•
|
E. Bretin, C.-K. Huang, S. Masnou, A penalized Allen-Cahn equation for the mean curvature flow of thin structures, submitted, 2024.
|
•
|
J. Lee, X. Cai, C.-B. Schönlieb, S. Masnou, Neural varifolds: an aggregate representation for quantifying the geometry of point clouds, submitted, 2024.
|
•
|
E. Bretin, L. Calatroni, S. Masnou, A mobility-SAV approach for a Cahn-Hilliard equation with degenerate mobilities, Discrete and Continuous Dynamical Systems Series S, 17(1):131-159, 2024
|
•
|
E. Bretin, R. Denis, S. Masnou, A. Sengers, G. Terii, A multiphase Cahn-Hilliard system with mobilities and the numerical simulation of dewetting, ESAIM: M2AN (Mathematical Modelling and Numerical Analysis), 57(3):1473-1509, 2023
|
•
|
E. Bonnetier, E. Bretin, S. Masnou, Approximation of multiphase mean curvature flows with arbitrary nonnegative mobilities, Mathematical Methods in the Applied Sciences, 46(9):11262-11282, 2023.
|
•
|
E. Bretin, R. Denis, S. Masnou, G. Terii, Learning phase field mean curvature flows with neural networks, Journal of Computational Physics, 111579, 470, 2022.
|
•
|
B. Buet, G.P. Leonardi, S. Masnou, Weak and approximate curvatures of a measure: a varifold perspective, Nonlinear Analysis, 222, 2022.
|
•
|
E. Guérin, A. Peytavie, S. Masnou, J. Digne, B. Sauvage, J. Gain, E. Galin, Gradient Terrain Authoring, Computer Graphics Forum, 41(2), Proceedings of Eurographics, 2022.
|
•
|
E. Bretin, S. Masnou, A. Sengers, G. Terii, Approximation of surface diffusion flow: a second order variational Cahn-Hilliard model with degenerate mobilities, Mathematical Models and Methods in Applied Sciences, 32(04):793-829, 2022.
|
•
|
F. Dayrens, S. Masnou, M. Novaga, M. Pozzetta, Connected perimeter of planar sets, Advances in Calculus of Variations, 5(2):213-234, 2022.
|
•
|
S. Parisotto, J. Lellmann, S. Masnou, C.-B. Schönlieb, Higher-Order Total Directional Variation: Imaging Applications, SIAM Journal on Imaging Sciences, 13(4):2063-2104, 2020.
|
•
|
S. Parisotto, S. Masnou, C.-B. Schönlieb, Higher-Order Total Directional Variation: Analysis, SIAM Journal on Imaging Sciences, 13(1):474-496, 2020.
|
•
|
B. Buet, J.-M. Mirebeau, Y. van Gennip, F. Desquilbet, J. Dreo, F. Barbaresco, G.P. Leonardi, S. Masnou, C.-B. Schönlieb, Partial differential equations and variational methods for geometric processing of images, SMAI Journal of
Computational Mathematics, S5:109-128, 2019.
|
•
|
T.T. Le, A. Almansa, Y. Gousseau, S. Masnou, Object removal from complex videos using a few annotations, Computational Visual Media, 5(3):267-291, 2019, see the project page
|
•
|
B. Buet, G.P. Leonardi, S. Masnou, Discretization and approximation of surfaces using varifolds, Geometric Flows, 3(1):28-56, 2018.
|
•
|
T.T. Le, A. Almansa, Y. Gousseau, S. Masnou, Removing objects from videos with a few strokes, SIGGRAPH Asia 2018 Technical Briefs, article no 22, 1-4, 2018.
|
•
|
E. Bretin, A. Danescu, J. Penuelas, S. Masnou, Multiphase mean curvature flows with high mobility contrasts: a phase-field approach, with applications to nanowires, Journal of Computational Physics, 365:324-349, 2018.
|
•
|
F. Dayrens, S. Masnou, and M. Novaga, Existence, regularity and structure of confined elasticae, ESAIM:Control, Optimisation and Calculus of Variations, 24(1):25-43, 2018.
