Miguel Rodrigues

Contact C.V. (vitæ) Enseignement Recherche (research)

Memoirs

  1. « Comportement en temps long des fluides visqueux bidimensionnels », L.M. Rodrigues,
    Ph.D., Grenoble I (2007) : ps, pdf.
    In French.
  2. "Asymptotic stability and modulation of periodic wavetrains. General theory & applications to thin film flows", L.M. Rodrigues,
    Habilitation, Lyon I (2013) : pdf.

Papers

  1. « Sur le temps de vie de la turbulence bidimensionnelle », Th. Gallay & L.M. Rodrigues,
    Annales de la Faculté des Sciences de Toulouse, Sér. 6, Vol. 17, no. 4 (2008), p. 719-733 : ps, pdf.
    In French.
  2. "Asymptotic stability of Oseen vortices for a density-dependent incompressible viscous fluid", L.M. Rodrigues,
    Annales de l'I.H.P. (C) - Analyse non linéaire, Vol. 26, Issue 2 (2009), p. 625-648 : ps, pdf.
  3. "Vortex-like finite-energy asymptotic profiles for isentropic compressible flows", L.M. Rodrigues,
    Indiana University Mathematics Journal, Vol. 58 (2009), no. 4, p. 1747-1776 : ps, pdf.
  4. "Metastability of solitary roll wave solutions of the St. Venant equations with viscosity", B. Barker, M.A. Johnson, L.M. Rodrigues & K. Zumbrun,
    Physica D: Nonlinear Phenomena , Vol. 240, no. 16 (2011), p. 1289-1310 : pdf.
  5. "Whitham's Modulation Equations and Stability of Periodic Wave Solutions of the Korteweg-de Vries-Kuramoto-Sivashinsky Equation", P. Noble & L.M. Rodrigues,
    Indiana University Mathematics Journal, Vol. 62 (2013), no. 3, p. 753-783 : pdf.
  6. "Nonlocalized modulation of periodic reaction diffusion waves: nonlinear stability", M.A. Johnson, P. Noble, L.M. Rodrigues & K. Zumbrun,
    Archive for Rational Mechanics and Analysis, no. 2 (2013), p. 693-715 : pdf.
  7. "Nonlocalized modulation of periodic reaction diffusion waves: the Whitham equation", M.A. Johnson, P. Noble, L.M. Rodrigues & K. Zumbrun,
    Archive for Rational Mechanics and Analysis, no. 2 (2013), p. 669-692 : pdf.
  8. "Spectral stability of periodic wave trains of the Korteweg-de Vries/Kuramoto-Sivashinsky equation in the Korteweg-de Vries limit", M.A. Johnson, P. Noble, L.M. Rodrigues & K. Zumbrun,
    Transactions of the American Mathematical Society, Vol. 367 (2015), no. 3, p. 2159-2212 : pdf.
  9. "Nonlinear modulational stability of periodic traveling-wave solutions of the generalized Kuramoto-Sivashinsky equation", B. Barker, M.A. Johnson, P. Noble, L.M. Rodrigues & K. Zumbrun,
    Physica D: Nonlinear Phenomena , Vol. 258 (2013), p. 11-46 : pdf.
  10. "Behavior of periodic solutions of viscous conservation laws under localized and nonlocalized perturbations", M.A. Johnson, P. Noble, L.M. Rodrigues & K. Zumbrun,
    Inventiones mathematicae , Vol. 197 (2014), no. 1, p. 115-213 : pdf.
  11. "Slow modulations of periodic waves in Hamiltonian PDEs, with application to capillary fluids", S. Benzoni-Gavage, P. Noble & L.M. Rodrigues,
    Journal of Nonlinear Science , Vol. 24 (2014), no. 4, p. 711-768 : pdf.
  12. "Stability of viscous St. Venant roll-waves: from onset to infinite-Froude number limit", B. Barker, M.A. Johnson, P. Noble, L.M. Rodrigues & K. Zumbrun,
    submitted, 38 p. : pdf.
  13. "Invariant measures for a stochastic Fokker-Planck equation", S. de Moor, L.M. Rodrigues & J. Vovelle,
    submitted, 19 p. : pdf.
  14. "Periodic-coefficient damping estimates, and stability of large-amplitude roll waves in inclined thin film flow", L.M. Rodrigues & K. Zumbrun,
    submitted, 11 p. : pdf.
  15. "Spectral validation of the Whitham equations for periodic waves of lattice dynamical systems", B. Kabil & L.M. Rodrigues,
    submitted, 24 p. : pdf.
  16. "Co-periodic stability of periodic waves in some Hamiltonian PDEs", S. Benzoni-Gavage, C. Mietka & L.M. Rodrigues,
    submitted, 84 p. : pdf.

Notes & proceedings

  1. "Whitham averaged equations and modulational stability of periodic traveling waves of a hyperbolic-parabolic balance law", B. Barker, M.A. Johnson, P. Noble, L.M. Rodrigues & K. Zumbrun,
    Journées Équations aux Dérivées Partielles, Port-d'Albret (2010), Exp. no. 3 : pdf.
  2. "Stability of periodic Kuramoto-Sivashinsky waves", B. Barker, M.A. Johnson, P. Noble, L.M. Rodrigues & K. Zumbrun,
    Applied Mathematics Letters , Vol. 25, Issue 5 (2012), p. 824-829 : pdf.
  3. "Stability of periodic waves in Hamiltonian PDEs", S. Benzoni-Gavage, P. Noble & L.M. Rodrigues,
    Journées Équations aux Dérivées Partielles, Biarritz (2013): pdf.