see [S, VIL§7 Proposition 6]). But since
H!(H,J) = 0, this map must be the zero map. O

Corollary 4.1.10. Let K be a local field and let T be an algebraic K-torus. Let L/K™ be a
finite Galois splitting extension of Tknr. Let I := Gal(L/K™) and let I,, be the p-Sylow subgroup

of I. Then R*j,Ts = H' (I,,Homz (X (T), L*))"/™».
Proof. Note that I, is a normal subgroup of I (cf. [S, IV, §2, Corollary 4]) and the quotient

H := I/I, has order prime to p. Let J := Homz (X (T"), L*). There exists an exact sequence (see
[S, VII, §6, note at the end])

0 — H'(H,J%) % HY(1,J) & H (1,,)" 2 H2(H, J").

Now H! (H ,J IP) and H? (H i IP) are torsion groups which are annihilated by the order h of H.

Conversely, (R'j.T), = H'(I,.J) and H' (I,, J)™ are torsion groups that are annihilated by a
power of p. Because p and h are coprime, the morphisms « and v must be the zero map, i.e., we
have an isomorphism H*(7, J) = H* (I,,, J)I/IP. O
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We now consider R'j,T using norm-one tori as an example.

Proposition 4.1.11. Let L/K be a finite Galois extension of local fields and let T be a K -torus
that splits over L. Then the canonical short exact sequence

0 —T— Rx(Tp) — T —0
induces an isomorphism

(R'j.T)_ = coker(Rp x (T1)(K™) — T'(K™)) .
Proof. Since T, is split, R'j. 0, /k(Tr) = 0. This means that the long exact sequence of the
Néron models induced by the sequence of the proposition yields an isomorphism

R'j, T = coker(j. R x (Tr) — 5. T") .

Since the taking of stalks is an exact functor, by the Néron mapping property we have (j. 7). =

§«T'(O3) = T'(K™) and similarly (j*iﬁL/K(TL))g =R k(T)(K™). The proposition is now
clear. O

From the above proposition one immediately sees that, if T is the norm-one torus associated
to a finite Galois extension L/K, then (R1 j*TN)g is equal to the norm residue group of this
extension. Thus any extension of local fields with a nontrivial inseparable residual extension
yields an example of a torus with nontrivial R'j, 7. If L/K is totally ramified, then we let
er,k be the ramification index, that is, the uniquely determined natural number ey, x such that
" =71k mod mp, and § = [L: K|/ep k.

Now, considered as abelian groups,

K*/NpjxL* = O /Nrjx O © Z/5Z,

since the units of a local field are the direct sum of the units of the associated valuation ring and
the section 74 of the value group.

Using norm-one tori, we can also find examples where R'j,Tx # 0 in which no inseparable
residual extension occurs.

Lemma 4.1.12. Let K be a strictly Henselian local field and let L/K be a finite separable
extension which induces a trivial extension of the residue fields. Let k be the residue field and let
p" be the highest power of p that divides the degree [L: K. Then there exists a surjection

K*/NpjL* — k*/(k"")".

Proof. Since, by hypothesis, the norm map on the value groups is surjective, the residual norm
group must be equal to the residual norm group of the extension of the valuation rings. Let U?!
denote the group of 1-units. Then, by the snake lemma, the lemma follows from the diagram

0 Ul o: ke 0
o e s
0 UL o) ke 0,

taking into account the fact that the norm map on the residue fields induces the exponentiation
by [L: K]. Since k is separably closed, the cokernel of the exponentiation by [L: K] is equal to
the cokernel of the exponentiation by p". O
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If k is not a perfect field, then k& O kP  is a non-trivial field extension, so the quotient
k*/(kP")* is also non-trivial. This means that the norm residue group is an infinite group since
the preimage of k* — (k?")* under the canonical projection O — k cannot lie in Np g (L*).
Indeed, by [S, II, §4, Proposition 5], one can write all elements of O uniquely as power series
Z;’io sm,i, where the s; come from a representative system for k& in Og. This means that all
power series for which, after reduction, sg lies in k* — (kP")* cannot lie in the image of the norm
map.

Using such norm-one tori as examples, it is easy to see that R'j,T is generally not a constant
sheaf.

