|
Nouvelle méthode de comptage pour les points rationnels Régis de la BRETÈCHE
|
Mon Nov 15: 14h-15h (IHP, salle Darboux)
On s'intéresse dans ce sujet aux nouvelles méthodes de comptage
qui permettent de démontrer des équivalents pour le nombre de points
rationnels de hauteur bornée sur certaines variétés algébriques.
On détaillera en particulier le cas de la cubique de Segre qui peut
être définie comme le lieu des points satisfaisant
x13+x23+x33+x43+x53+x63=0
et
x1 +x2 +x3+x4+x5 +x6 =0.
Si le temps le permet, nous parlerons de nouveaux exemples où on peut
décrire avec précision la fonction zêta des hauteurs associées.
|
The Lehmer dynasty and the search for better factoring methods John BRILLHART
|
Mon Sep 27: 14h-15h (IHP, salle Darboux)
On August 24-26, 2000 the Mathematics Department at U.C. Berkeley
hosted a number theory conference honoring D.N. Lehmer (1867--1938),
his son D.H. Lehmer (1905--1991), and his son's wife Emma Lehmer
(1906--) for their contributions to mathematics and to
U. C. Berkeley. Extensive information about the Lehmers was included
in the conference program and the proceedings of the conference were
recorded on a film which now resides in the Bancroft Library on the
Berkeley campus.
In this talk I'll give a short account of the early life and education
of D.N. Lehmer and some of the research activities that took place
within the mathematical world at Berkeley that was created by Lehmers
in the period 1900-1975, with a special focus on the theoretical and
practical developments dealing with the factoring of a given integer
N.
The event of most historical interest in regard to the latter was the
radical shift in opinion that took place when the factoring methods
deemed best by expert hand computers were put to the test on
electronic computers. From these experiments the "best'' computer
method was found to be one that can be called a ``generalized Fermat
factoring method'', i.e., a method for finding non-trivial integers x
and y for which a multiple of N is expressed as x2-y2.
(Joint work with Michael A. Morrison)
|
The probability that a Fq-hypersurface is smooth Jeroen DEMEYER
|
Thu Sept 30: 16h30-17h30 (IHP, salle Darboux)
Consider the projective space over a finite field. A hypersurface is a
variety defined by one homogenous equation having coefficients in this
finite field. I will give a formula for the probability that a
hypersurface of degree d is nonsingular, for d going to
infinity. I will explore the proof only for curves in the projective
plane, but it can easily be extended to higher dimensions.
This is a special case of a result in Bjorn Poonen's paper "Bertini
Theorems over Finite Fields". But where Poonen uses the full power of
algebraic geometry, this special case will be proved using only
elementary facts.
|
Formes modulaires de Hilbert et représentations galoisiennes Mladen DIMITROV
|
Mon Nov 08: 14h-15h (IHP, salle Darboux)
Nous présenterons un résultat de modularité de certaines
représentations deux-dimensionnelles du groupe de Galois absolu d'un
corps de nombres totalement réel, et discuterons l'exemple fourni par
une variété de Calabi-Yau tridimensionnelle non-rigide. Nous
donnerons également une application à la conjecture de Bloch-Kato pour
le motif adjoint associé à une forme modulaire de Hilbert.
|
AGM and Borchardt's mean: applications to the computation of Riemann matrices and to the evaluation of modular forms Régis DUPONT
|
Thu Dec 16: 14h-15h (IHP, salle Darboux)
It is well-known that the AGM can be used to evaluate elliptic integrals,
hence to compute the periods of an elliptic curve. We first describe an
algorithm based on Newton iterations and the AGM to evaluate modular forms in
genus 1 (applications are the computation of class polynomials and of modular
polynomials for example).
We then show how Borchardt's generalization of the AGM to higher genus can be
used to compute the Riemann matrix of a hyperelliptic curve, and -via Newton
iterations- to evaluate Siegel modular forms.
|
Primes in arithmetic progressions Ben GREEN
|
Mon Nov 29: 14h-15h (IHP, salle Darboux)
We will report on the proof that there are arithmetic
progression of arbitrary length in the set of primes. This is
joint work with Terence Tao.
|
Transcendental p-adic Galois representations Chandrashekhar KHARE
|
Mon Oct 25: 14h-15h (IHP, salle Darboux)
The topic of the lecture will be Cp-linear
representations of global Galois groups. I will discuss Cebotarev
density theorems and ramification properties for these representations
and converging sequences of such representations. The results
presented in the talk are joint work with Larsen and Ramakrishna, and
Bellaiche, Chenevier and Larsen.
|
The two variable generating function of Hecke L-values
of CM elliptic curves Shinichi KOBAYASHI
|
Mon Oct 18: 14h-15h (IHP, salle Darboux)
Generating functions are important to construct p-adic L-functions.
