Articles soumis ou à paraître

69. Mironescu, Petru ; Russ, Emmanuel ; Yannick Sire Lifting in Besov spaces. hal

Publications

68. Mironescu, Petru The role of the Hardy type inequalities in the theory of function spaces, Rev. Roumaine Math. Pures Appl. 63 (2018), no 4, 447—525. hal

67. Brezis, Haïm ; Mironescu, Petru Minimizers of the $W^{1,1}$-energy of $\mathbb S^1$-valued maps with prescribed singularities. Nonlinear Analysis TMA 177 part A (2018), 105–134. hal

66. Mironescu, Petru Sum-intersection property of Sobolev spaces. Current Research in Nonlinear Analysis, 203–228, Springer Optimization and its Applications, 135, Springer, Cham, 2018. hal

65. Brezis, Haïm ; Mironescu, Petru Gagliardo-Nirenberg inequalities and non-inequalities: the full story, Ann. IHP Anal. Non linéaire 35 (2018), no 5, 1355—1376. hal

64. Brezis, Haïm ; Mironescu, Petru ; Shafrir, Itaï Distances between classes in $W^{1,1} (\Omega ; {\mathbb S}^1)$, Calc. Var. Partial Differential Equations 57 (2018), no 1, 57:14. hal

63. Mironescu, Petru ; Shafrir, Itaï Asymptotic behavior of critical points of an energy involving a loop-well potential, Comm. Partial Differential Equations 42 (2017), no 12, 1837—1870. hal

62. Mironescu, Petru ; Low regularity function spaces of N-valued maps are contractible, Math. Scan. 121 (2017), 144—150 hal

61. Brezis, Haïm ; Mironescu, Petru ; Shafrir, Itaï Distances between homotopy classes of $W^{s,p} ({\mathbb S}^N ; {\mathbb S}^N)$, ESAIM Control Optim. Calc. Var. 22 (2016), no 4, 1204—1235 hal

60. Brezis, Haïm ; Mironescu, Petru ; Shafrir, Itaï Distances between classes of sphere-valued Sobolev maps, C. R. Math. Acad. Sci. Paris 354 (2016), no 7, 677—684 hal

59. Mironescu, Petru ; Profile decomposition and phase control for circle-valued maps in one dimension, C. R. Math. Acad. Sci. Paris 353 (2015), no 12, 1087—1092. hal

58. Lamy, Xavier ; Mironescu, Petru Characterization of function spaces via low regularity mollifiers, Discrete Contin. Dyn. Syst. 35 (2015), no 12, 6015–6030. hal

57. Bourgain, Jean ; Brezis, Haïm ; Mironescu, Petru A new function spaces and applications, J. Eur. Math. Soc. 17 (2015), no 9, 2083—2101. hal

56. Mironescu, Petru ; Molnar, Ioana Phases of unimodular complex valued maps: optimal estimates, the factorization method, and the sum-intersection property of Sobolev spaces, Ann. IHP Anal. Non linéaire 32 (2015), no 5, 965—1013. hal

55. Brezis, Haïm ; Mironescu, Petru Density in $W^{s,p}(\Omega ; N)$, J. Funct. Anal. 269 (2015), no 7, 2045—2109. hal

54. Mironescu, Petru ; Sickel, Wilfried A Sobolev non embedding, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26 (2015), no 3, 291—298. hal

53. Mironescu, Petru Note on Gagliardo's theorem "tr $W^{1,1}=L^1$", Ann. Univ. Buchar. Math. Ser. 6 (LXIV) (2015), no 1, 99—103. hal

52. Mironescu, Petru Superposition with subunitary powers in Sobolev spaces, C. R. Math. Acad. Sci. Paris 353 (2015), no. 6, 483—487. hal

51. Mironescu, Petru ; Russ, Emmanuel Traces of weighted Sobolev spaces. Old and new, Nonlinear Analysis TMA 119 (2015), 354—381. hal

50. Lamy, Xavier ; Mironescu, Petru Existence of critical points with semi-stiff boundary conditions for singular perturbation problems in simply connected planar domains. J. Math. Pures Appl. (9) 102 (2014), no. 2, 385–418. hal

