III. Équations différentielles
linéaires du 2e ordre
à coefficients constants






Résolution de \(\ddot{u}(t)+a\dot{u}(t)+bu(t)=\varphi(t)\)
et tracé des courbes intégrales








Solution générale


Hypothèse : \(a,b\!\in\!\mathbb{R}\) et \(\varphi\) est une fonction continue sur l'intervalle \(I\) à valeurs réelles ou complexes. On fixe un \(t_0\!\in\! I\).


Notations :
Résolution de \((EH)\):

\(u_{_H}(t)\!=\begin{cases} \lower -3ex %\vphantom{\dfrac aa} \!\lambda\,e^{r_1t}\!+\!\mu\,e^{r_2t},\;\lambda,\mu\!\in\!\mathbb{R} \\ \scriptstyle\text{si \((EC)\) admet deux racines r\(\mathrm{\acute{e}}\)elles distinctes \(r_1\) et \(r_2\)} \\[1ex] (\lambda\,t\!+\!\mu)e^{rt},\;\lambda,\mu\!\in\!\mathbb{R} \\ \scriptstyle\text{si \((EC)\) admet une racine double \(r\)} \\[1ex] e^{\rho t}\big(\lambda\cos(\sigma t)\!+\!\mu\sin(\sigma t)\big),\;\lambda,\mu\!\in\!\mathbb{R} \\ \scriptstyle\text{si \((EC)\) admet deux racines complexes non r\(\mathrm{\acute{e}}\)elles \(\rho+\mathrm{i}\sigma\) et \(\rho-\mathrm{i}\sigma\)} \end{cases}\)


Résolution de \((E)\): \(u\!=\!u_{_H}\!+u_{_P}\) où
\(u(t)\!=\!u_{_H}(t)\!+\!\int_{t_0}^t \varphi(s)G(t-s)\,\mathrm{d}s\)



Cas particulier :
Sous-cas particuliers :


Principe de superposition : si \(u_1\) (resp. \(u_2\)) est solution de \(\ddot{u}(t)+a\dot{u}(t)+bu(t)=\varphi_1(t)\) (resp. \(\ddot{u}(t)+a\dot{u}(t)+bu(t)=\varphi_2(t)\)), alors \(\alpha_1u_1\!+\!\alpha_2u_2\) est solution de \(\ddot{u}(t)+a\dot{u}(t)+bu(t)=\alpha_1\varphi_1(t)\!+\!\alpha_2\varphi_2(t)\).


Problème de Cauchy : on fixe un \(t_0\!\in\! I\) ainsi que \(u_0,v_0\!\in\!\mathbb{R}.\)

L'équation \((E)\) admet une unique solution vérifiant \(u(t_0)\!=u_0\) et \(\dot{u}(t_0)\!=v_0.\) Elle est donnée par

\(u(t)=u_0H(t-t_0)+v_0G(t-t_0)+u_{_P}(t)\)

où \(u_{_P}(t)\!=\!\int_{t_0}^t \varphi(s)G(t-s)\,\mathrm{d}s\) et

\(\begin{cases}\vphantom{\dfrac{b^{b^{b^b}}}{a}} G(z)=\dfrac{\mathrm{e}^{r_1z}-\mathrm{e}^{r_2z}}{r_1-r_2} \hspace{2em} H(z)=\dfrac{r_2\mathrm{e}^{r_1z}-r_1\mathrm{e}^{r_2z}}{r_2-r_1} \\ \scriptstyle\text{si \((EC)\) admet deux racines r\(\mathrm{\acute{e}}\)elles distinctes \(r_1\) et \(r_2\)} \\[1ex] %\vphantom{\dfrac aa} G(z)=z\,\mathrm{e}^{rz} \hspace{4.3em} H(z)=(1-rz)\,\mathrm{e}^{rz} \\ \scriptstyle\text{si \((EC)\) admet une racine double \(r\)} \\[1ex] G(z)=\hspace{0em}\mathrm{e}^{\rho z}\dfrac{\sin{\sigma z}}{\sigma} \hspace{2em} H(z)=\hspace{0em}\mathrm{e}^{\rho z}\left(\cos(\sigma z)-\dfrac{\rho}{\sigma}\sin(\sigma z)\right) \\ \scriptstyle\text{si \((EC)\) admet deux racines complexes non r\(\mathrm{\acute{e}}\)elles \(\rho+\mathrm{i}\sigma\) et \(\rho-\mathrm{i}\sigma\)} \end{cases}\)

