AccueilEnseignementEncadrement

 

 Publications

[61] M. Adimy, A. Chekroun et T. M. Touaoula. Age structured and delay differential-difference model of hematopoietic stem cell dynamics . Discrete and Continuous Dynamical Systems – B. Vol. 20, No 9, 2765–2791 (2015).

[61] M. Adimy, A. Chekroun et T. M. Touaoula. A delay differential-difference system of hematopoietic stem cell dynamics . Comptes Rendus Mathématiqus. 353 (4), 303-307 (2015).

[60] M. Adimy, K. Ezzinbi et C. Marquet. Ergodic and weighted pseudo-almost periodic solutions for partial functional differential equations in fading memory spaces . Journal of Applied Mathematics and Computing. 44, No. 1-2, 147-165 (2014).

[59] M. Adimy, O. Angulo, J. L Opez-Marcos et M. L Opez-Marcos. Asymptotic behaviour of a mathematical model of hematopoietic stem cell dynamics . International Journal of Computer Mathematics , Vol. 91, No. 2, 198–208 (2014).

[58] M. Adimy, O. Angulo, C. Marquet et L. Sebaa. A mathematical model of multistage hematopoietic cell lineages . Discrete and Continuous Dynamical Systems - Series B, Vol. 19, No. 1, 1-26 (2014).

[57] M. Adimy, K. Ezzinbi et M. Alia. Functional differential equations with unbounded delay in extrapolation spa ces. Electronic Journal of Differential Equations , No. 180, 16 p. (2014).

[56] M. Adimy et C. Marquet. On the stability of hematopoietic model with feedback control . C. R. Math. Acad. Sci. Paris. 350, 173-176 (2012).

[55] M. Adimy et F. Crauste. Delay Differential Equations and Autonomous Oscillations in Hematopoietic Stem Cell Dynamics Modeling . Mathematical Modelling of Natural Phenomena EDP Sciences, 7, 1-22 (2012).

[54] M. Adimy, K. Ezzinbi et C. Marquet. Center manifolds for some partial functional differential equations with infinite delay in fading memory spaces . Journal of Concrete & Applicable Mathematics . 10, 168-185 (2012).

[53]  M.Adimy, F.Crauste, H.Hbid et R.Qesmi. Stability and hopf bifurcation for a cell population model with state-dependent delay. SIAM J. Appl. Math, 70 (5), 1611-1633 (2010).

[52]  M.Adimy, F.Crauste et A.El Abdllaoui. Boundedness and Lyapunov function for a nonlinear system of hematopoietic stem cell dynamicsC. R. Acad. Sci. Paris, Ser. I, 348, 373-377 (2010).

[51]
  M.Adimy, F.Crauste et C.Marquet. Asymptotic behavior and stability switch for a mature-immature model of cell differentiation.
Nonlinear Analysis: Real World Applications, 11 (4), 2913-2929 (2010).

[50]  M.Adimy, A.Elazzoui et K.Ezzinbi. Reduction principle and dynamic behaviors for a class of partial functional differential equationsNonlinear Analysis, TMA, 71, 1709-1727 (2009).

[49]  M.Adimy et F.Crauste. Mathematical model of hematopoiesis dynamics with growth factor-dependent apoptosis and proliferation regulationMathematical and Computer Modelling, 49, 2128-2137 (2009).

[48]  C.Kou, M.Adimy et A.Ducrod. On the dynamics of an impulsive model of hematopoiesis. Journal of Mathematical Modelling and Natural Phenomena, 4(2), 89-112 (2009).

[47] M.Adimy et K.Ezzinbi. Existence, regularity, stability and boudedness for some partial functional differential equations . Société Mathématique de France, Séminaires et Congrès 17, 157-188, (2009).

[46]  M.Adimy, S.Bernard, J.Clairambault, F.Crauste, S.Génieys et L.Pujo-Menjouet. Modélisation de la dynamique de l'hématopoïèse normale et pathologique. Hématologie, 14 (5), 339-350 (2008).
 
[45]  M.Adimy, F.Crauste et A.El Abdllaoui. Discrete maturity-structured model of cell differentiation with applications to acute myelogenous leukemia. Journal of Biological Systems, Vol. 16 (3), 395-424, (2008).

[44]  M.Adimy, O.Angulo, F.Crauste et J.C.Lopez-Marcos. Numerical integration of a mathematical model of hematopoietic stem cell dynamics. Computers & Mathematics with Applications, Vol. 56 (3), 594-60, (2008).