Especially, at good supersingular primes for CM elliptic curves,
it would be worthwhile to study the two variable generating function
of Hecke L-values, since in this case the p-adic L-function of "two
variable" has not yet constructed.
In this talk I will give an algebraic characterization of the two
variable generating function of Hecke L-values of CM elliptic curves
as a theta function corresponding to a section of the Poincaré bundle.
At good ordinary primes, I will show a simple construction of the two
variable p-adic L-function using this characterization. At good
supersingular primes,
I will give a p-adic estimate of the denominators of the coefficients
of the generating function.
|
AGM pour les courbes de genre 3 non hyperelliptiques Christophe RITZENTHALER
|
Thu Dec 16: 15h-16h (IHP, salle Darboux)
Le succès des méthodes AGM pour le comptage des points sur les courbes
de genre 1 et 2 en caractéristique 2 n'est plus à démontrer. Nous
proposons dans cet exposé un algorithme permettant de mettre en oeuvre
ce type de méthodes dans le cas des courbes de genre 3 non
hyperelliptiques. Nous montrons en particulier comment on choisit un
bon modèle relevant les quartiques ordinaires et comment on peut alors
déterminer les thêta constantes initiales par la géométrie des
bitangentes.
|
Algebraic hypergeometric functions Fernando RODRIGUEZ-VILLEGAS
|
Fri Dec 13: 14h-15h (IHP, salle Darboux)
I will discuss a characterization of the functions of the title
(classical one-variable hypergeometric series that satisfy a
polynomial equation) in terms of the integrality of its Taylor
coefficients. The proof follows the work of Beukers and Heckman and
relies on properties of the Hermitian form fixed by the monodromy
group. This Hermitian form, it turns out, can be described by an
ancient construction due to Bezout.
|
Floating-Point LLL Revisited Damien STEHLE
|
Fri Dec 17: 14h-15h (IHP, salle Darboux)
(Joint work with Phong Nguyen)
The LLL (Lenstra-Lenstra-Lovász) algorithm has many algorithmic
applications, from number theory to cryptography. Given as input
d linearly independent vectors of norm less than B, the
LLL algorithm computes a so-called LLL-reduced basis in polynomial
time O(d6 log3 B), by using arithmetic
operations on integers of bit-length O(d log B). This becomes
rapidly too expensive in practice for lattices with even moderately
large d and/or log B. For this reason, in the
orthogonalisation process (central in LLL) the integer arithmetic is
often replaced by floating-point arithmetic. Unfortunately, this
strategy is known to be unstable in the worst-case: the correctness
nor the running-time are guaranteed. In this talk we will describe a
provable floating-point variant of the LLL algorithm, with
running-time O(d5 log B (d+log B)). This is the
first LLL algorithm which time grows only quadratically with respect
to log B without fast integer arithmetic, like the Gaussian and
Euclidean algorithms. Moreover, this algorithm is simple to describe.
For these two reasons it may be seen as the "right" LLL variant.
|
3-torsion in the class groups of quadratic fields Akshay VENKATESH
|
Thu Sept 30: 14h-15h (IHP, salle Darboux)
I will discuss joint work with Harald Helfgott on upper bounds for
size of the 3-torsion in the class group of a quadratic field. The
key input is a method for getting improved upper bounds for the number of
rational or integral points on algebraic curves.
|
Invariants de Legendre supérieurs Leonardo ZAPPONI
|
Mon Nov 22: 14h-15h (IHP, salle Darboux)
Soit K un corps p-adique, avec p>2 et E
une courbe elliptique sur K. Un théorème de Deuring affirme que
la (potentielle) bonne réduction de E ne dépend que de la
valuation de l'invariant modulaire absolu j(E) de E. De
manière plus précise, ce resultat permet de décrire explicitement
le modèle stable de la courbe.
Dans cet exposé, nous proposons une
généralisation de ce résultat dans la direction suivante : on
considère des paires (E,P), E étant une courbe
elliptique sur K et P un point de p-torsion de
E. Il est possible de définir la notion de modèle stable de
(E,P), notre but étant celui de le décrire de manière
explicite. Nous introduisons un invariant l attaché à
(E,P) ; c'est un élément de K construit de manière
analogue à l'invariant j. Le résultat central permet de décrire
le modèle stable en fonction des valuations de j et de l
uniquement. On en déduit, en particulier, des critères de rationalité
et une nouvelle description des courbes à réduction supersingulière.
On termine en donnant une interprétation modulaire de ce résultat :
l'invariant l définit un revètement fini
X1(p) ---> P1 non ramifié en dehors de
trois points, qui n'est pas le revètement canonique
X1(p) ---> X(1).
|
|
|