Mouillage Steiner Cube Manoe Smooth Nanofil Allen-Cahn Surface

Articles soumis

  1. 1
    Phase field approximation for Plateau's problem: a curve geodesic distance penalty approach — M. Bonnivard, E. Bretin, A. Lemenant, E. Machefert, (soumis) [PDF]
  2. 2
    Multi-parameter identification in systems of PDEs from internal data — E. Bretin, E. Kacedan, L. Seppecher, (soumis) [PDF]
  3. 3
    A Cahn--Hilliard--Willmore phase field model for non-oriented interfaces — E. Bretin, A. Chambolle, S. Masnou, (soumis) [PDF]
  4. 4
    A thickness-aware Allen-Cahn equation for the mean curvature flow of thin structures — E. Bretin, C.-K. Huan, S. Masnou, (soumis) [PDF]

Articles acceptés

  1. 1
    A mobility-SAV approach for a Cahn-Hilliard equation with degenerate mobilities — E. Bretin, L. Calatroni and S. Masnou, Discrete and Continuous Dynamical Systems Series S, 17 1 131-159, 2024
  2. 2
    Multiphase mean curvature flows approximation : the case of non harmonically additive mobilities — E. Bonnetier, E. Bretin, and S. Masnou, , Mathematical Methods in the Applied Sciences, 46(9):11262-11282, (2023).
  3. 3
    A Cahn-Hilliard multiphase system with mobilities for the simulation of wetting — E. Bretin, R. Denis, S. Masnou, A. Sengers, and G. Terii, ESAIM: M2AN (Mathematical Modelling and Numerical Analysis), 57(3):1473-1509, (2023)
  4. 4
    Tomographic reconstruction from Poisson distributed data: a fast and convergent EM-TV dual approach — V. Maxim, Y. Feng, H. Banjak, and E. Bretin, Numerical Algorithms, 94,701-731, (2023)
  5. 5
    Shape sensitivity analysis of an elastic contact problem: convergence of the Nitsche based finite element approximation — E. Bretin, J. Chapelat, C. Douanla-Lontsi, T. Homolle, Y. Renard, Nonlinear Analysis: Real World Applications, accepté, (2023)
  6. 6
    Shear modulus identification from full field static displacement data — L. Seppecher, E. Bretin, P. Millien L. Petrusca and E. Brusseau, UMB, accepté (2023)
  7. 7
    Learning phase field mean curvature flows with neural networks — E. Bretin, R. Denis, S. Masnou, G. Terii, J. of Comput. Phys., 470, (2022)
  8. 8
    Shape optimization of a linearly elastic rolling structure under unilateral contact using Nitsche's method and cut finite elements — E. Bretin, J. Chapelat, P.-Y. Outtier, Y. Renard, Comput Mech 70, 205-224 (2022).
  9. 9
    Approximation of surface diffusion flow: a second order variational Cahn--Hilliard model with degenerate mobilities — E. Bretin, S. Masnou, A. Sengers and G. Terii, M3AS, vol 32, 04, 793-829 (2022)
  10. 10
    Stability for finite element discretization of some elliptic inverse parameter problems from internal data -- application to elastography — E. Bretin, P. Millien and L. Seppecher, SIAM Journal on Imaging Sciences, accepté, (2022)
  11. 11
    A direct linear inversion for discontinuous elastic parameters recovery from internal displacement information only — H. Ammari, E. Bretin, P. Millien, and L. Seppecher, Numerische Mathematik, 147(1) 189-226 (2021)
  12. 12
    Numerical approximation of the Steiner problem in dimension 2 and 3 — M. Bonnivard, E. Bretin, and A. Lemenant, Math. Comp., 89, 1--43 (2020)
  13. 13
    Stable IMEX schemes for a Nitsche-based approximation of elastodynamic contact problems. Selective mass scaling interpretation — E. Bretin and Y. Renard, SMAI Journal of Computational Mathematics, 6, 159-185 (2020)
  14. 14
    Phase-field modelling and computing for a large number of phases — E. Bretin, R. Denis, J.-O. Lachaud, and E. Oudet, ESAIM Math. Model. Numer. Anal., 53, 3, 805--832 (2019)
  15. 15
    How to position sensors in thermo-acoustic tomography — M. Bergounioux, E. Bretin, and Y. Privat, Inverse Problems,35,7, 074003,25p (2019)
  16. 16
    Multiphase mean curvature flows with high mobility contrasts: a phase-field approach, with applications to nanowires — E. Bretin, A. Danescu, J. Penuelas, and S. Masnou, J. Comput. Phys., 365, 324--349 (2018)
  17. 17
    A time reversal algorithm in acoustic media with {D}irac measure approximations — E. Bretin, C. Lucas and Y. Privat, Inverse Problems, 34, 4, 045004, 24p, (2018)
  18. 18
    Assessment of the effect of tissue motion in diffusion MRI: Derivation of new apparent diffusion coefficient formula — E. Bretin, I. Mekkaoui, and J. Pousin, Inverse Problems and Imaging,12, 1, 125--152 (2018)
  19. 19
    A new phase field model for inhomogeneous minimal partitions, and applications to droplets dynamics — E. Bretin, S. Masnou, Interfaces Free Bound., 19, 141--182, (2017)
  20. 20
    Volume reconstruction from slices — E. Bretin, F. Dayrens, and S. Masnou, SIAM Journal on Imaging Sciences, 10, 2326-2358 (2017)
  21. 21
    Phase-field approximations of the Willmore functional and flow — E. Bretin, S. Masnou, and E. Oudet, Numerische Mathematik, 131, 115-171 (2015)
  22. 22
    Mathematical modeling in full-field optical coherence elastography — H. Ammari, E. Bretin, P. Millien, J.K. Seo, and L. Seppecher, SIAM Journal on Applied Mathematics, 75,1015-1030 (2015)
  23. 23
    Time-reversal in visco-elastic media — H. Ammari, E. Bretin, J. Garnier, and A. Wahab, European Journal of Applied Mathematics, 24 565-600 (2013)
  24. 24
    Localization, stability, and resolution of topological derivative based imaging functionals in elasticity — H. Ammari, E. Bretin, J. Garnier, W. Jing, H. Kang, and A. Wahab, SIAM Journal on Imaging Sciences 6, 2174-2212 (2013)
  25. 25
    Time reversal in attenuating acoustic media — H. Ammari, E. Bretin, J. Garnier, and A. Wahab, Contemporary Mathematics, 548, 151-153 (2012)
  26. 26
    Noise source localization in an attenuating medium — H. Ammari, E. Bretin, J. Garnier, and A. Wahab, SIAM Journal on Applied Mathematics, 72, 317-336 (2012)
  27. 27
    Phase field method for mean curvature flow with boundary constraints — E. Bretin and V. Perrier, ESAIM: Mathematical Modelling and Numerical Analysis, 46(06), 1509-1526 (2012)
  28. 28
    Consistency result for a non monotone scheme for anisotropic mean curvature flow — E. Bonnetier, E. Bretin and A. Chambolle, Interfaces and Free Boundaries, 14 1-35 (2012)
  29. 29
    Some anisotropic viscoelastic Green functions — E. Bretin and A. Wahab, Contemporary Mathematics, 548, 129-149 (2012)
  30. 30
    Coherent interferometry algorithms for photoacoustic imaging — H. Ammari, E. Bretin, J. Garnier and V. Jugnon, SIAM J. Numerical Analysis, 50(5) 2259-2280 (2012)
  31. 31
    Regularization of discrete contour by Willmore energy — E. Bretin, J.-O. Lachaud, and E. Oudet, Journal of Mathematical Imaging and Vision, 40(2) 2014-229 (2011)
  32. 32
    On the Green function in visco-elastic media obeying frequency power law — E. Bretin, L. Guadarrama Bustos, and A. Wahab, Mathematical Methods in the Applied Sciences, 34(7) 819-830 (2011)
  33. 33
    A modified phase field approximation for mean curvature flow with conservation of volume — M. Brassel and E. Bretin, Mathematical Methods in the Applied Sciences, 34(10) 1157-1180 (2011)