49. Berlyand, Leonid ; Mironescu, Petru ; Rybalko, Volodymyr ; Sandier, Etienne Minimax critical points in Ginzburg-Landau problems with semi-stiff boundary conditions: existence and bubbling. Comm. Partial Differential Equations 39 (2014), no. 5, 946–1005. hal

48. Bousquet, Pierre ; Mironescu, Petru Prescribing the Jacobian in critical spaces. J. Anal. Math. 122 (2014), 317–373. hal

47. Bousquet, Pierre ; Mironescu, Petru ; Russ, Emmanuel A limiting case for the divergence equation. Math. Z. 274 (2013), no. 1-2, 427–460. hal

46. Mironescu, Petru Size of planar domains and existence of minimizers of the Ginzburg-Landau energy with semi-stiff boundary conditions. Contemp. Math. Fundamental Directions 47 (2013), 78–107. hal

45. Farina, Alberto ; Mironescu, Petru Uniqueness of vortexless Ginzburg-Landau type minimizers in two dimensions. Calc. Var. Partial Differential Equations 46 (2013), no. 3-4, 523–554. hal

44. Alama, Stan ; Bronsard, Lia ; Mironescu, Petru On compound vortices in a two-component Ginzburg-Landau functional. Indiana Univ. Math. J. 61 (2012), no. 5, 1861–1909. hal

43. Mironescu, Petru Le déterminant jacobien [d'après Brezis et Nguyen]. (French) [The Jacobian determinant [after Brezis and Nguyen]] Séminaire Bourbaki: Vol. 2010/2011. Exposés 1027–1042. Astérisque No. 348 (2012), Exp. No. 1041, x, 405–424. hal

42. Dos Santos, Mickaël ; Mironescu, Petru ; Misiats, Oleksandr The Ginzburg-Landau functional with a discontinuous and rapidly oscillating pinning term. Part I: The zero degree case. Commun. Contemp. Math. 13 (2011), no. 5, 885–914. hal

41. Bousquet, Pierre ; Mironescu, Petru An elementary proof of an inequality of Maz'ya involving $L^1$ vector fields. Nonlinear elliptic partial differential equations, 59–63, Contemp. Math., 540, Amer. Math. Soc., Providence, RI, 2011. hal

40. Mironescu, Petru $\mathbb S^1$-valued Sobolev mappings. (Russian) Sovrem. Mat. Fundam. Napravl. 35 (2010), 86-100; translation in J. Math. Sci. (N. Y.) 170 (2010), no. 3, 340–355 hal

39. Mironescu, Petru Decomposition of $\mathbb S^1$-valued maps in Sobolev spaces. C. R. Math. Acad. Sci. Paris 348 (2010), no. 13-14, 743–746. hal

38. Mironescu, Petru On some inequalities of Bourgain, Brezis, Maz'ya, and Shaposhnikova related to $L^1$ vector fields. C. R. Math. Acad. Sci. Paris 348 (2010), no. 9-10, 513–515. hal

37. Alama, Stan ; Bronsard, Lia ; Mironescu, Petru On the structure of fractional degree vortices in a spinor Ginzburg-Landau model. J. Funct. Anal. 256 (2009), no. 4, 1118–1136. hal

36. Mironescu, Petru Lifting default for $\mathbb S^1$-valued maps. C. R. Math. Acad. Sci. Paris 346 (2008), no. 19-20, 1039–1044. hal

35. Berlyand, Leonid ; Mironescu, Petru Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Netw. Heterog. Media 3 (2008), no. 3, 461–487. hal

34. Mironescu, Petru Sobolev maps on manifolds: degree, approximation, lifting. Perspectives in nonlinear partial differential equations, 413–436, Contemp. Math., 446, Amer. Math. Soc., Providence, RI, 2007. hal

33. Berlyand, Leonid ; Mironescu, Petru Ginzburg-Landau minimizers with prescribed degrees. Capacity of the domain and emergence of vortices. J. Funct. Anal. 239 (2006), no. 1, 76–99. hal

