II. Cas croissant

Exemple 1a




\(\color{blue}\;f(x)\!=\!\sqrt{x+1}\;\)\(\;u_0\!=\!1.2\;\)



Point fixe : \(\color{blue}\ell\!=\!\frac{1}{2}\!\big(1\!+\!\sqrt5\big)\approx 1.618\)
Dérivée au point fixe : \(\color{blue}\begin{array}{l}f'(\ell)\!=\!\frac{1}{4}\!\big(\sqrt5\!-\!1\big)\approx 0.309 \\ |f'(\ell)|\!<1\end{array}\)




Aperçu global





animation




Exemple 1b




\(\color{blue}\;f(x)\!=\!\sqrt{x\!+\!1}\;\)\(\;u_0\!=\!2\;\)




animation




Exemple 2




\(\color{red}\;g(x)\!=\!x^2-1\;\) \(\;u_0\!=\!1.63\;\)



Points fixes : \(\color{red}\begin{array}{l}\ell_1\!=\!\frac{1}{2}\!\big(1\!-\!\sqrt{5}\big)\approx -0.618 \\ \ell_2\!=\!\frac{1}{2}\!\big(1\!+\!\sqrt{5}\big)\approx 1.618\end{array}\)
Dérivée aux points fixes : \(\color{red}\begin{array}{l} g'(\ell_1)\!=\!1\!-\!\sqrt{5}\approx-1.236 \\ g'(\ell_2)\!=\!1\!+\!\sqrt{5}\approx3.236 \\ |g'(\ell_1)|>1\qquad |g'(\ell_2)|>1\end{array}\)




Aperçu global





animation




   
Sommaire