Articles soumis, publiés ou acceptés

Monographie

Brezis, Haïm ; Mironescu, Petru Sobolev maps to the circle. From the Perspective of Analysis, Geometry, and Topology. Progress in Nonlinear Differential Equations and Applications, vol. 96. Birkhäuser, New York, NY. 2021, xxxi+530.
Publications

76. Mironescu, Petru ; Van Schaftingen, Jean Lifting in compact covering spaces for fractional Sobolev spaces. Analysis and PDE 14 (2021), no 6, 1851—1871. hal

75. Mironescu, Petru ; Van Schaftingen, Jean Trace theory for Sobolev mappings into a manifold. Ann. Fac. Sci. Toulouse (6) 30 (2021), no 2, 281—299. hal

74. Alama, Stan ; Bronsard, Lia ; Mironescu, Petru Inside the light boojums: a journey to the land of boundary defects. Analysis in Theory and Applications 36 (2020), no 2, 128—160. hal

73. Mironescu, Petru ; Shafrir, Itaï A uniform continuity property of the winding number of self-mappings of the circle. Pure and Applied Functional Analysis 5 (2019), no 5, 1199—1204. hal

72. Mironescu, Petru ; Russ, Emmanuel ; Sire, Yannick Lifting in Besov spaces. Nonlinear Analysis 193 (2020), 111489. hal

71. Brezis, Haïm ; Mironescu, Petru The Plateau problem from the perspective of optimal transport. C. R. Math. Acad. Sci. Paris 357 (2019), no 7, 597—612. hal

70. Brezis, Haïm ; Mironescu, Petru Where Sobolev interacts with Gagliardo—Nirenberg, J. Funct. Anal. 277 (2019), no 8, 2839—2864. hal

69. Mironescu, Petru The role of the Hardy type inequalities in the theory of function spaces, Rev. Roumaine Math. Pures Appl. 63 (2018), no 4, 447—525. hal

68. Brezis, Haïm ; Mironescu, Petru Minimizers of the $W^{1,1}$-energy of $\mathbb S^1$-valued maps with prescribed singularities. Do they exist? Nonlinear Analysis 177 part A (2018), 105–134. hal

67. Mironescu, Petru Sum-intersection property of Sobolev spaces. Current Research in Nonlinear Analysis, 203–228, Springer Optimization and its Applications, 135, Springer, Cham, 2018. hal

66. Brezis, Haïm ; Mironescu, Petru Gagliardo-Nirenberg inequalities and non-inequalities: the full story, Ann. IHP Anal. Non linéaire 35 (2018), no 5, 1355—1376. hal

65. Brezis, Haïm ; Mironescu, Petru ; Shafrir, Itaï Distances between classes in $W^{1,1} (\Omega ; {\mathbb S}^1)$, Calc. Var. Partial Differential Equations 57 (2018), no 1, 57:14. hal

64. Mironescu, Petru ; Shafrir, Itaï Asymptotic behavior of critical points of an energy involving a loop-well potential, Comm. Partial Differential Equations 42 (2017), no 12, 1837—1870. hal

63. Mironescu, Petru ; Low regularity function spaces of N-valued maps are contractible, Math. Scan. 121 (2017), 144—150 hal

62. Brezis, Haïm ; Mironescu, Petru ; Shafrir, Itaï Distances between homotopy classes of $W^{s,p} ({\mathbb S}^N ; {\mathbb S}^N)$, ESAIM Control Optim. Calc. Var. 22 (2016), no 4, 1204—1235 hal

61. Brezis, Haïm ; Mironescu, Petru ; Shafrir, Itaï Distances between classes of sphere-valued Sobolev maps, C. R. Math. Acad. Sci. Paris 354 (2016), no 7, 677—684 hal

60. Mironescu, Petru ; Profile decomposition and phase control for circle-valued maps in one dimension, C. R. Math. Acad. Sci. Paris 353 (2015), no 12, 1087—1092. hal

59. Lamy, Xavier ; Mironescu, Petru Characterization of function spaces via low regularity mollifiers, Discrete Contin. Dyn. Syst. 35 (2015), no 12, 6015–6030. hal

58. Bourgain, Jean ; Brezis, Haïm ; Mironescu, Petru A new function spaces and applications, J. Eur. Math. Soc. 17 (2015), no 9, 2083—2101. hal

57. Mironescu, Petru ; Molnar, Ioana Phases of unimodular complex valued maps: optimal estimates, the factorization method, and the sum-intersection property of Sobolev spaces, Ann. IHP Anal. Non linéaire 32 (2015), no 5, 965—1013. hal