|
•
|
E. Bretin, F. Dayrens, S. Masnou, Volume reconstruction from slices, SIAM J. Imaging Sciences, 10(4):2326-2358, 2017.
|
•
|
T.T. Le, A. Almansa, Y. Gousseau, S. Masnou, Motion-Consistent Video Inpainting, Proc. IEEE ICIP, Beijing, 2017, see the project page
|
•
|
B. Buet, G.P. Leonardi, and S. Masnou, A varifold approach to surface approximation, Archive for Rational Mechanics and Analysis, 226(2):639-694,2017.
|
•
|
E. Bretin and S. Masnou, A new phase field model for inhomogeneous minimal partitions, and applications to droplets dynamics, Interfaces and Free Boundaries, 19(2):141-182, 2017.
|
•
|
B. Buet, G.P. Leonardi, and S. Masnou, Discrete varifolds and surface approximation, Topological Optimization and Optimal Transport in the Applied Sciences, 17:159, Berlin, Boston: De Gruyter, 2017
|
•
|
E. Bretin and S. Masnou, On a new phase field model for the approximation of interfacial energies of multiphase systems, Topological Optimization and Optimal Transport in the Applied Sciences, 17:123, Berlin, Boston: De Gruyter, 2017
|
•
|
J. Dalphin, A. Henrot, S. Masnou, and T. Takahashi, On the minimization of total mean
curvature, J. Geometric Analysis, 26(4):2729-2750, 2016.
|
•
|
X. Wang, B. Gao, S. Masnou, L. Chen, I. Theurkauff, C. Cottin-Bizonne, Y. Zhao, F. Shih, Active colloids segmentation and tracking, Pattern Recognition, 60:177-188, 2016.
|
•
|
B. Buet, G.P. Leonardi, S. Masnou Discrete varifolds: a unified framework for discrete approximations of surfaces and mean curvature, Proc. SSVM2015, LNCS volume 9087, 2015.
|
•
|
X. Wang, Y. Tang, S. Masnou, and L. Chen A Global/Local Affinity Graph for Image Segmentation, IEEE Trans. Image Processing, 24(4): 1399-1411, 2015.
|
•
|
E. Bretin, S. Masnou, and E. Oudet Phase-field approximations of the Willmore functional and flow, Numerische Mathematik, 131(1):115-171, 2015.
|
•
|
Y. Tang, X. Wang, E. Dellandrea, S. Masnou, and L. Chen, Fusing generic objectness and deformable part-based models for weakly supervised object detection, Proc. IEEE International Conference on Image Processing, Paris, pp. 4072-4076. 2014.
|
•
|
E. Bretin, S. Masnou, and E. Oudet Phase-field models for the approximation of the Willmore functional and flow, ESAIM: ProcS 45 118-127, 2014.
|
•
|
X. Wang, H. Li, S. Masnou, and L. Chen Sparse coding and mid-level superpixel-feature for l0-graph based unsupervised image segmentation, Computer Analysis of Images and Patterns, II:160-168, Lecture Notes in Comput. Sci., 8048, 2013.
|
•
|
X. Wang, H. Li, C.-E. Bichot, S. Masnou, and L. Chen A graph-cut approach to image segmentation using an affinity graph based on l0-sparse representation of features, IEEE International Conference on Image Processing, Melbourne (Australia), 2013.
|
•
|
X. Wang, C. Zhu, C.-E. Bichot, S. Masnou Graph-based image segmentation using weighted color patch, IEEE International Conference on Image Processing, Melbourne (Australia), 2013.
|
•
|
S. Masnou and G. Nardi, Gradient Young measures, varifolds, and a generalized Willmore functional, Advances in Calculus of Variations, 6(4):433-482, 2013.
|
•
|
S. Masnou and G. Nardi, A coarea-type formula for the relaxation of a generalized elastica functional, Journal of Convex Analysis, 20(3): 617-653, 2013.