For let Ty be a norm-one torus with respect to a totally ramified extension L/K of degreep =
2 = char(k) with e/ = [L: K]. We assume that the residue field k is neither perfect nor
separably closed. More precisely, there exists an element Z € k such that v/Z ¢ k%P and its
irreducible and separable polynomial Y2 4+ aY + X is in k[Y]. Let z be a preimage of 7 in K.
Then z ¢ Ny, (L"™)". Now let Z be a root of the polynomial Y2 + aY + z, where a € O} is a
preimage of a. This polynomial defines an unramified extension, i.e., Z € K**. If ¢ is an element
of Gal(K™ /K ) which does not leave Z fixed, then o(2)/z = 2/z2.

Since on K™ the norm map to L/K is a square, it follows that o(2)/Z ¢ Nk (L")", that
is, the images of Z and ¢(Z) in the norm residue group are not equal.

However, we will see later that only the group of components of R!j,T is really relevant for
the structure of the Néron model. For a norm-one torus, this corresponds to the Galois group
acting trivially on the quotient of the value groups.

4.2 RY4,.T as a smooth sheaf

First we prove a well-known result (see, e.g., [X, 2.14]). We give a proof because we will need
some of the considerations from this proof in later proofs.

Proposition 4.2.1. Let K be a local field. Then R'j.G,, x = 0 in the smooth topology over
Spec Ok .

Proof. We show that le*Gm,K(Y) = 0 for all smooth Og-schemes Y. Since le*Gm}K is the
smooth sheaf associated to the presheaf V +— Pic(Vk), it suffices to show that the étale sheaf
associated to V' +— Pic(Vk) vanishes on the étale site over Y. This in turn holds if this sheaf
vanishes Zariski-locally. So we will show that, if ¥ — Spec O is a smooth morphism , y € Y
is a point and Y’ := Spec Oy, then Pic(Y};) = 0. To do this, we will show that the affine ring of
Y}, i.e. Oyy[m7t], is integral and factorial. The former property implies that Pic(Y}) is equal
to the divisor class group of Yj. The latter group is then trivial because Oy, [71‘_1} is factorial.

Since Ok is regular as a discrete valuation ring, Y’ is regular again as a local ring scheme of
a smooth Og-scheme. A regular local ring is integral and factorial, so Oy, ®o, K = Oy, [ﬂ'il]
is an integral ring. Let m be the maximal ideal of the local ring Oy ,. If 7 is not in m, then
Oy,y[77!] = Oy,, and the claim is clear. So let m € m. Since the scheme Y is smooth, 7 does
not lie in m?. This means that Oy,,[7~!] is factorial (cf. [BIV, proof of proposition 14.33]),
which means that Pic(Y}) = 0. O

Proposition 4.2.2. Let K be a local field and let L be a finite separable extension of K. Then
R'j Rk (Gm,L) = 0 in the smooth topology.

Proof. The proof of proposition 4.1.6 can be copied verbatim with Ty, := G,,  once we prove
that the Weil restriction with respect to a finite morphism of schemes is an exact functor in the
smooth topology.
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So let h: X' — X be a finite morphism of schemes. Let us denote by f., respectively f., the
restriction from the smooth site (sm)/X (or (sm)/X’) to the étale site (ét)/X (resp. (ét)/X').
Then we have a commutative diagram of morphisms of sites

sm

(sm)/X’ 5 (sm)/X

7 f*l
ét

(6)/ X~ (et)/X.

Let F be a smooth sheaf over X’. By the Leray spectral sequence [M, III, Theorem 1.18] and
the exactness of f, [\, III, Proposition 3.3], the following sequence of low-degree terms is exact
0 — R'A(fiF) — RY (W o f1) F — BRI fLF.

Since h¢' is an exact functor on the étale sites, we have
RY(f. o h¥™) F =R (h¥ o f1) F = 0.
This gives the other sequence of terms of low degree:
0=R'(f. o hi™) F — £RN™F — R2fo (b3 F) = 0.