56. Brezis, Haïm ; Mironescu, Petru Density in $W^{s,p}(\Omega ; N)$, J. Funct. Anal. 269 (2015), no 7, 2045—2109. hal

55. Mironescu, Petru ; Sickel, Wilfried A Sobolev non embedding, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26 (2015), no 3, 291—298. hal

54. Mironescu, Petru Note on Gagliardo's theorem "tr $W^{1,1}=L^1$", Ann. Univ. Buchar. Math. Ser. 6 (LXIV) (2015), no 1, 99—103. hal

53. Mironescu, Petru Superposition with subunitary powers in Sobolev spaces, C. R. Math. Acad. Sci. Paris 353 (2015), no. 6, 483—487. hal

52. Mironescu, Petru ; Russ, Emmanuel Traces of weighted Sobolev spaces. Old and new, Nonlinear Analysis TMA 119 (2015), 354—381. hal

51. Lamy, Xavier ; Mironescu, Petru Existence of critical points with semi-stiff boundary conditions for singular perturbation problems in simply connected planar domains. J. Math. Pures Appl. (9) 102 (2014), no. 2, 385–418. hal

50. Berlyand, Leonid ; Mironescu, Petru ; Rybalko, Volodymyr ; Sandier, Etienne Minimax critical points in Ginzburg-Landau problems with semi-stiff boundary conditions: existence and bubbling. Comm. Partial Differential Equations 39 (2014), no. 5, 946–1005. hal

49. Bousquet, Pierre ; Mironescu, Petru Prescribing the Jacobian in critical spaces. J. Anal. Math. 122 (2014), 317–373. hal

48. Bousquet, Pierre ; Mironescu, Petru ; Russ, Emmanuel A limiting case for the divergence equation. Math. Z. 274 (2013), no. 1-2, 427–460. hal

47. Mironescu, Petru Size of planar domains and existence of minimizers of the Ginzburg-Landau energy with semi-stiff boundary conditions. Contemp. Math. Fundamental Directions 47 (2013), 78–107. hal

46. Farina, Alberto ; Mironescu, Petru Uniqueness of vortexless Ginzburg-Landau type minimizers in two dimensions. Calc. Var. Partial Differential Equations 46 (2013), no. 3-4, 523–554. hal

45. Alama, Stan ; Bronsard, Lia ; Mironescu, Petru On compound vortices in a two-component Ginzburg-Landau functional. Indiana Univ. Math. J. 61 (2012), no. 5, 1861–1909. hal

44. Mironescu, Petru Le déterminant jacobien [d'après Brezis et Nguyen]. (French) [The Jacobian determinant [after Brezis and Nguyen]] Séminaire Bourbaki: Vol. 2010/2011. Exposés 1027–1042. Astérisque No. 348 (2012), Exp. No. 1041, x, 405–424. hal

43. Dos Santos, Mickaël ; Mironescu, Petru ; Misiats, Oleksandr The Ginzburg-Landau functional with a discontinuous and rapidly oscillating pinning term. Part I: The zero degree case. Commun. Contemp. Math. 13 (2011), no. 5, 885–914. hal

42. Bousquet, Pierre ; Mironescu, Petru An elementary proof of an inequality of Maz'ya involving $L^1$ vector fields. Nonlinear elliptic partial differential equations, 59–63, Contemp. Math., 540, Amer. Math. Soc., Providence, RI, 2011. hal

41. Mironescu, Petru $\mathbb S^1$-valued Sobolev mappings. (Russian) Sovrem. Mat. Fundam. Napravl. 35 (2010), 86-100; translation in J. Math. Sci. (N. Y.) 170 (2010), no. 3, 340–355 hal

40. Mironescu, Petru Decomposition of $\mathbb S^1$-valued maps in Sobolev spaces. C. R. Math. Acad. Sci. Paris 348 (2010), no. 13-14, 743–746. hal

39. Mironescu, Petru On some inequalities of Bourgain, Brezis, Maz'ya, and Shaposhnikova related to $L^1$ vector fields. C. R. Math. Acad. Sci. Paris 348 (2010), no. 9-10, 513–515. hal

38. Alama, Stan ; Bronsard, Lia ; Mironescu, Petru On the structure of fractional degree vortices in a spinor Ginzburg-Landau model. J. Funct. Anal. 256 (2009), no. 4, 1118–1136. hal

37. Mironescu, Petru Lifting default for $\mathbb S^1$-valued maps. C. R. Math. Acad. Sci. Paris 346 (2008), no. 19-20, 1039–1044. hal