32. Brezis, Haïm ; Mironescu, Petru ; Ponce, Augusto C. $W^{1,1}$-maps with values into $S^1$. Geometric analysis of PDE and several complex variables, 69–100, Contemp. Math., 368, Amer. Math. Soc., Providence, RI, 2005. hal

31. Bourgain, Jean ; Brezis, Haïm ; Mironescu, Petru Lifting, degree, and distributional Jacobian revisited. Comm. Pure Appl. Math. 58 (2005), no. 4, 529–551. hal

30. Mironescu, Petru ; Pisante, Adriano A variational problem with lack of compactness for $H^{1/2}(S^1;S^1)$ maps of prescribed degree. J. Funct. Anal. 217 (2004), no. 2, 249–279.

29. Mironescu, Petru On some properties of $S^1$-valued fractional Sobolev spaces. Noncompact problems at the intersection of geometry, analysis and topology, 201–207, Contemp. Math., 350, Amer. Math. Soc., Providence, RI, 2004.

28. Bourgain, Jean ; Brezis, Haïm ; Mironescu, Petru $H^{1/2}$ maps with values into the circle: minimal connections, lifting, and the Ginzburg-Landau equation. Publ. Math. Inst. Hautes Études Sci. No. 99 (2004), 1–115. hal

27. Berlyand, Leonid ; Mironescu, Petru Ginzburg-Landau minimizers with prescribed degrees: dependence on domain. C. R. Math. Acad. Sci. Paris 337 (2003), no. 6, 375–380.

26. Bourgain, Jean ; Brezis, Haïm ; Mironescu, Petru Limiting embedding theorems for $W^{s,p}$ when $s\uparrow1$ and applications. Dedicated to the memory of Thomas H. Wolff. J. Anal. Math. 87 (2002), 77–101.

25. Brezis, Haïm ; Mironescu, Petru On some questions of topology for $S^1$-valued fractional Sobolev spaces. Revista de la Real Academia de Ciencias, Fisicas y Naturales. Serie A. Matemáticas. Anal. Math. 95 (2001), no 1, 121–143. hal Un erratum étendu : Brezis, Haïm ; Mironescu, Petru ; Itaï Shafrir Radial extensions in fractional Sobolev spaces, à paraître dans Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matemáticas hal

24. Bourgain, Jean ; Brezis, Haïm ; Mironescu, Petru Another look at Sobolev spaces. Optimal Control and Partial Differential Equations — Innovations and Applications, 439–455, IOS Publishers, Amsterdam, 2001. hal

23. Brezis, Haïm ; Mironescu, Petru Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces. Dedicated to the memory of Tosio Kato. J. Evol. Equ. 1 (2001), no. 4, 387–404. hal

22. Brezis, Haim ; Mironescu, Petru Composition in fractional Sobolev spaces. Discrete Contin. Dynam. Systems 7 (2001), no. 2, 241–246.

21. Bourgain, Jean ; Brezis, Haïm ; Mironescu, Petru On the structure of the Sobolev space $H^{1/2}$ with values into the circle. C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), no. 2, 119–124.

20. Comte, Myriam ; Haraux, Alain ; Mironescu, Petru Multiplicity and stability topics in semilinear parabolic equations. Differential Integral Equations 13 (2000), no. 7-9, 801–811.

19. Bourgain, Jean ; Brezis, Haïm ; Mironescu, Petru Lifting in Sobolev spaces. J. Anal. Math. 80 (2000), 37–86. hal

18. Lassoued, Lotfi ; Mironescu, Petru Ginzburg-Landau type energy with discontinuous constraint. J. Anal. Math. 77 (1999), 1–26.

17. Brezis, Haïm ; Li, Yanyan ; Mironescu, Petru ; Nirenberg, Louis Degree and Sobolev spaces. Topol. Methods Nonlinear Anal. 13 (1999), no. 2, 181–190.

16. Comte, Myriam ; Mironescu, Petru A bifurcation analysis for the Ginzburg-Landau equation. Arch. Rational Mech. Anal. 144 (1998), no. 4, 301–311.