Thus the restriction of R*AS™ to the étale site over X vanishes. Now let 7: U — X be a

smooth morphism. Then the restriction 7*: (sm)/X — (sm)/U is an exact functor that maps

flabby sheaves to flabby sheaves. Similarly, we can also consider the restriction to the morphism

7': U »=U xx X' — X'. Then (/)" is also exact and maps flabby sheaves to flabby sheaves.
If we look at the diagram similar to the above

we get m* R0, F = (R (hy), ) (7')" F.
This means that R'h,.F(U) = 0 by replacing h: X’ — X with a morphism hy: U’ — U.
Thus R'A.F = 0. O

This result gives us the opportunity to compare the smooth sheaf R'j,T and the étale sheaf
R';.T.

Proposition 4.2.3. Let f: (sm)/Ox — (ét)/Ox be the restriction from the smooth to the
étale site. Then for every algebraic K-torus T we have

feRL, 3T = R 5. T.

Proof. By [M, III, 3.3], f« is an exact functor. Let L/K be a splitting extension for T and
consider the exact sequence of smooth sheaves

0 —T — Rp/x(T) — T — 0.
This induces a long exact sequence

0 — 3T — Rk (TL) — T — R'G.T — 0.
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Applying f. yields an exact sequence of étale sheaves
0 — fidsT — f3:Re/x(TL) — [T — fRYGT — 0.
Since the Néron models are representable sheaves, this sequence is isomorphic to the sequence
0 — ju.T — j. Rk (T1) — 5.7 — fR'YT — 0.
Now the (étale) cokernel of the map j. R/ (Tr) — 7.1 is equal to the étale R'j,. T O

Thus, the étale sheaf R'j,T is trivial if the smooth R!'j,T is trivial. As the example at the
end of this section shows, the étale sheaf R!j,T can be trivial without the smooth R!j,T being
trivial.

Proposition 4.2.4. Let K be a local field and let T be an algebraic K-torus. Let L/K be a
finite Galois extension splitting T and let e :=[L: K™ be the ramification index of L/K. Then
RYj.T is an e-torsion sheaf.

Proof. Since R'j,T is a sheaf and Spec Ognr — Ok is an étale cover, it suffices to check the
e-torsion property on the smooth site over Ognr. Further, since the formation of the Néron
model is compatible with étale base changes, we may assume that L/K is totally ramified. Set
G := Gal(L/K) and let U — Spec Ok be a smooth morphism. Then the morphism

p: UL =U®p, OL®p, L=U®p, K@rk L — U ®p, K=:Ug

is Galois, since L/K is Galois.

Thus, the Hochschild-Serre spectral sequence [M, III, Theorem 2.20] yields an exact sequence
0 — HY(G,H(U, T)) — HY (U, T) — H (U, T)° .

Now R!j,T is the sheaf associated to the smooth presheaf U +— H!(Ug,T). For a smooth
morphism V' — Spec O and a section s € R'j, T(V), we can find a smooth covering (U;), ¢,
of V such that s is the glueing of sections a(s;), where a is the sheafification functor and s; €
HY(Ui) ,T). The section s is an e-torsion element if all s; are e-torsion elements. So consider for
U; the exact sequence induced by the Hochschild-Serre spectral sequence. Since the group order
e annihilates all elements from H!(G,T(U;);)), it suffices to check that the s; in H'(U;); ,T")
are zero.

Now T splits over L and H'((U;), ,T) = Pic ((UZ-)L)d, where d is the dimension of 7. Let
y € U; be a point and let Oy, , be its local ring. Then Oy, , ®o, Of is a finite ring extension.
Since finite algebras split into a product of local rings over a Henselian local ring, we see that, after
étale extension of Uj, the ring Oy, , ®o, Or is a product of local rings. Since Pic commutes
with finite products, we may assume that Oy, ®o, Or is a regular local ring . As we saw
in the proof of the equality R'j.G,, x = 0, we conclude that PiC(Oy’y ®ox OL [W*ID = 0.
Summarizing, after a suitable refinement, we can assume that s; = 0 in H'((U;); ,T), whence
the claim follows. O

On the other hand, the smooth sheaf R!j,T is also a p-primary torsion sheaf:

Proposition 4.2.5. Let K be a local field and let T be an algebraic K -torus. Then the smooth
sheaf R4, T is a p-primary torsion sheaf.
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Proof. Let L/K be a finite splitting extension. We consider the exact sequence of smooth sheaves
for T
0— 4T — Rk (Tr) — T — R'G.T — 0.