Chapitres de livre - Actes de conférences

  1. 1
    Dynamic Single-Pixel Imaging on an Extended Field of View without Warping the Patterns — Thomas Maitre, Elie Bretin, Romain Phan, Nicolas Ducros, Michaël Sdika, 2024 International Conference on Medical Image Computing and Computer-Assisted Intervention
  2. 2
    Fast deconvolution using a combination of Richardson-Lucy iterations and diffusion regularisation — Thibaut Modrzyk, Ane Etxebeste, Elie Bretin, Voichita Maxim, 2024 32nd European Signal Processing Conference (EUSIPCO)
  3. 3
    Hybrid single-pixel camera for dynamic hyperspectral imaging — Thomas Maitre, Elie Bretin, Romain Phan, Nicolas Ducros, Michaël Sdika, 2024 IEEE International Symposium on Biomedical Imaging (ISBI)
  4. 4
    Approximate Bayesian denoising for deep image reconstruction in the presence of signal-dependent noise — Luis Amador, Laurent Mahieu-Williame, Elie Bretin, Nicolas Ducros, XXIXème Colloque Francophone de Traitement du Signal et des Images (GRETSI'23)
  5. 5
    Reconstructing the shear modulus contrast of linear elastic and isotropic media in quasi-static ultrasound elastography — E. Brusseau, L. Petrusca, E. Bretin, P. Millien, L. Seppecher, 2021, 43rd Annual International Conference of the IEEE EMBS
  6. 6
    Efficiency of TV-regularized algorithms in computed tomography with Poisson-Gaussian noise — T. Leuliet, L. Friot--Giroux, W. Basszis, E. Bretin, O. Ersen, F. Peyrin, B. Sixou, V. Maxim, 2020 28th European Signal Processing Conference (EUSIPCO)
  7. 7
    On a new phase field model for the approximation of interfacial energies of multiphase systems — E. Bretin and S. Masnou, Topological Optimization and Optimal Transport in the Applied Sciences, 17:123, Berlin, Boston: De Gruyter (2017)
  8. 8
    Phase-field models for the approximation of the Willmore functional and flow — E. Bretin, S. Masnou, and E. Oudet, ESAIM: ProcS 45 118-127 (2014)
  9. 9
    Photo-acoustic imaging for attenuating acoustic media — H. Ammari, E. Bretin, V. Jugnon, and A. Wahab,, Chapter in a Lecture Notes in Mathematics Volume, Springer-Verlag (2011)

Livres - Manuscrits

  1. 1
    Quelques problèmes de modélisation mathématique et numérique : évolution d’interfaces géométriques et problèmes inverses appliqués à l’imagerie médicale — E. Bretin, habilitation à diriger des recherches
  2. 2
    Mathematical Methods in Elasticity Imaging — H. Ammari, E. Bretin, J. Garnier, H. Kang, H. Lee, and A. Wahab, Princeton Series in Applied Mathematics, Princeton University Press, (2015)
  3. 3
    Méthodes par courbure moyenne et méthodes de champ de phase — E. Bretin, thèse de Doctorat de l'INPG