Articles soumis ou à paraître

67. Brezis, Haïm ; Mironescu, Petru Gagliardo-Nirenberg inequalities and non-inequalities: the full story, à paraître dans Ann. IHP Anal. Non linéaire. hal

66. Mironescu, Petru Sum-intersection property of Sobolev spaces. hal

65. Mironescu, Petru ; Shafrir, Itaï Asymptotic behavior of critical points of an energy involving a loop-well potential, à paraître dans Comm. Partial Differential Equations. hal

64. Mironescu, Petru ; Russ, Emmanuel ; Yannick Sire Lifting in Besov spaces. hal

63. Brezis, Haïm ; Mironescu, Petru ; Shafrir, Itaï Distances between classes in $W^{1,1} (\Omega ; {\mathbb S}^1)$ hal


Publications

62. Mironescu, Petru ; Low regularity function spaces of N-valued maps are contractible, Math. Scan. 121 (2017), 144—150 hal

61. Brezis, Haïm ; Mironescu, Petru ; Shafrir, Itaï Distances between homotopy classes of $W^{s,p} ({\mathbb S}^N ; {\mathbb S}^N)$, ESAIM Control Optim. Calc. Var. 22 (2016), no 4, 1204—1235 hal

60. Brezis, Haïm ; Mironescu, Petru ; Shafrir, Itaï Distances between classes of sphere-valued Sobolev maps, C. R. Math. Acad. Sci. Paris 354 (2016), no 7, 677—684 hal

59. Mironescu, Petru ; Profile decomposition and phase control for circle-valued maps in one dimension, C. R. Math. Acad. Sci. Paris 353 (2015), no 12, 1087—1092. hal

58. Lamy, Xavier ; Mironescu, Petru Characterization of function spaces via low regularity mollifiers, Discrete Contin. Dyn. Syst. 35 (2015), no 12, 6015–6030. hal

57. Bourgain, Jean ; Brezis, Haïm ; Mironescu, Petru A new function spaces and applications, J. Eur. Math. Soc. 17 (2015), no 9, 2083—2101. hal

56. Mironescu, Petru ; Molnar, Ioana Phases of unimodular complex valued maps: optimal estimates, the factorization method, and the sum-intersection property of Sobolev spaces, Ann. IHP Anal. Non linéaire 32 (2015), no 5, 965—1013. hal

55. Brezis, Haïm ; Mironescu, Petru Density in $W^{s,p}(\Omega ; N)$, J. Funct. Anal. 269 (2015), no 7, 2045—2109. hal

54. Mironescu, Petru ; Sickel, Wilfried A Sobolev non embedding, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26 (2015), no 3, 291—298. hal

53. Mironescu, Petru Note on Gagliardo's theorem "tr $W^{1,1}=L^1$", Ann. Univ. Buchar. Math. Ser. 6 (LXIV) (2015), no 1, 99—103. hal

52. Mironescu, Petru Superposition with subunitary powers in Sobolev spaces, C. R. Math. Acad. Sci. Paris 353 (2015), no. 6, 483—487. hal

51. Mironescu, Petru ; Russ, Emmanuel Traces of weighted Sobolev spaces. Old and new, Nonlinear Analysis TMA 119 (2015), 354—381. hal

50. Lamy, Xavier ; Mironescu, Petru Existence of critical points with semi-stiff boundary conditions for singular perturbation problems in simply connected planar domains. J. Math. Pures Appl. (9) 102 (2014), no. 2, 385–418. hal

49. Berlyand, Leonid ; Mironescu, Petru ; Rybalko, Volodymyr ; Sandier, Etienne Minimax critical points in Ginzburg-Landau problems with semi-stiff boundary conditions: existence and bubbling. Comm. Partial Differential Equations 39 (2014), no. 5, 946–1005. hal

48. Bousquet, Pierre ; Mironescu, Petru Prescribing the Jacobian in critical spaces. J. Anal. Math. 122 (2014), 317–373. hal

47. Bousquet, Pierre ; Mironescu, Petru ; Russ, Emmanuel A limiting case for the divergence equation. Math. Z. 274 (2013), no. 1-2, 427–460. hal

46. Mironescu, Petru Size of planar domains and existence of minimizers of the Ginzburg-Landau energy with semi-stiff boundary conditions. Contempt. Math. Fundamental Directions 47 (2013), 78–107. hal

45. Farina, Alberto ; Mironescu, Petru Uniqueness of vortexless Ginzburg-Landau type minimizers in two dimensions. Calc. Var. Partial Differential Equations 46 (2013), no. 3-4, 523–554. hal

44. Alama, Stan ; Bronsard, Lia ; Mironescu, Petru On compound vortices in a two-component Ginzburg-Landau functional. Indiana Univ. Math. J. 61 (2012), no. 5, 1861–1909. hal

43. Mironescu, Petru Le déterminant jacobien [d'après Brezis et Nguyen]. (French) [The Jacobian determinant [after Brezis and Nguyen]] Séminaire Bourbaki: Vol. 2010/2011. Exposés 1027–1042. Astérisque No. 348 (2012), Exp. No. 1041, x, 405–424. hal

