Publications
[61] M. Adimy, A. Chekroun et T. M. Touaoula. Age structured and delay
differential-difference model of hematopoietic stem cell dynamics .
Discrete and Continuous Dynamical Systems – B. Vol. 20, No 9, 2765–2791
(2015).
[61] M. Adimy, A. Chekroun et T. M. Touaoula. A delay
differential-difference system of hematopoietic stem cell dynamics .
Comptes Rendus Mathématiqus. 353 (4), 303-307 (2015).
[60]
M. Adimy, K. Ezzinbi et C. Marquet. Ergodic and weighted pseudo-almost
periodic solutions for partial functional differential equations in
fading memory spaces . Journal of Applied Mathematics and Computing.
44, No. 1-2, 147-165 (2014).
[59] M. Adimy, O. Angulo, J. L Opez-Marcos et M. L Opez-Marcos. Asymptotic
behaviour of a mathematical model of hematopoietic stem cell dynamics .
International Journal of Computer Mathematics , Vol. 91, No. 2, 198–208
(2014).
[58] M. Adimy, O. Angulo, C. Marquet et L. Sebaa. A mathematical model of
multistage hematopoietic cell lineages . Discrete and Continuous
Dynamical Systems - Series B, Vol. 19, No. 1, 1-26 (2014).
[57] M. Adimy, K. Ezzinbi et M. Alia. Functional differential equations
with unbounded delay in extrapolation spa ces. Electronic Journal of
Differential Equations , No. 180, 16 p. (2014).
[56]
M. Adimy et C. Marquet. On the stability of hematopoietic model with
feedback control . C. R. Math. Acad. Sci. Paris. 350, 173-176 (2012).
[55] M. Adimy et F. Crauste. Delay Differential Equations and Autonomous
Oscillations in Hematopoietic Stem Cell Dynamics Modeling .
Mathematical Modelling of Natural Phenomena EDP Sciences, 7, 1-22
(2012).
[54] M. Adimy, K. Ezzinbi et C. Marquet. Center manifolds for some partial
functional differential equations with infinite delay in fading memory
spaces . Journal of Concrete & Applicable Mathematics . 10, 168-185
(2012). [53] M.Adimy, F.Crauste, H.Hbid et R.Qesmi. Stability and hopf bifurcation for a cell population model with state-dependent delay. SIAM J. Appl.
Math, 70 (5), 1611-1633 (2010).[52] M.Adimy, F.Crauste
et A.El Abdllaoui. Boundedness and Lyapunov function for a nonlinear system of hematopoietic stem cell dynamics. C. R. Acad. Sci. Paris, Ser. I, 348, 373-377 (2010). [51]
M.Adimy, F.Crauste et C.Marquet. Asymptotic
behavior and stability switch for a mature-immature model of cell
differentiation. Nonlinear
Analysis: Real World Applications, 11 (4), 2913-2929 (2010). [50] M.Adimy, A.Elazzoui et
K.Ezzinbi. Reduction principle and dynamic behaviors for a class of partial functional differential equations. Nonlinear
Analysis, TMA, 71, 1709-1727 (2009).[49]
M.Adimy et F.Crauste. Mathematical
model of hematopoiesis dynamics with growth factor-dependent apoptosis
and proliferation regulation. Mathematical and Computer Modelling, 49, 2128-2137 (2009). [48] C.Kou, M.Adimy et A.Ducrod. On the dynamics of an impulsive model of hematopoiesis. Journal of Mathematical
Modelling and Natural Phenomena, 4(2), 89-112 (2009).
[47] M.Adimy
et
K.Ezzinbi. Existence,
regularity, stability and boudedness for some partial functional
differential equations
. Société
Mathématique de France, Séminaires et Congrès 17, 157-188,
(2009).[46]
M.Adimy, S.Bernard, J.Clairambault, F.Crauste, S.Génieys
et L.Pujo-Menjouet. Modélisation de la dynamique de l'hématopoïèse normale et pathologique. Hématologie, 14 (5), 339-350 (2008). [45]
M.Adimy,
F.Crauste et A.El Abdllaoui.
Discrete
maturity-structured model of cell differentiation with applications to acute
myelogenous leukemia. Journal of Biological Systems, Vol. 16 (3), 395-424, (2008).[44]
M.Adimy,
O.Angulo, F.Crauste et J.C.Lopez-Marcos. Numerical integration of a
mathematical model of hematopoietic stem cell dynamics. Computers & Mathematics with Applications, Vol. 56 (3), 594-60, (2008).[43]
M.Adimy, K.Ezzinbi et
A.Ouhinou. Behavior
near hyperbolic stationary solutions for partial differential equations with infinite
delay. Nonlinear
Analysis, TMA, 68, No. 8 (A), 2280-2302 (2008). [42] M.Adimy et F.Crauste. Modelling
and asymptotic stability of a growth factor-dependent stem
cells dynamics
model
with distributed delay. Discrete and Continuous
Dynamical Systems Series B, 8(1), 19-38 (2007).[41]
M.Adimy, A.Elazzoui et
K.Ezzinbi. Bohr-Neugebauer
type theorem for some partial neutral functional differential equations.