Since R!j,T is an abelian sheaf, this sheaf can be clearly decomposed into a sum
R'Y.T=R,®R’

of a p-primary torsion part R, and a prime-to-p-primary torsion part R’. We embed the Néron
model 7, T into the exact sequence

0 — ju(T" — 4, T — i, ® — 0

and show that the morphism
§: i7" — RY, T — R’

factors through i.¢’ or, equivalently, that j.(T’)® — R’ is the zero map:

By proposition 4.2.4, there exists an [ € N relatively prime to p such that multiplication by [
is the zero map on R’. Since j,T° is a smooth connected abelian group scheme, multiplication
by [ is étale and surjective.

Thus let U — Spec Ok be a smooth morphism and let s € Home,, (U, j.(T")°) be a section.
By assumption, multiplication by [ is an (étale) cover j,(T")? — j.(T")°, so we have a Cartesian
diagram

U' = U x;. o ju(T")° —= j.(T")°

.| ]

U j*(T/)Ov

S

where py: U’ — U is an étale cover. By definition, we have
resyru(s) =sopy =1- s,

that is, the restriction of s to U’ is | times the sum of the section s; € Home, (U’,j*(T’)O).
Thus we obtain a commutative diagram

3(T)°(U") : RI(U")

res I I res

Since U’ — U is a cover, the associated restriction is injective, whence 6(s) = 0.

To establish the assertion of the proposition, it is now sufficient to show that R'(U) = 0 for
any smooth morphism U — Spec Ok

So let a section s € R'(U) be given. By surjectivity, there exists a smooth cover (U;),.; of U
and sections s; € j.T'(U;) such that (s;) = s .
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As shown above, 5; € i,®'(U;) = Homo, (U;,i.®’) are the preimages of the s[; under the
map 7,P — R’. Now 5;: U; — 7, P’ is a morphism in the category of smooth Og-schemes
and for the associated restriction map we obtain

ress;: Homo, (1,9',4.®") — Homo, (U;,i.®') fr fos;.

This means that for the corresponding restriction map on R!j,T we have ress (6(Ide)) = 5(s;).
But since i,®’ is an étale Ox-scheme and the restriction of the smooth sheaf R! 7«1 is equal to
the étale sheaf R, T, 6(Idg) is a p-primary torsion element. Thus R’(U) = 0. O

We immediately obtain the following corollaries:

Corollary 4.2.6. Let K be a local field and let T be an algebraic K-torus which splits over a
tamely ramified extension. Then R'j5,T = 0 in the smooth topology.

Proof. This is clear from the previous two propositions since an abelian group that is annihilated
by two coprime numbers is trivial. O

Corollary 4.2.7. Let K be a local field, let T be a K-torus and let K be a subsheaf of the smooth
sheaf R'j,T. Then, in the smooth topology over Ok, for an appropriate r € N and for every

1 € N, we have
Hom(K,i.Z) =0

P Ext'(K,i.Z) =0
Ext’(K,i.Z[p™"]) = 0.

Proof. The first statement is clear since R'5,T is a torsion sheaf. If r is equal to the p-valuation
of the degree of L/ K™ for a splitting extension L of T, then multiplication by p" is the zero map
on R4, T and thus also on K. Now Ext’(K,i.Z) is a quotient of a subsheaf of Hom(KC,Z) for a
suitable injective sheaf Z and multiplication by p” on Hom(/C,Z) induces multiplication with p”
on Ext’(K,i,Z). Let U be a smooth Ox-scheme. Then Hom(K,Z)(U) = Hom(K]|, , Z|,;) and
an element f in the latter group is a family fv: K(V) — Z(V') of homomorphisms of abelian
groups for all smooth U-schemes V. For an x € (V') we have(p” - f)(X) =p"f(X) = f(p"z) =
f(0)=0.

For the third equation, note that multiplication by p” induces an isomorphism Z[pfl] —
Z[p~']. This, in turn, induces an isomorphism Ext’ (K, i,.Z[p~1]) — Ext’(K,i.Z[p~!]). Since
one can compute Ext’ (IC,i*Z[pfl]) using an injective resolution and morphisms of such reso-
lutions are unique up to homotopy, we may assume without loss of generality that multiplica-
tion by p” on the chosen injective resolution induces multiplication by p”, which also applies to
Ext’ (IC, 1 Z [p_l] ) Since the argument for the second equation also applies to Ext’ (IC, 1. Z [p‘l] ),
the multiplication by p” must be the zero map. O

Using an example, we will show that R'j,T can be non-trivial even if the residue field is
perfect. Let K be a strictly Henselian local field with perfect residue field k. Let L/K be a finite
Galois extension and let Ty be the norm-one torus associated with this extension. Consider the
corresponding long exact sequence in the smooth topology

0 — juTn — jsRr K (Gm,r) — JiGm,x — R'jTw.