|
•
|
T. Schoenemann, F. Kahl, S. Masnou, and D. Cremers, A linear framework for region-based image segmentation and inpainting involving curvature penalization, International Journal of Computer Vision, 99:1, pages 53-68, 2012.
|
•
|
F. Cao, Y. Gousseau, S. Masnou and P. Pérez,
Geometrically guided exemplar-based
inpainting, SIAM Journal on Imaging Sciences 4(4), pp. 1143-1179, 2011.
|
•
|
T. Schoenemann, S. Masnou and D. Cremers,
The elastic ratio: introducing curvature into
ratio-based globally optimal image segmentation, IEEE Transactions on Image Processing, 20(9), pp 2565-2581, 2011.
|
•
|
T. Schoenemann, S. Masnou, and D. Cremers, On a linear programming approach to the discrete Willmore boundary value problem and generalizations, J.-D. Boissonnat et al. (Eds.): Curves and Surfaces 2011, LNCS 6920, pp. 629--646. Springer, Heidelberg (2011).
|
•
|
M. Bertalmío, V. Caselles, S. Masnou, and G. Sapiro, Inpainting, Encyclopedia of Computer Vision, Springer, 2011.
|
•
|
A. Buades, J. Delon, Y. Gousseau, and S. Masnou, Adaptive blotches detection for film restoration, IEEE Int. Conference on Image Processing, Hong-Kong, sept. 2010.
|
•
|
J.-F. Aujol, S. Ladjal and S. Masnou,
Exemplar-based inpainting from a variational
point of view, SIAM Journal on Mathematical Analysis, 42(3):1246-1285, 2010.
|
•
|
G.P Leonardi and S. Masnou.
Locality of the mean curvature of rectifiable
varifolds, Advances in Calculus of variations, 2(1):17-42, 2009.
|
•
|
S. Masnou and J.-M. Morel.
On a variational theory of image amodal completion.
Rendiconti del Seminario Matematico della Università di Padova, 116:211-252, 2006.
|
•
|
G.P. Leonardi and S. Masnou.
On the isoperimetric problem in the Heisenberg group Hn.
Annali di Matematica Pura ed Applicata, 184(4):533-553, 2005.
|
•
|
L. Ambrosio and S. Masnou.
A direct variational approach to a problem arising in image
reconstruction, Interfaces and Free Boundaries, 5:63-81, 2003.
|
•
|
L. Ambrosio and S. Masnou.
On a variational problem arising in image reconstruction.
In Proc. Free Boundary Problems (Trento, 2002). Internat. Series
of Num. Math., 147, Birkhaser, Basel, 2004.
|
•
|
S. Masnou.
Disocclusion : a variational approach
using level lines, IEEE Trans. On Image Processing, 11(2):68-76, 2002.
|
•
|
V. Caselles, S. Masnou, et J.-M. Morel.
La vision, une machine géométrique ?
La Recherche, Octobre 2001.
|
•
|
L. Ambrosio, V. Caselles, S. Masnou and J.-M. Morel.
Connected components of sets of finite perimeter and applications to
image processing, Journal of the European Mathematical Society, 3:39-92, 2001.
|
•
|
V. Caselles, S. Masnou, J.-M. Morel and C. Sbert.
Image interpolation, Notes du Séminaire Equations aux Dérivées
Partielles, vol. XII. Ecole Polytechnique, 1998.
|
•
|
S. Masnou et J.-M. Morel.
La formalisation mathématique du traitement des images, C.R. Journée annuelle de la Société Mathématique de France (Trois Applications des Mathématiques),
1-14, 1998.
|
•
|
S. Masnou and J.-M. Morel.
Image restoration involving
connectedness, Proc. DIP'97 (Wien), vol. 3346, 84-95. SPIE, 1998.
|
•
|
S. Masnou and J.-M. Morel.
Level lines based disocclusion, Proc. IEEE ICIP (Chicago 1998), vol.3, 259-263,
1998.
|
•
|
S. Masnou et J.-M. Morel.
Restauration d'images et filtres de
Yaroslavsky, Proc. Gretsi'97 (Grenoble), 1233-1236, 1997.
|