Nonlinear Analysis,
TMA. 66, 1145-1160 (2007).[40]
M.Adimy et K.Ezzinbi.
Existence and stability
in the alpha-norm for partial functional differential equations of neutral type.
Annali di matematica pura
ed applicata, 185(3), 437-460 (2006).[39]
M.Adimy, F.Crauste et
A.El Abdllaoui. Asymptotic
behavior of a
discrete maturity sturctured system of hematopoietic stem cell dynamics
with several delays. Journal of Mathematical
Modelling and Natural Phenomena, 1(2), 1-19
(2006).[38]
M.Adimy, F.Crauste et S.Ruan.
Modelling hematopoiesis mediated by growth factors with
applications to periodic
hematological diseases. Bulletin of Mathematical
Biology, 68 (8), 2321-2351 (2006).[37]
M.Adimy, F.Crauste et
S.Ruan. Periodic Oscillations in Leukopoiesis
Models with Two Delays. Journal of Theoretical
Biology, 242, 288-299 (2006).[36]
M.Adimy, F.Crauste,
A.Halanay, M.Neamtu et D.Opris. Stability of limit cycles in a
pluripotent stem cell dynamics
model. Chaos,
Solitons and Fractals, 27 (4), 1091-1107 (2006).[35] M.Adimy, K.Ezzinbi et
A.Ouhinou. Variation
of constants formula and almost periodic solutions for some partial
functional differential equations with infinite delay.
Journal of Mathematical
Analysis and Applications, 317, 668-689 (2006).[34]
M.Adimy, K.Ezzinbi et J.Wu.
Center manifold and
stability in critical cases for some partial functional differential equations.
International
Journal of Evalution Equations, 2, 69-95 (2006).[33]
K.Ezzinbi
et M.Adimy. The Basic
Theory of Abstract Semilinear Functional Differential Equations with
Non-Dense Domain.
"Delay
Differential Equations with Applications",
NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 205,
590 p., Springer, Berlin (2006).[32]
M.Adimy,
F.Crauste et S.Ruan. A mathematical study of the
hematopoiesis process with applications to chronic
myelogenous leukemia. SIAM J. Appl. Math., 65
(4), 1328-1352 (2005).[31]
M.Adimy,
F.Crauste et S.Ruan. Stability and Hopf
bifurcation in a mathematical model of pluripotent stem cell
dynamics. Nonlinear
Analysis: Real World Applications, 6 (4), 651-670 (2005).[30]
M.Adimy et F.Crauste.
Existence, positivity and
stability for a nonlinear model of cellular proliferation. Nonlinear
Analysis: Real World Applications, 6 (2), 337-366 (2005).[29]
M.Adimy,
F.Crauste et L.Pujo-Menjouet. On the stability
of a maturity structured model of cellular proliferation.
Dis. Cont. Dyn.
Sys. Ser. A, 12 (3), 501-522 (2005).[28] M.Adimy et
K.Ezzinbi. Existence
and stability of solutions for a class of partial neutral
functional differential equations.
Hiroshima Mathematical
Journal, 34, 251-294 (2004).[27]
M.Adimy, H.Bouzahir et K.Ezzinbi. Local existence or a class of
partial neutral functional differential equations with infinite delay.
Differetial
Equations and Dynamical Systems, Vol 12, N°
3 et 4, 353-370 (2004).[26] M.Adimy,
H.Bouzahir et K.Ezzinbi. Existence
and stability for some
partial neutral functional differential equations with infinite delay.
Journal of Mathematical Analysis and
Applications, 294, N° 2, 438-461 (2004).[25]
M.Adimy, K.Ezzinbi et
K.Laklach. Nonlinear
semigroup of a class of abstract semilinear
functional differential equations with non-dense domain. Acta
Mathematica Sinica,
20, N° 5, 933-942 (2004).[24]
M.Adimy
et F.Crauste.
Stability and
instability induced by time delay in an erythropoiesis model.
Monografias del Seminario
Matematico Garcia de Galdeano, 31, 3-12,
(2004). [23]
F.Crauste et M.Adimy. Bifurcation
dans un
modèle
non-linéaire de production du sang.
Comptes-rendus
de la 7ième Rencontre
du Non-linéaire, Non-linéaire Publications, Paris, 73-78, (2004).[22]
M.Adimy et F.Crauste.