15. Mironescu, Petru Explicit bounds for solutions to a Ginzburg-Landau type equation. Rev. Roumaine Math. Pures Appl. 41 (1996), no. 3-4, 263–271.

14. Comte, Myriam ; Mironescu, Petru Remarks on nonminimizing solutions of a Ginzburg-Landau type equation. Asymptotic Anal. 13 (1996), no. 2, 199–215.

13. Mironescu, Petru Les minimiseurs locaux pour l'équation de Ginzburg-Landau sont à symétrie radiale. (French) [Local minimizers for the Ginzburg-Landau equation are radially symmetric] C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), no. 6, 593–598.

12. Comte, Myriam ; Mironescu, Petru The behavior of a Ginzburg-Landau minimizer near its zeroes. Calc. Var. Partial Differential Equations 4 (1996), no. 4, 323–340.

11. Mironescu, Petru ; Rădulescu, Vicenţiu D. The study of a bifurcation problem associated to an asymptotically linear function. Nonlinear Anal. 26 (1996), no. 4, 857–875.

10. Mironescu, Petru ; Rădulescu, Vicenţiu D. A multiplicity theorem for locally Lipschitz periodic functionals. J. Math. Anal. Appl. 195 (1995), no. 3, 621–637.

9. Comte, Myriam ; Mironescu, Petru Sur quelques propriétés des minimiseurs de l'énergie de Ginzburg-Landau. (French) [Some properties of the Ginzburg-Landau minimizers] C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 11, 1323–1326.

8. Mironescu, Petru On the stability of radial solutions of the Ginzburg-Landau equation. J. Funct. Anal. 130 (1995), no. 2, 334–344.

7. Comte, Myriam ; Mironescu, Petru Étude d'un minimiseur de l'énergie de Ginzburg-Landau près de ses zéros. (French) [The behavior of a Ginzburg-Landau minimizer near its zeroes] C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 3, 289–293.

6. Mironescu, Petru ; Rădulescu, Vicenţiu D. On an orthogonality theorem in Banach spaces. (Romanian) Stud. Cerc. Mat. 46 (1994), no. 3, 393–396.

5. Mironescu, Petru ; Rădulescu, Vicenţiu D. Periodic solutions of the equation $-\Delta v=v(1-\vert v\vert ^2)$ in ${\mathbb R}$ and ${\mathbb R}^2$. Houston J. Math. 20 (1994), no. 4, 653–669.

4. Mironescu, Petru Une estimation pour les minimiseurs de l'énergie de Ginzburg-Landau. (French) [An estimate for Ginzburg-Landau energy minimizers] C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 9, 941–943.

3. Brezis, Haïm ; Mironescu, Petru Sur une conjecture de E. De Giorgi relative à l'énergie de Ginzburg-Landau. (French) [On a conjecture of E. De Giorgi concerning the Ginzburg-Landau energy] C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 2, 167–170.

2. Mironescu, Petru ; Panaitopol, Laurenţiu The existence of a triangle with prescribed angle bisector lengths. Amer. Math. Monthly 101 (1994), no. 1, 58–60.

1. Mironescu, Petru ; Rădulescu, Vicenţiu D. A bifurcation problem associated to a convex, asymptotically linear function. C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 7, 667–672.

Prépublications (qui le resteront)

P5. Mironescu, Petru Lifting of $S^1$-valued maps in sums of Sobolev spaces (2008). hal

P4. Mironescu, Petru Fine properties of functions: an introduction (2005). cel

P3. Berlyand, Leonid ; Mironescu, Petru Ginzburg-Landau minimizers in perforated domains with prescribed degrees (2004). hal

P2. Bourgain, Jean ; Brezis, Haïm ; Mironescu, Petru Complements to the paper "Lifting, Degree, and the Distributional Jacobian revisited" (2004). hal

P1. Brezis, Haïm ; Mironescu, Petru; Ponce, Augusto C. Complements to the paper "$W^{1,1}$-maps with values into $S^1$" (2004). hal