42. Dos Santos, Mickaël ; Mironescu, Petru ; Misiats, Oleksandr The Ginzburg-Landau functional with a discontinuous and rapidly oscillating pinning term. Part I: The zero degree case. Commun. Contemp. Math. 13 (2011), no. 5, 885–914. hal

41. Bousquet, Pierre ; Mironescu, Petru An elementary proof of an inequality of Maz'ya involving $L^1$ vector fields. Nonlinear elliptic partial differential equations, 59–63, Contemp. Math., 540, Amer. Math. Soc., Providence, RI, 2011. hal

40. Mironescu, Petru $\mathbb S^1$-valued Sobolev mappings. (Russian) Sovrem. Mat. Fundam. Napravl. 35 (2010), 86-100; translation in J. Math. Sci. (N. Y.) 170 (2010), no. 3, 340–355 hal

39. Mironescu, Petru Decomposition of $\mathbb S^1$-valued maps in Sobolev spaces. C. R. Math. Acad. Sci. Paris 348 (2010), no. 13-14, 743–746. hal

38. Mironescu, Petru On some inequalities of Bourgain, Brezis, Maz'ya, and Shaposhnikova related to $L^1$ vector fields. C. R. Math. Acad. Sci. Paris 348 (2010), no. 9-10, 513–515. hal

37. Alama, Stan ; Bronsard, Lia ; Mironescu, Petru On the structure of fractional degree vortices in a spinor Ginzburg-Landau model. J. Funct. Anal. 256 (2009), no. 4, 1118–1136. hal

36. Mironescu, Petru Lifting default for $\mathbb S^1$-valued maps. C. R. Math. Acad. Sci. Paris 346 (2008), no. 19-20, 1039–1044. hal

35. Berlyand, Leonid ; Mironescu, Petru Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Netw. Heterog. Media 3 (2008), no. 3, 461–487. hal

34. Mironescu, Petru Sobolev maps on manifolds: degree, approximation, lifting. Perspectives in nonlinear partial differential equations, 413–436, Contemp. Math., 446, Amer. Math. Soc., Providence, RI, 2007. hal

33. Berlyand, Leonid ; Mironescu, Petru Ginzburg-Landau minimizers with prescribed degrees. Capacity of the domain and emergence of vortices. J. Funct. Anal. 239 (2006), no. 1, 76–99. hal

32. Brezis, Haïm ; Mironescu, Petru ; Ponce, Augusto C. $W^{1,1}$-maps with values into $S^1$. Geometric analysis of PDE and several complex variables, 69–100, Contemp. Math., 368, Amer. Math. Soc., Providence, RI, 2005. hal

31. Bourgain, Jean ; Brezis, Haïm ; Mironescu, Petru Lifting, degree, and distributional Jacobian revisited. Comm. Pure Appl. Math. 58 (2005), no. 4, 529–551. hal

30. Mironescu, Petru ; Pisante, Adriano A variational problem with lack of compactness for $H^{1/2}(S^1;S^1)$ maps of prescribed degree. J. Funct. Anal. 217 (2004), no. 2, 249–279.

29. Mironescu, Petru On some properties of $S^1$-valued fractional Sobolev spaces. Noncompact problems at the intersection of geometry, analysis, and topology, 201–207, Contemp. Math., 350, Amer. Math. Soc., Providence, RI, 2004.

28. Bourgain, Jean ; Brezis, Haïm ; Mironescu, Petru $H^{1/2}$ maps with values into the circle: minimal connections, lifting, and the Ginzburg-Landau equation. Publ. Math. Inst. Hautes Études Sci. No. 99 (2004), 1–115. hal

27. Berlyand, Leonid ; Mironescu, Petru Ginzburg-Landau minimizers with prescribed degrees: dependence on domain. C. R. Math. Acad. Sci. Paris 337 (2003), no. 6, 375–380.

26. Bourgain, Jean ; Brezis, Haïm ; Mironescu, Petru Limiting embedding theorems for $W^{s,p}$ when $s\uparrow1$ and applications. Dedicated to the memory of Thomas H. Wolff. J. Anal. Math. 87 (2002), 77–101.

25. Brezis, Haïm ; Mironescu, Petru On some questions of topology for $S^1$-valued fractional Sobolev spaces. Revista de la Real Academia de Ciencias, Fisicas y Naturales. Serie A. Matemáticas.. Anal. Math. 95 (2001), no 1, 121–143. hal

24. Bourgain, Jean ; Brezis, Haïm ; Mironescu, Petru Another look at Sobolev spaces. Optimal Control and Partial Differential Equations, IOS Publishers (2001), 439–455. hal

23. Brezis, Haïm ; Mironescu, Petru Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces. Dedicated to the memory of Tosio Kato. J. Evol. Equ. 1 (2001), no. 4, 387–404. hal

22. Brezis, Haim ; Mironescu, Petru Composition in fractional Sobolev spaces. Discrete Contin. Dynam. Systems 7 (2001), no. 2, 241–246.

