Master Maths En Action - Université Lyon 1 - 2023-2024
Cette UE permet d’acquérir des bases solides sur les modèles usuels en dynamique des populations cellulaires. Les formalismes de systèmes dynamiques les plus courants seront introduits : Processus stochastiques, équations différentielles ordinaires et stochastiques, systèmes discrets. L’accent sera mis sur l’étude qualitative des systèmes dynamiques et des méthodes de résolution et d’analyse numérique.
In this class you will acquire solid background on modelling cell population dynamics. The most widely used dynamical system formalisms will be intriduced: Stochastic processes, ordinary and stochastic differential equation, and discrete systems. Emphasis will be put on qualitative study of dynamical systems and on the numerical methods and analysis.
Codes used in class on Github (github/samubernard/popdyn). Mostly Matlab, but also XPPAUT, C Python.
For the reading assigments, you can use the template fiche de lecture (French), or fiche de lecture (English).
Samuel Bernard to bernard@math.univ-lyon1.fr
The term project will deal with a recent modelling article. For the project, each student will hand in a report along with the codes used to generate the results presented in the report.
The project is in three parts: 1/ Understanding the model, 2/ its analysis (stability, bifurcation, ...), 3/ an extension of (stochastic or discrete version)
Write the report for yourself, not for your teacher.
If a question is not relevant for the article, do not answer it.
For instance, biological experiments do not apply for mathematics papers.
You can hand in your assignment as a .doc, pdf or scanned file, or in paper format in class.
Here are templates for the reading assignments in French or
in English.
1. Reading assignment on variation in cancer risk. Date due: Feb. 28
Solutions for the birth and death process: Kendall (1948) On the Generalized "Birth and Death" Process
Moment closure and the stochastic logistic equation model (Nåsell, 2003)
Stochastic equations in Matlab: An algorithmic introduction to numerical simulation of stochastic differential equations
Case study: Tumor-immune interaction (pdf, French)
Case study: Tumor-immune interation, numerical simulations with XPPAUT (pdf, French)
Numerical bifurcation continuation methods
Lecture notes on delay differential equations