\(\,{\color{blue}f(x)=\tan(x)}\,\) | \(\,{\color{red}g(y)=\mathrm{th}(y)}\,\) |
Posons \({\color{lime}\varphi}={\color{red}g}\boldsymbol{\circ} {\color{blue}f}:
\mathopen]-\frac{\pi}{2},\frac{\pi}{2}\mathclose[\longrightarrow\mathopen]-1,1[\)
\(\color{magenta}\left\{\begin{array}{l}\vphantom{\frac{b^b}{q}}
\psi:[0,1]\longrightarrow[0,1]
\\
\psi(x)=\dfrac{1}{\mathrm{e}^{2\cot(\pi x)}+1} \;\text{ si }\; x\!\in\!\mathopen]0,1[
\\[0.5ex]
\psi(0)=0 \;\text{ et }\; \psi(1)=1
\end{array}\right.\)
\(\color{magenta}\forall n\!\in\!\mathbb{N}^*,\;\psi^{\lower 1ex{(n)}}(0)=\psi^{\lower 1ex{(n)}}(1)=0\)
\(\color{cyan}\left\{\begin{array}{c}\vphantom{\frac{b^b}{q}}
\hat{\psi}:\mathbb{R}\longrightarrow[0,1]
\\
\hat{\psi}(x)=0 \text{ si } x\leqslant 0
\\
\hat{\psi}(x)=1 \text{ si } x\geqslant 1
\end{array}\right.\)
◄ | Sommaire | ► |