CV | research | publications | teaching |
Preprints |
||
---|---|---|
[31] | A. Heibig. Differential equations with coefficients of negative differential dimension. submitted, arXiv:1701.02636v2, 2017. |
|
[30] | A. Heibig. Linear differential equations with distributional coefficients. submitted, 2017. |
|
Refereed Articles |
||
[29] | I. S. Ciuperca, A. Heibig, L. I. Palade. On the IAA version of the Doi-Edwards model versus the K-BKZ rheological model for polymer fluids: A global existence result for shear flows with small initial data. European J. Appl. Math., 28N1, 42-90, 2017. |
|
[28] | I. S. Ciuperca, A. Heibig. Existence and uniqueness of a density probability solution for the stationnary Doi-Edwards equation. Ann. Inst. H. Poincaré Anal. Non Linéaire, 33N5, 1353-1373, 2016. |
|
[27] | A. Heibig. Some properties of the Doi-Edwards and K-BKZ equations and operators. Nonlinear Analysis TMA, 109, 284, 2014. |
|
[26] | A. Heibig, L. I. Palade. On the existence of solutions to the fractional derivative equations $u^{\alpha}+Au=f$ of relevance to diffusion in complex systems. Nonlinear Anal. Model. Control, N2, 153-168, 2012. |
|
[25] | I. S. Ciuperca, A. Heibig, L. I. Palade. Existence and uniqueness of solutions for the Doi Edwards polymer melt model: the case of the (full) nonlinear configurational density equation. Nonlinearity, 25N4, 991-1009, 2012. |
|
[24] | A. Heibig. Existence of solutions for a fractional derivative system of equations. Integral equations and operator theory, 72N4, 483-508, DOI 10. 1007/s00020-012-1950-3, 2012. |
|
[23] | A. Heibig, L. I. Palade. Well posedness of a linearized fractional derivative fluid model. Journal of mathematical analysis and applications, Volume 380 Issue 1, pp. 188-203 DOI: 10.1016/j.jmaa. 2011.02.047, 2011. |
|
[22] | A. Heibig, L. I. Palade. On the rest state stability of an objective fractional derivative viscoelastic fluid model. Journal of mathematical physics, Volume 49, Issue 4, Article Number: 043101 DOI: 10.1063/1.2907578, 2008. |
|
[21] | S. Ayad, A. Heibig. Partition of waves in a system of conservation laws. Acta applicandae mathematicae, Volume 66, Issue 2, pp.191-207 DOI: 10.1023/A:10107 19628448, 2001. |
|
[20] | A. Heibig. Smooth solutions of the Riemann problem I two-dimensional space. Comptes rendus de l'académie des sciences, Série1 mathématiques, Volume 328, Issue 11, pp. 999-1002 DOI: 10.1016/S0764-4442(99)80313-9, 1999. |
|
[19] | A. Heibig, A. Sahel. A method of characteristics for some systems of conservation laws. SIAM journal on mathematical analysis, Volume 29, Issue 6, pp.1467-1480 DOI 10.1135 S003614109631 0351, 1998. |
|
[18] | S. Ayad, A. Heibig. Global interaction of fields in a system of conservations laws. Communications in partial differential equations, olume 23, Issue 3-4 pp. 701-725, 1998. |
|
[17] | J. F. Colombeau, A. Heibig, M. Oberguggenberger. Generalized solutions to partial differential equations of evolution type. Acta applicandae mathematicae, Volume 45, Issue 2, pp. 115-142 DOI: 10.1007/BF00047123, 1996. |
|
[16] | A. Heibig, A. Sahel. Une méthode des caractéristiques pour certains systèmes de lois de conservation. C. R. Acad. Sci. Paris. Sér. I. Math., N1, 37-42, 1996. |
|
[15] | A. Heibig, M. Moussaoui. Exact controllability of the wave equation for domains with slits and for mixed boundary conditions. Discrete and continuous dynamical systems, Vol. 2, Issue 3, pp. 367-386, 1996. |
|
[14] | A. Heibig, M. Moussaoui. Generalized and classical solutions of nonlinear parabolic equations. Nonlinear analysis TMA, Volume 24 , Issue 6, pp. 789-794 DOI: 10.1016/0362-54694)00167-G, 1995. |
|
[13] | J. F. Colombeau, A. Heibig, M. Oberguggenberger. The Cauchy problem in a space of generalized function II. Comptes rendus de l'académie des sciences, Série 1 mathématiques, Volume 319, Issue 11, pp. 1179-1183, 1994. |
|
[12] | A. Heibig. Existence and uniqueness of solutions for some hyperbolic systems of conservation laws. Archive for rational mechanics and analysis, Volume 126 , Issue 1, pp. 79-101 DOI: 10.1007/BF00375697, 1994. |
|
[11] | A. Heibig. Existence of solutions for a homogenized hyperbolic system of conservation laws. Asymptotic analysis, Vol. 9, Issue 1, pp. 39-45, 1994. |
|
[10] | J. F. Colombeau, A. Heibig. Generalized solutions to Cauchy problems. Monatshefte fur Mathematik, Vol. 17, Issue 1-2, pp. 33-49, DOI 10, 1007/BF01299310, 1994. |
|
[9] | A. Heibig. Entropy estimates for conservation laws. Applied mathematics letters, Volume 6, Issue 5, pp. 93-97 DOI: 10.1016/0893-9659(93)90109-Z, 1993. |
|
[8] | J. F. Colombeau, A. Heibig, M. Oberguggenberger. The Cauchy problem in a space of generalized function I. Comptes rendus de l'académie des sciences, Série 1 mathématiques, Volume 317, Issue 9, pp. 851-855, 1993. |
|
[7] | A. Heibig. Error estimates for oscillatory solutions to hyperbolic systems of conservatuions laws Communications in partial differential equations, Volume 18 , Issue 1-2, pp. 281-304 DOI: 10.1080/03605309308820931, 1993. |
|
[6] | J. F. Colombeau, A. Heibig. Nonconservative products in bounded variation functions. SIAM journal on mathematical analysis, volume 23, Issue 4, pp. 941-949 DOI: 10.1137/0523050, 1992. |
|
[5] | A. Heibig, D. Serre.
Variational study of the Riemann problem, Journal of differential equations. Journal of differential equations, Volume 96, Issue1, pp. 56-88 DOI: 10.1016/0022-0396(92)90144-C, 1992. |
|
[4] | A. Heibig. Uniqueness of solutions of the Riemann problem. C.R. Acad. Sci. Paris. Sér. I. Math, Volume: 312 Issue: 11 Pages: 793-797, 1991. |
|
[3] | A. Heibig. Existence et unicité des solutions pour certains systèmes de lois de conservation. C.R. Acad. Sci. Paris. Sér. I. Math, 11N13, 861-866, 1990. |
|
[2] | A. Heibig. Regularity of solutions of the Riemann problem. Communications in partial differential equations,, Vol. 15, Issue 5, pp. 693-709 DOI: 10.1080/03605309908820704, 1990. |
|
[1] | A. Heibig, D. Serre. Une approche algébrique du problème de Riemann. C.R. Acad. Sci. Paris. Sér. I. Math, N3, 157-162, 1989. |
CV | research | publications | teaching |