[43]  M.Adimy, K.Ezzinbi et A.Ouhinou. Behavior near hyperbolic stationary solutions for partial differential equations with infinite delay. Nonlinear Analysis, TMA, 68, No. 8 (A), 2280-2302 (2008).

[42]  M.Adimy et F.Crauste. Modelling and asymptotic stability of  a growth factor-dependent stem cells dynamics model with distributed delay. Discrete and Continuous Dynamical Systems Series B, 8(1), 19-38 (2007).

[41]  M.Adimy, A.Elazzoui et K.Ezzinbi. Bohr-Neugebauer type theorem for some partial neutral functional differential equations. Nonlinear Analysis, TMA. 66, 1145-1160 (2007).

[40]  M.Adimy et K.Ezzinbi. Existence and stability in the alpha-norm for partial functional differential equations of neutral type. Annali di matematica pura ed applicata, 185(3), 437-460 (2006).

[39]  M.Adimy, F.Crauste et A.El Abdllaoui. Asymptotic behavior of a discrete maturity sturctured system of hematopoietic stem cell dynamics with several delays. Journal of Mathematical Modelling and Natural Phenomena, 1(2), 1-19 (2006).

[38]  M.Adimy, F.Crauste et S.Ruan. Modelling hematopoiesis mediated by growth factors with applications to periodic hematological diseases. Bulletin of Mathematical Biology, 68 (8), 2321-2351 (2006).

[37]  M.Adimy, F.Crauste et S.Ruan. Periodic Oscillations in Leukopoiesis Models with Two Delays. Journal of Theoretical Biology, 242, 288-299 (2006).

[36]  M.Adimy, F.Crauste, A.Halanay, M.Neamtu et D.Opris. Stability of limit cycles in a pluripotent stem cell dynamics model. Chaos, Solitons and Fractals, 27 (4), 1091-1107 (2006).

[35]  M.Adimy, K.Ezzinbi et A.Ouhinou. Variation of constants formula and almost periodic solutions for some partial functional differential equations with infinite delay. Journal of Mathematical Analysis and Applications, 317, 668-689 (2006).

[34]  M.Adimy, K.Ezzinbi et J.Wu. Center manifold and stability in critical cases for some partial functional differential equations. International Journal of Evalution Equations, 2, 69-95 (2006).

[33]  K.Ezzinbi et M.Adimy. The Basic Theory of Abstract Semilinear Functional Differential Equations with Non-Dense Domain. "Delay Differential Equations with Applications", NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 205, 590 p., Springer, Berlin (2006).

[32]  M.Adimy, F.Crauste et S.Ruan. A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia. SIAM J. Appl. Math., 65 (4), 1328-1352 (2005).

[31]  M.Adimy, F.Crauste et S.Ruan. Stability and Hopf bifurcation in a mathematical model of pluripotent stem cell dynamics. Nonlinear Analysis: Real World Applications, 6 (4), 651-670 (2005).

[30]  M.Adimy et F.Crauste. Existence, positivity and stability for a nonlinear model of cellular proliferation. Nonlinear Analysis: Real World Applications, 6 (2), 337-366 (2005).

[29]  M.Adimy, F.Crauste et L.Pujo-Menjouet. On the stability of a maturity structured model of cellular proliferation. Dis. Cont. Dyn. Sys. Ser. A, 12 (3), 501-522 (2005).

[28]  M.Adimy et K.Ezzinbi. Existence and stability of solutions for a class of partial neutral functional differential equations. Hiroshima Mathematical Journal, 34, 251-294 (2004).

[27]  M.Adimy, H.Bouzahir et K.Ezzinbi. Local existence or a class of partial neutral functional differential equations with infinite delay. Differetial Equations and Dynamical Systems, Vol 12, N° 3 et 4, 353-370 (2004).

[26]  M.Adimy, H.Bouzahir et K.Ezzinbi. Existence and stability for some partial neutral functional differential equations with infinite delay. Journal of Mathematical Analysis and Applications, 294, N° 2, 438-461 (2004).

[25]  M.Adimy, K.Ezzinbi et K.Laklach. Nonlinear semigroup of a class of abstract semilinear functional differential equations with non-dense domain. Acta Mathematica Sinica, 20, N° 5, 933-942 (2004).

[24]   M.Adimy et F.Crauste. Stability and instability induced by time delay in an erythropoiesis model. Monografias del Seminario Matematico Garcia de Galdeano, 31, 3-12, (2004).

[23]
 
F.Crauste et M.Adimy. Bifurcation dans un modèle non-linéaire de production du sang. Comptes-rendus de la 7ième Rencontre du Non-linéaire, Non-linéaire Publications, Paris, 73-78, (2004).