Let U = A%QK = Spec Ok|[T] be the affine line over Og. Then the restriction of the above
sequence to a sequence in the étale topology over U is exact (cf. [M, ITII, Theorem 3.3]). Consider
the stalks of this sequence at a geometric point over the generic point 7 of the special fiber Uy.
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The generic point corresponds to the ring O [T'](x), so it is an extension of Ok of ramification
index one, but this ring is no longer complete. The residue field is k(T'), so it is no longer perfect.
This yields for T' = G, i, respectively T' = Rk (Gm, L), the following:

(j*T)|(ét)/U (Olsfhn) =(J:T X 05 OU,n)(OlSJ},In) .

Since Néron models are compatible with base changes of ramification index one, the following
holds:

(j:T) x0x Ov,y(OF,) = j+(T x 0, Ov,y)(OF,) .

For T' = G, g, this is equal to (K (T)")"; for T = R,k (Gm,L), this is equal to (L(T)™)".
So we obtain the exact sequence on the stalks

nry YL/ nry* .
o (L(T)™) 2 (KT — (le*TN‘(ét)/(Jﬁ 0.
But if [L: K] and p := char(k) are not coprime, the last example from the previous section shows
that the norm residue group may no longer be trivial. So R'j, Ty as a smooth sheaf may not be

trivial.

4.3 3, and R'j, for étale groups

The Néron model of an étale K-group F is an étale Og-group. This suffices to determine
the Néron model in the étale topology. The étale sheaf represented by F' corresponds to the
continuous Gal(k**P/k)-module My := F(K5P).

By the decomposition theorem, j,F is equal to the triple (MF, ME ML — M}I,) consisting
of the module itself, its [-invariants and the identity on the invariants.

This can be understood as follows: as a scheme, F' is a disjoint union of schemes U; := Spec K,
where the K; are finite separable extensions of K. Now the formation of the Néron model (as
a scheme) is compatible with disjoint unions. A U; as above for which K;/K is an unramified
extension has the Néron model j,.U; = Spec Ok,. Whereas a U, as above that comes from a
non-unramified extension has no K™ -valued points, so it is its own Néron model.

By the decomposition theorem, it is clear that the Néron model of a constant group is again
the same constant group (but regarded over Of). For the groups of roots of unity, we have
Jxllq, K = lq,0x if ¢ is relatively prime to p = char(k).

If ¢ is relatively prime to the characteristic of K but is not prime to p, one must take into
account the absolute ramification index of K. If this is one, then the p-th roots of unity are not in
O3l and then, for example, j. /1, x is equal to p, x glued to Spec Ok along the identity section
Spec K — iy, k. If the absolute ramification index is larger than 1, p1), x becomes isomorphic
to the constant group Z/pZ and j.pu, k is a form of the constant group Z/pZ.

To analyze (R'j,.F)_ = H'(Gal(K*P/K"™), F(K*°P)), we must understand Gal(K"P/K™").

5

Define 2(p) = @ne(N\pN) Z/nZ. Each tamely ramified extension L/K"™" can be normalized s

that it has the form L = K™ [X]/(X® — mk) and these normalizations are compatible since, for
every x € (O52)*, K™ contains the e-th roots of z if e € N\ pN.

This means that the maximal tamely ramified extension of K" in K®°P is Galois with Galois
group Z(p). This gives us an exact sequence

0 — N — Gal(K**P/K™) — 2(p) —0
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where N is a closed normal subgroup whose finite quotients are all p-groups. Now, if My is a
finitely generated continuous Gal(K®°P/K™"")-module with trivial action, then

H!(Gal(K*? /K™) , M) = Homeen. (Gal(K*P /K™) | Mf)
= Tors(,-1y(MF) + p-power torsion,

where Tors(,-1)(Mp) denotes the torsion part of Mp that is prime to p.

