Research interest :

Interacting particle systems, statistical mechanics, disordered systems, neurosciences, hamiltonian chains.


Articles :

- J. Grass, A. Guillin and C. Poquet, Sharp propagation of chaos for McKean-Vlasov equation with non constant diffusion coefficient, arXiv:2410.20874.
- P. Le Bris and C. Poquet, A note on uniform in time mean-field limit in graphs, ALEA, Lat. Am. J. Probab. Math. Stat. 21, 775–790 (2024) DOI: 10.30757/ALEA.v21-31, arXiv:2211.11519.
- F. Coppini, E. Luçon and C. Poquet, Central Limit Theorems for global and local empirical measures of diffusions on Erdős-Rényi graphs, Electronic Journal of Probability 2023, Vol. 28, paper no. 147, 1-63, arXiv:2206.06655.
- E. Luçon and C. Poquet, Periodicity and longtime diffusion for mean field systems in , arXiv:2107.02473.
- E. Luçon and C. Poquet, Existence, stability and regularity of periodic solutions for nonlinear Fokker-Planck equations, J Dyn Diff Equat (2022). https://doi.org/10.1007/s10884-022-10148-z, arXiv:2107.02468.
- E. Luçon and C. Poquet, Periodicity induced by noise and interaction in the kinetic mean-field FitzHugh-Nagumo model, Annals of Applied Probability 2021, Vol. 31, No. 2, 561-593., arXiv:1811.00305.
- E. Luçon and C. Poquet, Emergence of oscillatory behaviors for excitable systems with noise and mean-field interaction, a slow-fast dynamics approach, Commun. Math. Phys. (2019). https://doi.org/10.1007/s00220-019-03641-y, arXiv:1802.06410, hal-01817919.
- G. Giacomin, C. Poquet and A. Shapira, Small noise and long time phase diffusion in stochastic limit cycle oscillators, Journal of Differential Equations (2017), arXiv:1512.04436.
- N. Cuneo and C. Poquet, On the relaxation rate of short chains of rotors interacting with Langevin thermostats, Electron. Commun. Probab., Volume 22 (2017), paper no. 35, 8pp, arXiv:1604.03408.
- E. Luçon and C. Poquet, Long time dynamics and disorder-induced traveling waves in the stochastic Kuramoto model, Ann. Inst. H. Poincaré Probab. Statist., 53 (2017), no. 3, 1196–1240, arXiv:1505.00497.
- J. de Simoi, C. Liverani, C. Poquet and D. Volk, Fast–Slow Partially Hyperbolic Systems Versus Freidlin–Wentzell Random Systems, J Stat Phys (2016). doi:10.1007/s10955-016-1628-3., arXiv:1607.04319.
- N. Cuneo, J.-P. Eckmann, and C. Poquet, Non-equilibrium steady state and subgeometric ergodicity for a chain of three coupled rotors, Nonlinearity 28 (2015), 2397–2421, arXiv:1411.0400.
- F. Bouguet, F. Malrieu, F. Panloup, C. Poquet and J. Reygner, Long time behavior of Markov processes and beyond, Esaim: Proceedings and Surveys 51 (2015), 193-211, arXiv:1507.05801.
- G. Giacomin, and C. Poquet, Noise, interaction, nonlinear dynamics and the origin of rhythmic behaviors, Braz. J. Probab. Stat. 29(2) (2015), 460-493.
- C. Poquet, Phase Reduction in the Noise Induced Escape Problem for Systems close to Reversibility, Stochastic Processes and their Applications, 124(10) (2014), 3312–3341, arXiv:1307.1369.
- G. Giacomin, E. Luçon and C. Poquet, Coherence stability and effect of random natural frequencies in populations of coupled oscillators, J. Dynamic. Differential Equations, 26 (2014), 333-367, arXiv:1111.3581.
- L. Bertini, G. Giacomin and C. Poquet, Synchronization and random long time dynamics for mean-field plane rotators, Probab. Theory Related Fields, 160 (2014), no. 3-4, 593–653, arXiv:1209.4537.
- G. Giacomin, K. Pakdaman, X. Pellegrin and C. Poquet, Transitions in active rotator systems: invariant hyperbolic manifold approach, SIAM J. Math. Anal. 44(6) (2012), 4165–4194, arXiv:1106.0758.


Others :

- Thesis manuscript (date of defense: 08/10/2013), Stochastic interacting models: synchronization and phase reduction, Pdf.


Slides :

(please place the .avi and .mp4 files in the same folder as the .pdf file so that they can be read directly in the .pdf)
- EITN Workshop "Mean-field approaches to the dynamics of neuronal networks" (2019): Pdf, Video1, Video2.
- Colloque Jeunes Probabilistes et Statisticiens (2014): Pdf, Video1, Video2.
- Conférence en l'honneur de Michel Pierre, ENS Rennes (2014): Pdf, Video1, Video2, Video3, Video4.