[22]  M.Adimy et F.Crauste. Global stability of a partial differential equation with distributed delay due to cellular replication. Nonlinear Analysis, TMA, 54 (8), 1469-1491 (2003).

[21]  M.Adimy et F.Crauste. Un modèle non-linéaire de prolifération cellulaire : extinction des cellules et invariance. Comptes Rendus Mathématiques, 336, 559-564 (2003).

[20]  M.Adimy et L.Pujo-Menjouet. Asymptotic behavior of a singular transport equation modelling cell divisionDis. Cont. Dyn. Sys. Ser. B, 3 (3), 439-456 (2003).

[19]  M.Adimy et L.Pujo-Menjouet. A mathematical model describing cellular division with a proliferating phase duration depending on the maturity of cells. Electron. J. Diff. Equ. 2003, 107, 14p (2003).

[18]  M.Adimy, H.Bouzahir et K.Ezzinbi. Local existene and stability for some partial functional differential equations with infinite delay. Nonlinear Analysis, TMA, 48A (3), 323-348 (2002).

[17]  M.Adimy, K.Ezzinbi et K.Laklach. Specytral decomposition for parial neutral functional differential equations. Canad. Appl. Math. Quart., 9 (1), 1-34 (2001).

[16]  M.Adimy, H.Bouzahir et K.Ezzinbi. Existence for a class of partial functional differential equations with infinite delay. Nonlinear Analysis, TMA, 46A (1), 91-112 (2001).

[15]  M.Adimy et L.Pujo-Menjouet. A singular transport model describing cellular division. C.R. Acad. Sci. Paris, 332 (12), 1071-1076 (2001).

[14]  M.Adimy et M.Laklach. Local Hopf bifurcation for some class of partial differential equations. Actes des 6èmes journées Zaragoza-Pau de mathématiques appliquées et de statistiques, 21-28, (2001).

[13]  M.Adimy, K.Ezzinbi et K.Laklach. Existence of solution for a class of partial neutral differential equtations. C.R. Acad. Sci. Paris, 330, 957-962 (2000).

[12]
 M.Adimy et K.Ezzinbi. Existene and linearized stability for partial neutral functional differential equations with non-dense domains. Diff. Equ. and Dyn. Syst., 7, 371-417 (1999).

[11]
 
M.Adimy et K.Ezzinbi. Strict solutions of nonlinear hyperbolic neutral differential equations. Applied Mathematics Letters, 12, p. 107-112, (1999).

[10]
 M.Adimy. On the compactness of the semigroup solution of abstract semilinear functional differential equations with a non-dense domain. Publ. Semin. Mat. García de Galdeano, Serie II, 20, 45-52, (1999).


[9]
 
M.Adimy et K.Ezzinbi. Local existence and linearized stability for partial functional differential equations. Dynamic Systems and Applications, 7, p. 389-404, (1998).

[8]  M.Adimy et K.Ezzinbi. A Class of Linear Partial Neutral Functional differential Equations with Non-Dense Domain. Journal of Differential Equations, 147, p. 285-332, (1998).

[7]  M.Adimy et K.Ezzinbi. Semi-groupes intégrés et équations à retard en dimension infinie. C. R. Acad. Sci. Paris, t. 323, Série I, 481-486, (1996).

[6]
 
M.Adimy et K.Ezzinbi. Equations de type neutre et semi-groupes intégrés. C. R. Acad. Sci. Paris t. 318, Série I, 529-534, (1994).

[5]  M.Adimy. Integrated semigroups and delay differential equations. J. of Math. Anal. and Appl., 177, No.1, 125-134, (1993).

[4]
 M.Adimy et O.Arino. Bifurcation de Hopf globale pour des équations à retard par des semi-groupes intégrés. C. R. Acad. Sci. Paris, t. 317, Série I, 767-772, (1993).

[3]  M.Adimy et K.Ezzinbi. Equations de type neutre et semi-groupes intégrés Actes des 3èmes Journées Saragosse-Pau de Mathématiques Appliquées, p. 49-58, (1993).

[2]  M.Adimy et A.Agouzal. Une méthode numérique de bifurcation de Hopf locale par des semi-groupes intégrés pour une équation à mémoire. Actes des 2èmes Journées Saragosse-Pau de Mathématiques Appliquées, p. 37-46, (1992).

[1]
 M.Adimy. Bifurcation de Hopf locale par des semi-groupes intégrés. C. R. Acad. Sci. Paris, t. 311, Série I, 423-428, (1990).

AccueilEnseignementEncadrement