Global stability of a partial differential equation with
distributed delay due to cellular replication.
Nonlinear Analysis,
TMA, 54 (8), 1469-1491 (2003).[21]
M.Adimy et F.Crauste.
Un modèle non-linéaire de prolifération cellulaire :
extinction des cellules et invariance.
Comptes
Rendus Mathématiques, 336, 559-564 (2003).[20]
M.Adimy
et L.Pujo-Menjouet. Asymptotic
behavior of a singular transport equation modelling cell division. Dis.
Cont.
Dyn. Sys. Ser. B, 3
(3), 439-456 (2003).[19]
M.Adimy
et L.Pujo-Menjouet. A
mathematical model describing cellular division with a proliferating
phase duration
depending on the maturity of cells. Electron. J. Diff. Equ.
2003, 107, 14p (2003).[18]
M.Adimy,
H.Bouzahir et K.Ezzinbi. Local existene and stability for
some partial functional differential equations with
infinite delay. Nonlinear
Analysis, TMA, 48A (3), 323-348 (2002).[17]
M.Adimy,
K.Ezzinbi
et K.Laklach. Specytral
decomposition for parial neutral functional differential equations. Canad. Appl. Math.
Quart.,
9 (1), 1-34 (2001).[16]
M.Adimy,
H.Bouzahir et K.Ezzinbi. Existence
for a class of partial
functional differential equations with infinite delay.
Nonlinear Analysis, TMA,
46A (1), 91-112 (2001).[15]
M.Adimy
et L.Pujo-Menjouet. A
singular transport model describing cellular division. C.R.
Acad. Sci. Paris, 332 (12),
1071-1076 (2001).[14]
M.Adimy
et M.Laklach. Local
Hopf bifurcation for some class of partial differential equations.
Actes des 6èmes journées
Zaragoza-Pau de mathématiques appliquées et de
statistiques, 21-28, (2001).
[13]
M.Adimy, K.Ezzinbi
et K.Laklach. Existence
of solution for a class of partial neutral differential equtations. C.R. Acad. Sci. Paris, 330,
957-962 (2000). [12]
M.Adimy
et K.Ezzinbi. Existene
and linearized stability for partial neutral functional differential
equations with non-dense
domains. Diff.
Equ. and Dyn. Syst., 7, 371-417
(1999).
[11]
M.Adimy et
K.Ezzinbi. Strict
solutions of nonlinear hyperbolic neutral differential equations.
Applied Mathematics
Letters, 12, p.
107-112, (1999). [10]
M.Adimy. On
the compactness of the
semigroup solution of abstract semilinear functional differential
equations with
a non-dense domain.
Publ. Semin. Mat.
García de Galdeano, Serie II, 20, 45-52, (1999). [9]
M.Adimy
et K.Ezzinbi.
Local existence and
linearized stability for partial functional differential equations.
Dynamic
Systems and
Applications, 7, p. 389-404, (1998).
[8] M.Adimy
et K.Ezzinbi. A Class of Linear Partial
Neutral Functional differential Equations with Non-Dense Domain. Journal
of Differential
Equations, 147, p. 285-332, (1998). [7] M.Adimy
et K.Ezzinbi.
Semi-groupes intégrés et
équations à retard en dimension infinie. C.
R. Acad. Sci. Paris, t. 323, Série I,
481-486, (1996).
[6]
M.Adimy
et K.Ezzinbi. Equations de type neutre et
semi-groupes intégrés. C.
R. Acad. Sci. Paris t.
318, Série I, 529-534, (1994).
[5] M.Adimy. Integrated semigroups and delay
differential equations. J.
of Math. Anal. and
Appl., 177, No.1, 125-134, (1993). [4] M.Adimy
et O.Arino.
Bifurcation de Hopf
globale pour des équations à retard par des semi-groupes intégrés.
C.
R. Acad. Sci. Paris, t.
317, Série I, 767-772, (1993).
[3] M.Adimy
et
K.Ezzinbi. Equations de type neutre et semi-groupes intégrés. Actes des 3èmes Journées Saragosse-Pau de Mathématiques Appliquées, p. 49-58, (1993).[2] M.Adimy
et A.Agouzal. Une
méthode
numérique de bifurcation de Hopf locale par des semi-groupes intégrés
pour une
équation à mémoire.
Actes des 2èmes Journées Saragosse-Pau de Mathématiques Appliquées, p.
37-46, (1992).
[1] M.Adimy.
Bifurcation de Hopf
locale par
des semi-groupes intégrés. C. R. Acad. Sci. Paris, t.
311, Série I, 423-428, (1990).
|
|
|