If Mp is not a trivial module, then there exists a finite Galois extension L/K™ such that
Gal(K®°P /L) acts trivially on Mp. From the inflation-restriction sequence we obtain the exact
sequence

HY(Gal(L/K™), Mp) — H'(Gal(K*®/K")  Mp) — H'(Gal(K*P /L), Mp),

so that the stalk of R'j,F in 5 is an extension of a subgroup of Homen. (Gal(K®®? /L), Mr) by
H!(Gal(L/K™), Mp).

As an example, consider the p, g with ¢ relatively prime to the characteristic of K. The
short exact Kummer sequence

00— Hg K — Gm,K i) Gm,K — 0

induces a long exact sequence
0— Hq,0p — j*Gm,K — j*Gm,K — le*uq,K — 0.

The latter sequence induces, in turn, the following sequence on the group of components
0.2/qZ 1, 5,7 1% 6,7 — (R jupg i) — 0.

In the case that ¢ is relatively prime to the characteristic of k, the sequence of identity components
corresponds to the exact Kummer sequence

0— Hq, K — Gm,K ﬂ) Gm,K —0

over Ok. By an argument similar to that given in the proof of Theorem 5.3.4, the sequence of
groups of components is exact, whence R'j,piy x = i.Z/qZ. If q is not prime to char(k), then
R'j.pq, xk must be contained in the cokernel of p¥?(@_exponentiation on (O3)*. This is non-
trivial if, and only if, the residue field is not perfect and in this case it is an infinite p-primary
torsion group. If the residue field is perfect, then the Kummer sequence over Ok is exact since, as
(’)fgl is a complete discrete valuation ring and hence (9;? contains a multiplicative representative
system of k%P, we obtain R'j,piq x = Z/qZ.
Summarizing, we have:

Proposition 4.3.1. Let F' be an étale K -group scheme and let L/ K™ be a finite Galois extension
such that Gal(K®P/L) acts trivially on F(KP). Let I := Gal(L/K™"). Further, assume that
F(K®P) is finitely generated as an abelian group. Then there exists a short exact sequence of
abelian groups
0 — H'(I, F(K*P)) — (R'j.F)_, — E(F) — 0.

The group E(F) is zero if F(K®°P) is torsion-free.

If L=K™, ie. H'(I, F(K*P)) =0, then (le*F)g = E(F) is an extension of a p-group by
the prime-to-p torsion part of F(K®°P).

If the residue field is perfect and the characteristic of K is equal to that of k& then, using the
structure theory of complete discrete valuation rings, one can see that Gal(K>P/K™) = Z (see
[S, II, §4, Excercise|). For an étale K-group F with trivial Gal (K®P/K"")-action and a finitely
generated My, we have (le*F)g = Tors(F(KP)).
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Chapter 5

Groups of components via
cohomological methods

In this chapter we develop methods for determining the group of components of the Néron model
of an algebraic K-torus T. First, we consider an approach from [X]. This approach of Xarles
consists in passing from short exact sequences of algebraic K-tori to the (short, in his case)
exact sequences of the Néron models and from these to the long exact sequence for the functor
Hom(-,.Z).

In order to obtain statements about the group of components, we have to do this in the
smooth topology and take advantage of the fact that there exist canonical identifications for
1=0,1

R'Hom(j,T,i+Z) = R'Hom (i, ®(T),i+2)
= i,R'Hom(®(T), Z) = i.R’ Homz (®(T), Z).

In the first three terms the smooth sheaves over Ok, respectively k, are meant. In the last term,
however, ® and Z are the Gal (k*P/k)-modules associated to the corresponding étale sheaves.
We establish these identification in a more general version, so that later instead of Hom(-,.Z)
we may also use the functor Hoim(~7 i*Z[pfl} )
Using Xarles’ approach, we can then replace the free part of the group of components with
an extension
0 — X(T) — Homz(®,Z) — E(T) — 0,

where E(T) is a finitely generated p-primary torsion module which is called the defect term.
The existence of such a defect term is a direct consequence of the non-exactness of the Néron
model.

We then describe the map that a homomorphism of algebraic tori induces on the free part of
the group of components. We can describe this via a commutative diagram using the results for
tori with multiplicative reduction.

