CV research publications teaching

Prof. Arnaud Heibig
Publications

Preprints

[31] A. Heibig.
Differential equations with coefficients of negative differential dimension.
submitted, arXiv:1701.02636v2, 2017.

[30] A. Heibig.
Linear differential equations with distributional coefficients.
submitted, 2017.

Refereed Articles

[29] I. S. Ciuperca, A. Heibig, L. I. Palade.
On the IAA version of the Doi-Edwards model versus the K-BKZ rheological model for polymer fluids: A global existence result for shear flows with small initial data.
European J. Appl. Math., 28N1, 42-90, 2017.

[28] I. S. Ciuperca, A. Heibig.
Existence and uniqueness of a density probability solution for the stationnary Doi-Edwards equation.
Ann. Inst. H. Poincaré Anal. Non Linéaire, 33N5, 1353-1373, 2016.

[27] A. Heibig.
Some properties of the Doi-Edwards and K-BKZ equations and operators.
Nonlinear Analysis TMA, 109, 284, 2014.

[26] A. Heibig, L. I. Palade.
On the existence of solutions to the fractional derivative equations $u^{\alpha}+Au=f$ of relevance to diffusion in complex systems.
Nonlinear Anal. Model. Control, N2, 153-168, 2012.

[25] I. S. Ciuperca, A. Heibig, L. I. Palade.
Existence and uniqueness of solutions for the Doi Edwards polymer melt model: the case of the (full) nonlinear configurational density equation.
Nonlinearity, 25N4, 991-1009, 2012.

[24] A. Heibig.
Existence of solutions for a fractional derivative system of equations.
Integral equations and operator theory, 72N4, 483-508, DOI 10. 1007/s00020-012-1950-3, 2012.

[23] A. Heibig, L. I. Palade.
Well posedness of a linearized fractional derivative fluid model.
Journal of mathematical analysis and applications, Volume 380 Issue 1, pp. 188-203 DOI: 10.1016/j.jmaa. 2011.02.047, 2011.

[22] A. Heibig, L. I. Palade.
On the rest state stability of an objective fractional derivative viscoelastic fluid model.
Journal of mathematical physics, Volume 49, Issue 4, Article Number: 043101 DOI: 10.1063/1.2907578, 2008.

[21] S. Ayad, A. Heibig.
Partition of waves in a system of conservation laws.
Acta applicandae mathematicae, Volume 66, Issue 2, pp.191-207 DOI: 10.1023/A:10107 19628448, 2001.

[20] A. Heibig.
Smooth solutions of the Riemann problem I two-dimensional space.
Comptes rendus de l'académie des sciences, Série1 mathématiques, Volume 328, Issue 11, pp. 999-1002 DOI: 10.1016/S0764-4442(99)80313-9, 1999.

[19] A. Heibig, A. Sahel.
A method of characteristics for some systems of conservation laws.
SIAM journal on mathematical analysis, Volume 29, Issue 6, pp.1467-1480 DOI 10.1135 S003614109631 0351, 1998.

[18] S. Ayad, A. Heibig.
Global interaction of fields in a system of conservations laws.
Communications in partial differential equations, olume 23, Issue 3-4 pp. 701-725, 1998.

[17] J. F. Colombeau, A. Heibig, M. Oberguggenberger.
Generalized solutions to partial differential equations of evolution type.
Acta applicandae mathematicae, Volume 45, Issue 2, pp. 115-142 DOI: 10.1007/BF00047123, 1996.

[16] A. Heibig, A. Sahel.
Une méthode des caractéristiques pour certains systèmes de lois de conservation.
C. R. Acad. Sci. Paris. Sér. I. Math., N1, 37-42, 1996.

[15] A. Heibig, M. Moussaoui.
Exact controllability of the wave equation for domains with slits and for mixed boundary conditions.
Discrete and continuous dynamical systems, Vol. 2, Issue 3, pp. 367-386, 1996.

[14] A. Heibig, M. Moussaoui.
Generalized and classical solutions of nonlinear parabolic equations.
Nonlinear analysis TMA, Volume 24 , Issue 6, pp. 789-794 DOI: 10.1016/0362-54694)00167-G, 1995.

[13] J. F. Colombeau, A. Heibig, M. Oberguggenberger.
The Cauchy problem in a space of generalized function II.
Comptes rendus de l'académie des sciences, Série 1 mathématiques, Volume 319, Issue 11, pp. 1179-1183, 1994.

[12] A. Heibig.
Existence and uniqueness of solutions for some hyperbolic systems of conservation laws.
Archive for rational mechanics and analysis, Volume 126 , Issue 1, pp. 79-101 DOI: 10.1007/BF00375697, 1994.

[11] A. Heibig.
Existence of solutions for a homogenized hyperbolic system of conservation laws.
Asymptotic analysis, Vol. 9, Issue 1, pp. 39-45, 1994.

[10] J. F. Colombeau, A. Heibig.
Generalized solutions to Cauchy problems.
Monatshefte fur Mathematik, Vol. 17, Issue 1-2, pp. 33-49, DOI 10, 1007/BF01299310, 1994.

[9] A. Heibig.
Entropy estimates for conservation laws.
Applied mathematics letters, Volume 6, Issue 5, pp. 93-97 DOI: 10.1016/0893-9659(93)90109-Z, 1993.

[8] J. F. Colombeau, A. Heibig, M. Oberguggenberger.
The Cauchy problem in a space of generalized function I.
Comptes rendus de l'académie des sciences, Série 1 mathématiques, Volume 317, Issue 9, pp. 851-855, 1993.

[7] A. Heibig.
Error estimates for oscillatory solutions to hyperbolic systems of conservatuions laws
Communications in partial differential equations, Volume 18 , Issue 1-2, pp. 281-304 DOI: 10.1080/03605309308820931, 1993.

[6] J. F. Colombeau, A. Heibig.
Nonconservative products in bounded variation functions.
SIAM journal on mathematical analysis, volume 23, Issue 4, pp. 941-949 DOI: 10.1137/0523050, 1992.

[5] A. Heibig, D. Serre.
Variational study of the Riemann problem, Journal of differential equations.
Journal of differential equations, Volume 96, Issue1, pp. 56-88 DOI: 10.1016/0022-0396(92)90144-C, 1992.

[4] A. Heibig.
Uniqueness of solutions of the Riemann problem.
C.R. Acad. Sci. Paris. Sér. I. Math, Volume: 312 Issue: 11 Pages: 793-797, 1991.

[3] A. Heibig.
Existence et unicité des solutions pour certains systèmes de lois de conservation.
C.R. Acad. Sci. Paris. Sér. I. Math, 11N13, 861-866, 1990.

[2] A. Heibig.
Regularity of solutions of the Riemann problem.
Communications in partial differential equations,, Vol. 15, Issue 5, pp. 693-709 DOI: 10.1080/03605309908820704, 1990.

[1] A. Heibig, D. Serre.
Une approche algébrique du problème de Riemann.
C.R. Acad. Sci. Paris. Sér. I. Math, N3, 157-162, 1989.



CV research publications teaching