On a \(\big[u_{_P}(t_0)=\hspace{0em} \dot{u}_{_P}(t_0)=0\big],\) \(\big[G(t_0)=0,\dot{G}(t_0)=1\big]\) et \(\big[(H(t_0)=1,\dot{H}(t_0)=0\big].\)






\(\vphantom{()_p^b}\)   \(a=3\qquad b=2\qquad \varphi(t)=0\)

Solution : \(u(t)\!=\!\lambda\,\mathrm{e}^{-t}\!+\! \mu\,\mathrm{e}^{-2t}\)

Courbes concourantes en 0

\(u(0)=-1\)Zoom

\(u(0)=0\)Zoom

\(u(0)=1\)Zoom

Courbes de pente constante en 0

\(\dot{u}(0)=-2\)Zoom

\(\dot{u}(0)=-1\)Zoom

\(\dot{u}(0)=0\)Zoom

\(\dot{u}(0)=1\)Zoom

\(\dot{u}(0)=2\)Zoom






\(\vphantom{()_p^b}\)   \(a=6\qquad b=9\qquad \varphi(t)=0\)

Solution : \(u(t)\!=\!(\lambda\,t\!+\!\mu)\mathrm{e}^{-3t}\)

Courbes concourantes en 0

\(u(0)=-1\)Zoom

\(u(0)=0\)Zoom

\(u(0)=1\)Zoom

Courbes de pente constante en 0

\(\dot{u}(0)=-2\)Zoom

\(\dot{u}(0)=-1\)Zoom

\(\dot{u}(0)=0\)Zoom

\(\dot{u}(0)=1\)Zoom

\(\dot{u}(0)=2\)Zoom






\(\vphantom{()_p^b}\)   \(a=1\qquad b=1\qquad \varphi(t)=0\)

Solution : \(u(t)\!=\!\Big[\lambda\cos\!\big(\!\frac{\sqrt{3}}{2}t\big) \!+\!\mu\sin\!\big(\!\frac{\sqrt{3}}{2}t\big)\Big]\mathrm{e}^{-\frac12 t}\)

Courbes concourantes en 0

\(u(0)=-1\)Zoom

\(u(0)=0\)Zoom

\(u(0)=1\)Zoom

Courbes de pente constante en 0

\(\dot{u}(0)=-2\)Zoom

\(\dot{u}(0)=-1\)Zoom

\(\dot{u}(0)=0\)Zoom

\(\dot{u}(0)=1\)Zoom

\(\dot{u}(0)=2\)Zoom






\(\vphantom{()_p^b}\)   \(a=1\qquad b=-2\qquad \varphi(t)=0\)

Solution : \(u(t)\!=\!\lambda\,\mathrm{e}^{t}\!+\!\mu\,\mathrm{e}^{-2t}\)

Courbes concourantes en 0

\(u(0)=-1\)Zoom

\(u(0)=0\)Zoom

\(u(0)=1\)Zoom

Courbes de pente constante en 0

\(\dot{u}(0)=-2\)Zoom

\(\dot{u}(0)=-1\)Zoom

\(\dot{u}(0)=0\)Zoom

\(\dot{u}(0)=1\)Zoom

\(\dot{u}(0)=2\)Zoom






\(\vphantom{()_p^b}\)   \(a=5\qquad b=6\qquad \varphi(t)=2\,\mathrm{e}^{-t}+\,\mathrm{e}^{-3t}\)