21. Bourgain, Jean ; Brezis, Haïm ; Mironescu, Petru On the structure of the Sobolev space $H^{1/2}$ with values into the circle. C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), no. 2, 119–124.

20. Comte, Myriam ; Haraux, Alain ; Mironescu, Petru Multiplicity and stability topics in semilinear parabolic equations. Differential Integral Equations 13 (2000), no. 7-9, 801–811.

19. Bourgain, Jean ; Brezis, Haïm ; Mironescu, Petru Lifting in Sobolev spaces. J. Anal. Math. 80 (2000), 37–86. hal

18. Lassoued, Lotfi ; Mironescu, Petru Ginzburg-Landau type energy with discontinuous constraint. J. Anal. Math. 77 (1999), 1–26.

17. Brezis, Haïm ; Li, Yanyan ; Mironescu, Petru ; Nirenberg, Louis Degree and Sobolev spaces. Topol. Methods Nonlinear Anal. 13 (1999), no. 2, 181–190.

16. Comte, Myriam ; Mironescu, Petru A bifurcation analysis for the Ginzburg-Landau equation. Arch. Rational Mech. Anal. 144 (1998), no. 4, 301–311.

15. Mironescu, Petru Explicit bounds for solutions to a Ginzburg-Landau type equation. Rev. Roumaine Math. Pures Appl. 41 (1996), no. 3-4, 263–271.

14. Comte, Myriam ; Mironescu, Petru Remarks on nonminimizing solutions of a Ginzburg-Landau type equation. Asymptotic Anal. 13 (1996), no. 2, 199–215.

13. Mironescu, Petru Les minimiseurs locaux pour l'équation de Ginzburg-Landau sont à symétrie radiale. (French) [Local minimizers for the Ginzburg-Landau equation are radially symmetric] C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), no. 6, 593–598.

12. Comte, Myriam ; Mironescu, Petru The behavior of a Ginzburg-Landau minimizer near its zeroes. Calc. Var. Partial Differential Equations 4 (1996), no. 4, 323–340.

11. Mironescu, Petru ; Rădulescu, Vicenţiu D. The study of a bifurcation problem associated to an asymptotically linear function. Nonlinear Anal. 26 (1996), no. 4, 857–875.

10. Mironescu, Petru ; Rădulescu, Vicenţiu D. A multiplicity theorem for locally Lipschitz periodic functionals. J. Math. Anal. Appl. 195 (1995), no. 3, 621–637.

9. Comte, Myriam ; Mironescu, Petru Sur quelques propriétés des minimiseurs de l'énergie de Ginzburg-Landau. (French) [Some properties of the Ginzburg-Landau minimizers] C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 11, 1323–1326.

8. Mironescu, Petru On the stability of radial solutions of the Ginzburg-Landau equation. J. Funct. Anal. 130 (1995), no. 2, 334–344.

7. Comte, Myriam ; Mironescu, Petru Étude d'un minimiseur de l'énergie de Ginzburg-Landau près de ses zéros. (French) [The behavior of a Ginzburg-Landau minimizer near its zeroes] C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 3, 289–293.

6. Mironescu, Petru ; Rădulescu, Vicenţiu D. On an orthogonality theorem in Banach spaces. (Romanian) Stud. Cerc. Mat. 46 (1994), no. 3, 393–396.

5. Mironescu, Petru ; Rădulescu, Vicenţiu D. Periodic solutions of the equation $-\Delta v=v(1-\vert v\vert ^2)$ in ${\mathbb R}$ and ${\mathbb R}^2$. Houston J. Math. 20 (1994), no. 4, 653–669.

4. Mironescu, Petru Une estimation pour les minimiseurs de l'énergie de Ginzburg-Landau. (French) [An estimate for Ginzburg-Landau energy minimizers] C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 9, 941–943.

3. Brezis, Haïm ; Mironescu, Petru Sur une conjecture de E. De Giorgi relative à l'énergie de Ginzburg-Landau. (French) [On a conjecture of E. De Giorgi concerning the Ginzburg-Landau energy] C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 2, 167–170.

2. Mironescu, Petru ; Panaitopol, Laurenţiu The existence of a triangle with prescribed angle bisector lengths. Amer. Math. Monthly 101 (1994), no. 1, 58–60.

1. Mironescu, Petru ; Rădulescu, Vicenţiu D. A bifurcation problem associated to a convex, asymptotically linear function. C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 7, 667–672.

Prépublications (qui le resteront)

P5. Mironescu, Petru Lifting of $S^1$-valued maps in sums of Sobolev spaces (2008). hal

P4. Mironescu, Petru Fine properties of functions: an introduction (2005). cel

P3. Berlyand, Leonid ; Mironescu, Petru Ginzburg-Landau minimizers in perforated domains with prescribed degrees (2004). hal

P2. Bourgain, Jean ; Brezis, Haïm ; Mironescu, Petru Complements to the paper "Lifting, Degree, and the Distributional Jacobian revisited" (2004). hal

P1. Brezis, Haïm ; Mironescu, Petru; Ponce, Augusto C. Complements to the paper "$W^{1,1}$-maps with values into $S^1$" (2004). hal