We also analyze the case of a short exact sequence of algebraic tori. In this case we can
produce a commutative diagram that is no longer exact and in which, in general, not all torsion
parts of the group of components under consideration appear.

As a second approach, we take up the idea from proposition 2.3.1 and thereby generalize [LL,
Proposition 4.2 a)]:

We consider the case of a sequence of algebraic tori

0—T' —R—T—0

79
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such that the torsion parts of ®(7") and ®(R) have coprime orders. If R'j,7’ = 0 in the smooth
topology, then we obtain an exact sequence

\

0— ®(T")" — ®(R) — ®(T) — 0.

Otherwise we define K := ker(le*T’ — le*R) and obtain a sequence

0 —— BTV ®(R) O(T) —— ®(K) —— 0

which is exact except perhaps at ®(R).

We specify conditions for exactness above and describe the morphism ® (7)Y — ®(R).
The latter morphism can be described via a map between free parts.

Finally, we use this and the canonical surjection

T(K™) = j.T(O5) — i.0(T) (O5)

to compute certain group of components. Since we can view the defect terms as groups of
components, we obtain an estimate of their size. This estimate shows that the defect terms for
tori that split after a residually unramified extension are trivial.

5.1 The free part of the group of components

We first consider the functors Hom and Ext! on the smooth and étale sites over Ok. To distin-
guish them, we use the indices "sm" and "ét" to indicate the site on which these functors are
being considered.

Proposition 5.1.1. (cf. [X, 2.2 and 2.12]) Let T be a smooth Spec Ok -group scheme with
connected fibers and let C be a constant torsion-free abelian sheaf on the étale or smooth sites
over Spec k. In the étale setting, assume in addition that there exists an l € N which is relatively
prime to p := char(k) such that C' contains no l-divisible part, i.e., for every ¢ € C'\ {0}, there
exists an r € N such that I"x # ¢ for every x € C. Then

Hom,, (7,i.C) =0 Hom,, (7,i.C) =0
Extl,,(T,4.C) =0,

whereas in general Ext}, (T, i.C) # 0.
Proof. We begin with the statements about the étale topology. Since
Hom(T,i.C) = i,.Hom(i*T,C),

it suffices to check that Hom(:*7,C) = 0. The étale site over Spec k is equivalent to the category
of continuous Gal (k%P /k)-modules and the sheaves i*7 and C correspond to the Galois modules
T(Ofgh) and C with trivial Galois action, respectively.

Now consider the given [ € N. Since [ is prime to the characteristic of k, multiplication by [ on
T is étale | , 7.3.2]. This means (cf. [M, II, 2.19]) that the stalk T3 = T (O3!) is an I-divisible
group. Since a connected étale k-scheme U is the spectrum of a finite separable extension k' of
k and

Hom (i* 7], ,C|,) € Homz (T(O5) ,C)Gal(ksep/’“')

we must have Hom(i*7,C) = 0 since a homomorphism from an [-divisible group to C' must be
trivial.

)
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As an example regarding the last assertion of the proposition about Ext! in the étale topology,
consider the sheaf Ext}, (G,, o, ,i.Z), which in general does not vanish according to proposition
5.1.2.

Now consider the smooth sheaves. Let U be an arbitrary scheme and let G; and G2 be two
smooth U-group schemes. Via a Yoneda-type argument, we have

Homy g, (G1, G2) = Hom ) /v (G, G2)

in other words, the homomorphisms of the smooth sheaves over U represented by the GG; coincide
with the U-group scheme morphisms from G; to G.

We now have Hom(T,i,C) = i,Hom(i*T,C) since, by the smoothness of 7T, the sheaf i*7T
is represented by 7 ®o, k on the smooth site over k. Now, for every smooth and connected
k-scheme U, the group scheme Ty X1 U is connected as well. Every group homomorphism from a
connected k-group scheme into an étale k-group scheme factors through the identity component
and is therefore trivial. This means that Homy ( 7zl ,C|,;) = 0 and therefore Hom(7,C) = 0
as well.

By | , VIII 5.7], i.C is represented by an étale Ox-group scheme Z := Cp, 1 which is
obtained by gluing copies S; of Spec Ok for each i € C along the generic fiber 7 = Spec K. Note
that this construction is compatible wit