Solution : \(u(t)\!=\!(\lambda-t)\mathrm{e}^{-3t}\!+\! \mu\,\mathrm{e}^{-2t}\!+\hspace{-0.1em}\mathrm{e}^{-t}\)

Courbes concourantes en 0

\(u(0)=-1\)Zoom

\(u(0)=0\)Zoom

\(u(0)=1\)Zoom

Courbes de pente constante en 0

\(\dot{u}(0)=-2\)Zoom

\(\dot{u}(0)=-1\)Zoom

\(\dot{u}(0)=0\)Zoom

\(\dot{u}(0)=1\)Zoom

\(\dot{u}(0)=2\)Zoom






\(\vphantom{()_p^b}\)   \(a=4\qquad b=3\qquad \varphi(t)=\cos t\)

Solution : \(u(t)\!=\!\lambda\,\mathrm{e}^{-t}\!+\!\mu\,\mathrm{e}^{-3t}\!+\!\frac{1}{10}\cos t\!+\!\frac15\sin t\)

Courbes concourantes en 0

\(u(0)=-1\)Zoom

\(u(0)=0\)Zoom

\(u(0)=1\)Zoom

Courbes de pente constante en 0

\(\dot{u}(0)=-2\)Zoom

\(\dot{u}(0)=-1\)Zoom

\(\dot{u}(0)=0\)Zoom

\(\dot{u}(0)=1\)Zoom

\(\dot{u}(0)=2\)Zoom






\(\vphantom{()_p^b}\)   \(a=1\qquad b=2\qquad \varphi(t)=2\cos\!\big(t\!+\!\frac{\pi}{3}\!\big)\)

Solution : \(u(t)\!=\!\Big[\lambda\cos\!\big(\!\frac{\sqrt{7}}{2}t\big)\!+\!\mu\sin\!\big(\!\frac{\sqrt{7}}{2}t\big)\Big]\mathrm{e}^{-\frac12 t} \!+\!\sqrt2\cos\!\big(t\!+\!\frac{\pi}{12}\!\big)\)

Courbes concourantes en 0

\(u(0)=-1\)Zoom

\(u(0)=0\)Zoom

\(u(0)=1\)Zoom

Courbes de pente constante en 0

\(\dot{u}(0)=-2\)Zoom

\(\dot{u}(0)=-1\)Zoom

\(\dot{u}(0)=0\)Zoom

\(\dot{u}(0)=1\)Zoom

\(\dot{u}(0)=2\)Zoom






\(\vphantom{()_p^b}\)   \(a=4\qquad b=4\qquad \varphi(t)=\,\mathrm{e}^{-2t}\)

Solution : \(u(t)\!=\!\big(\frac12t^2\!+\!\lambda\,t\!+\!\mu\big)\mathrm{e}^{-2t}\)

Courbes concourantes en 0

\(u(0)=-1\)Zoom

\(u(0)=0\)Zoom

\(u(0)=1\)Zoom

Courbes de pente constante en 0

\(\dot{u}(0)=-2\)Zoom

\(\dot{u}(0)=-1\)Zoom

\(\dot{u}(0)=0\)Zoom

\(\dot{u}(0)=1\)Zoom

\(\dot{u}(0)=2\)Zoom






\(\vphantom{()_p^b}\)   \(a=4\qquad b=4\qquad \varphi(t)=\,\mathrm{e}^{-2t}\cos t\)

Solution : \(u(t)\!=\!(\lambda\,t\!+\!\mu)\mathrm{e}^{-2t}\!-\!\mathrm{e}^{-2t}\cos t\)

Courbes concourantes en 0

\(u(0)=-1\)Zoom

\(u(0)=0\)Zoom

\(u(0)=1\)Zoom

Courbes de pente constante en 0

\(\dot{u}(0)=-2\)Zoom

\(\dot{u}(0)=-1\)Zoom

\(\dot{u}(0)=0\)Zoom

\(\dot{u}(0)=1\)Zoom

\(\dot{u}(0)=2\)Zoom






\(\vphantom{()_p^b}\)   \(a=4\qquad b=13\qquad \varphi(t)=10\,\mathrm{e}^{-t}\)

