Stochastic dynamics of discrete interfaces, of spin models, of dimer coverings ...

(See the journals for the final versions)




[23] A. Borodin, F. Toninelli, Two-dimensional Anisotropic KPZ growth and limit shapes, J. Stat. Mech. (2018) 083205, arXiv

[22] S. Chhita, F. Toninelli, A (2+1)-dimensional Anisotropic KPZ growth model with a smooth phase, to appear on Comm. Math. Phys., arXiv

[21] F. Toninelli, (2+1)-dimensional interface dynamics: mixing time, hydrodynamic limit and Anisotropic KPZ growth, to appear on Proceedings of the International Congress of Mathematicians 2018 arXiv

[20] S. Chhita, P. L. Ferrari, F. Toninelli, Speed and fluctuations for some driven dimer models, to appear on Ann. Inst. H. Poincare' D, arXiv

[19] M. Legras, F. L. Toninelli, Hydrodynamic limit and viscosity solutions for a 2D growth process in the anisotropic KPZ class , Comm. Pure Appl. Math. (Early View), arXiv

[18] B. Laslier, F. L. Toninelli, Lozenge tiling dynamics and convergence to the hydrodynamic equation arXiv, Comm. Math. Phys., 358 (2018), 1117-1149

[17] B. Laslier, F. L. Toninelli, Hydrodynamic limit equation for a lozenge tiling Glauber dynamics arXiv, Ann. Henri Poincare': Theor. Math. Phys. 18 (2017), 2007-2043.

[16] A. Borodin, I. Corwin, F. L. Toninelli, Stochastic heat equation limit of a (2+1)d growth model arXiv, Comm. Math. Phys. 350 (2017), 957–984

[15] I. Corwin, F. L. Toninelli, Stationary measure of the driven two-dimensional q-Whittaker particle system on the torus arXiv, Electronic Communications in Probability 2016, Vol. 21, paper no. 44 , 1-12.

[14] F. L. Toninelli, A (2+1)-dimensional growth process with explicit stationary measures, Ann. Probab. 45 (2017), 2899-2940 pdf of the published version

[13] B. Laslier, F. L. Toninelli, Lozenge tilings, Glauber dynamics and macroscopic shape, Comm. Math. Phys. 338 (2015), 1287-1326 arXiv

[12] H. Lacoin, F. Simenhaus, F. L. Toninelli, The heat equation shrinks Ising droplets to points, Comm. Pure Appl. Math. 68 (2015), 1640-1681 arXiv

[11] B. Laslier, F. L. Toninelli, How quickly can we sample a uniform domino tiling of the 2L x 2L square via Glauber dynamics? Prob. Theory Rel. Fields 161 (2015), 509-559. arXiv

[10] P. Caputo, E. Lubetzky, F. Martinelli, A. Sly, F. L. Toninelli, Dynamics of 2+1 dimensional SOS surfaces above a wall: slow mixing induced by entropic repulsion, Ann. Probab. 42 (2014), 1516-1589, arXiv

[9] H. Lacoin, F. Simenhaus, F. L. Toninelli, Zero-temperature 2D Ising model and anisotropic curve-shortening flow, J. Eur. Math Soc 16 (2014), 2557-2615 arXiv

[8] C. Bernardin, F. L. Toninelli, A one-dimensional coagulation-fragmentation process with a dynamical phase transition, Stoch. Proc. Appl. 122 (2012), 1672--1708, arXiv

[7] E. Lubetzky, F. Martinelli, A. Sly, F. L. Toninelli, Quasi-polynomial mixing of the 2D stochastic Ising model with "plus" boundary up to criticality, J. Eur. Math. Soc. 15 no. 2 (2013), 339--386, arXiv

[6] P. Caputo, F. Martinelli, F.L. Toninelli, Mixing times of monotone surfaces and SOS interfaces: a mean curvature approach, Comm. Math. Phys. 311 (2012), 157--189, arXiv

[5] P. Caputo, H. Lacoin, F. Martinelli, F. Simenhaus, F.L. Toninelli, Polymer dynamics in the depinned phase: metastability with logarithmic barriers, Probab. Theory Rel. Fields, 153 (2012), 587-641. arXiv

[4] P. Caputo, F. Martinelli, F. Simenhaus, F.L. Toninelli, "Zero" temperature stochastic 3D Ising model and dimer covering fluctuations: a first step towards interface mean curvature motion, Comm. Pure Appl. Math. 64 (2011), 778--831. arXiv

[3] F. Martinelli, F.L. Toninelli, On the mixing time of the 2D stochastic Ising model with ``plus'' boundary conditions at low temperature, Comm. Math. Phys. 296 (2010), 175-213, arXiv

[2] P. Caputo, F. Martinelli, F.L. Toninelli, Convergence to equilibrium of biased plane partitions, Random Structures and Algorithms 39 (2011), 83-114, arXiv

[1] P. Caputo, F. Martinelli, F.L. Toninelli, On the approach to equilibrium for a polymer with adsorption and repulsion,
Electr. J. Probab. 13, 213-258 (2008).