36. Berlyand, Leonid ; Mironescu, Petru Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Netw. Heterog. Media 3 (2008), no. 3, 461–487. hal

35. Mironescu, Petru Sobolev maps on manifolds: degree, approximation, lifting. Perspectives in nonlinear partial differential equations, 413–436, Contemp. Math., 446, Amer. Math. Soc., Providence, RI, 2007. hal

34. Berlyand, Leonid ; Mironescu, Petru Ginzburg-Landau minimizers with prescribed degrees. Capacity of the domain and emergence of vortices. J. Funct. Anal. 239 (2006), no. 1, 76–99. hal

33. Brezis, Haïm ; Mironescu, Petru ; Ponce, Augusto C. $W^{1,1}$-maps with values into $S^1$. Geometric analysis of PDE and several complex variables, 69–100, Contemp. Math., 368, Amer. Math. Soc., Providence, RI, 2005. hal

32. Bourgain, Jean ; Brezis, Haïm ; Mironescu, Petru Lifting, degree, and distributional Jacobian revisited. Comm. Pure Appl. Math. 58 (2005), no. 4, 529–551. hal

31. Mironescu, Petru ; Pisante, Adriano A variational problem with lack of compactness for $H^{1/2}(S^1;S^1)$ maps of prescribed degree. J. Funct. Anal. 217 (2004), no. 2, 249–279.

30. Mironescu, Petru On some properties of $S^1$-valued fractional Sobolev spaces. Noncompact problems at the intersection of geometry, analysis and topology, 201–207, Contemp. Math., 350, Amer. Math. Soc., Providence, RI, 2004.

29. Bourgain, Jean ; Brezis, Haïm ; Mironescu, Petru $H^{1/2}$ maps with values into the circle: minimal connections, lifting, and the Ginzburg-Landau equation. Publ. Math. Inst. Hautes Études Sci. No. 99 (2004), 1–115. hal

28. Berlyand, Leonid ; Mironescu, Petru Ginzburg-Landau minimizers with prescribed degrees: dependence on domain. C. R. Math. Acad. Sci. Paris 337 (2003), no. 6, 375–380.

27. Bourgain, Jean ; Brezis, Haïm ; Mironescu, Petru Limiting embedding theorems for $W^{s,p}$ when $s\uparrow1$ and applications. Dedicated to the memory of Thomas H. Wolff. J. Anal. Math. 87 (2002), 77–101.

26. Brezis, Haïm ; Mironescu, Petru On some questions of topology for $S^1$-valued fractional Sobolev spaces. Revista de la Real Academia de Ciencias, Fisicas y Naturales. Serie A. Matemáticas. 95 (2001), no 1, 121–143. hal Un erratum étendu : Brezis, Haïm ; Mironescu, Petru ; Itaï Shafrir Radial extensions in fractional Sobolev spaces, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matemáticas 113 (2019), no 2, 707–714. hal

25. Bourgain, Jean ; Brezis, Haïm ; Mironescu, Petru Another look at Sobolev spaces. Optimal Control and Partial Differential Equations — Innovations and Applications, 439–455, IOS Publishers, Amsterdam, 2001. hal

24. Brezis, Haïm ; Mironescu, Petru Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces. Dedicated to the memory of Tosio Kato. J. Evol. Equ. 1 (2001), no. 4, 387–404. hal

23. Brezis, Haim ; Mironescu, Petru Composition in fractional Sobolev spaces. Discrete Contin. Dynam. Systems 7 (2001), no. 2, 241–246.

22. Bourgain, Jean ; Brezis, Haïm ; Mironescu, Petru On the structure of the Sobolev space $H^{1/2}$ with values into the circle. C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), no. 2, 119–124.

21. Comte, Myriam ; Haraux, Alain ; Mironescu, Petru Multiplicity and stability topics in semilinear parabolic equations. Differential Integral Equations 13 (2000), no. 7-9, 801–811.

20. Bourgain, Jean ; Brezis, Haïm ; Mironescu, Petru Lifting in Sobolev spaces. J. Anal. Math. 80 (2000), 37–86. hal

19. Lassoued, Lotfi ; Mironescu, Petru Ginzburg-Landau type energy with discontinuous constraint. J. Anal. Math. 77 (1999), 1–26.

18. Brezis, Haïm ; Li, Yanyan ; Mironescu, Petru ; Nirenberg, Louis Degree and Sobolev spaces. Topol. Methods Nonlinear Anal. 13 (1999), no. 2, 181–190.