Solution : \(u(t)\!=\!\big[\lambda\cos(3t)\!+\!\mu\sin(3t)\big]\mathrm{e}^{-2t}\!+\hspace{-0.1em}\mathrm{e}^{-t}\)

Courbes concourantes en 0

\(u(0)=-1\)Zoom

\(u(0)=0\)Zoom

\(u(0)=1\)Zoom

Courbes de pente constante en 0

\(\dot{u}(0)=-2\)Zoom

\(\dot{u}(0)=-1\)Zoom

\(\dot{u}(0)=0\)Zoom

\(\dot{u}(0)=1\)Zoom

\(\dot{u}(0)=2\)Zoom






\(\vphantom{()_p^b}\)   \(a=-4\qquad b=13\qquad \varphi(t)=9\,\mathrm{e}^{-t}\)

Solution : \(u(t)\!=\!\big[\lambda\cos(3t)\!+\!\mu\sin(3t)\big]\mathrm{e}^{2t}\!+\!\frac12\mathrm{e}^{-t}\)

Courbes concourantes en 0

\(u(0)=-1\)Zoom

\(u(0)=0\)Zoom

\(u(0)=1\)Zoom

Courbes de pente constante en 0

\(\dot{u}(0)=-2\)Zoom

\(\dot{u}(0)=-1\)Zoom

\(\dot{u}(0)=0\)Zoom

\(\dot{u}(0)=1\)Zoom

\(\dot{u}(0)=2\)Zoom






\(\vphantom{()_p^b}\)   \(a=2\qquad b=5\qquad \varphi(t)=13\,\mathrm{e}^{2t}\)

Solution : \(u(t)\!=\!\big[\lambda\cos(2t)\!+\!\mu\sin(2t)\big]\mathrm{e}^{-t}\!+\!\mathrm{e}^{2t}\)

Courbes concourantes en 0

\(u(0)=-1\)Zoom

\(u(0)=0\)Zoom

\(u(0)=1\)Zoom

Courbes de pente constante en 0

\(\dot{u}(0)=-2\)Zoom

\(\dot{u}(0)=-1\)Zoom

\(\dot{u}(0)=0\)Zoom

\(\dot{u}(0)=1\)Zoom

\(\dot{u}(0)=2\)Zoom






\(\vphantom{\dfrac{b^a}{q}}\)   \(a(t)=\dfrac{3}{t}\qquad b(t)=\dfrac{5}{t^2}\qquad \varphi(t)=13\)

Solution :
\(u(t) \!=\!\begin{cases} \raise -1ex {\lambda_1\dfrac{\cos(2\ln|t|)}{t}\!+\!\mu_1\dfrac{\sin(2\ln|t|)}{t}\!+t^2}\\[-0.5ex] \scriptstyle\text{si } t\in\mathopen]-\infty,0[\\[0.5ex] \lambda_2\dfrac{\cos(2\ln|t|)}{t}\!+\!\mu_2\dfrac{\sin(2\ln|t|)}{t}\!+t^2\\[-0.5ex] \scriptstyle\text{si } t\in\mathopen]0,+\infty[ \end{cases}\)
Pour \(\lambda_1\!=\!\lambda_2\!=\!\mu_1\!=\!\mu_2\!=\!0:\)
\(u(t)\!=\!t^2, \;{\scriptstyle t\in\mathbb{R}}\)
dérivable en 0

Courbes concourantes en 1

\(u(1)=-1\)Zoom

\(u(1)=0\)Zoom

\(u(1)=1\)Zoom

Courbes de pente constante en 1

\(\dot{u}(1)=-2\)Zoom

\(\dot{u}(1)=-1\)Zoom

\(\dot{u}(1)=0\)Zoom

\(\dot{u}(1)=1\)Zoom

\(\dot{u}(1)=2\)Zoom



   
Sommaire