17. Comte, Myriam ; Mironescu, Petru Minimizing properties of arbitrary solutions to the Ginzburg-Landau equation. bifurcation analysis for the Ginzburg-Landau equation. Proc. Roy. Soc. Edinburg Sect. A 129 (1999), no. 6, 1157–1169.

16. Comte, Myriam ; Mironescu, Petru A bifurcation analysis for the Ginzburg-Landau equation. Arch. Rational Mech. Anal. 144 (1998), no. 4, 301–311.

15. Mironescu, Petru Explicit bounds for solutions to a Ginzburg-Landau type equation. Rev. Roumaine Math. Pures Appl. 41 (1996), no. 3-4, 263–271.

14. Comte, Myriam ; Mironescu, Petru Remarks on nonminimizing solutions of a Ginzburg-Landau type equation. Asymptotic Anal. 13 (1996), no. 2, 199–215.

13. Mironescu, Petru Les minimiseurs locaux pour l'équation de Ginzburg-Landau sont à symétrie radiale. (French) [Local minimizers for the Ginzburg-Landau equation are radially symmetric] C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), no. 6, 593–598.

12. Comte, Myriam ; Mironescu, Petru The behavior of a Ginzburg-Landau minimizer near its zeroes. Calc. Var. Partial Differential Equations 4 (1996), no. 4, 323–340.

11. Mironescu, Petru ; Rădulescu, Vicenţiu D. The study of a bifurcation problem associated to an asymptotically linear function. Nonlinear Anal. 26 (1996), no. 4, 857–875.

10. Mironescu, Petru ; Rădulescu, Vicenţiu D. A multiplicity theorem for locally Lipschitz periodic functionals. J. Math. Anal. Appl. 195 (1995), no. 3, 621–637.

9. Comte, Myriam ; Mironescu, Petru Sur quelques propriétés des minimiseurs de l'énergie de Ginzburg-Landau. (French) [Some properties of the Ginzburg-Landau minimizers] C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 11, 1323–1326.

8. Mironescu, Petru On the stability of radial solutions of the Ginzburg-Landau equation. J. Funct. Anal. 130 (1995), no. 2, 334–344.

7. Comte, Myriam ; Mironescu, Petru Étude d'un minimiseur de l'énergie de Ginzburg-Landau près de ses zéros. (French) [The behavior of a Ginzburg-Landau minimizer near its zeroes] C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 3, 289–293.

6. Mironescu, Petru ; Rădulescu, Vicenţiu D. On an orthogonality theorem in Banach spaces. (Romanian) Stud. Cerc. Mat. 46 (1994), no. 3, 393–396.

5. Mironescu, Petru ; Rădulescu, Vicenţiu D. Periodic solutions of the equation $-\Delta v=v(1-\vert v\vert ^2)$ in ${\mathbb R}$ and ${\mathbb R}^2$. Houston J. Math. 20 (1994), no. 4, 653–669.

4. Mironescu, Petru Une estimation pour les minimiseurs de l'énergie de Ginzburg-Landau. (French) [An estimate for Ginzburg-Landau energy minimizers] C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 9, 941–943.

3. Brezis, Haïm ; Mironescu, Petru Sur une conjecture de E. De Giorgi relative à l'énergie de Ginzburg-Landau. (French) [On a conjecture of E. De Giorgi concerning the Ginzburg-Landau energy] C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 2, 167–170.

2. Mironescu, Petru ; Panaitopol, Laurenţiu The existence of a triangle with prescribed angle bisector lengths. Amer. Math. Monthly 101 (1994), no. 1, 58–60.

1. Mironescu, Petru ; Rădulescu, Vicenţiu D. A bifurcation problem associated to a convex, asymptotically linear function. C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 7, 667–672.

Prépublications (qui le resteront)

P5. Mironescu, Petru Lifting of $S^1$-valued maps in sums of Sobolev spaces (2008). hal

P4. Mironescu, Petru Fine properties of functions: an introduction (2005). cel

P3. Berlyand, Leonid ; Mironescu, Petru Ginzburg-Landau minimizers in perforated domains with prescribed degrees (2004). hal

P2. Bourgain, Jean ; Brezis, Haïm ; Mironescu, Petru Complements to the paper "Lifting, Degree, and the Distributional Jacobian revisited" (2004). hal

P1. Brezis, Haïm ; Mironescu, Petru; Ponce, Augusto C. Complements to the paper "$W^{1,1}$-maps with values into $S^1$" (2004). hal