Adrien Petrov

Publications


Refereed Articles

[J30] O. Chau, A. Heibig, M. Monteiro-Marques, A. Petrov.
A class of thermal sub-differential contact problems.
A Paraître, 2020.

[J29] I. S. Ciuperca, E. Feireisl, M. Jai, A. Petrov.
Stationary solutions of the Navier-Stokes-Fourier system in planar domains with impermeable boundary.
J. Math. Pures Appl.,140(9), 110-138, 2020.

[J28] A. Heibig, A. Petrov.
Solvability for a drift-diffusion system with Robin boundary conditions.
Z. Angew. Math. Phys.,70(6), Paper No. 162, 8 pp., 2019.

[J27] A. Heibig, A. Petrov, C. Reichert.
Solvability for a drift-diffusion system with Robin boundary conditions.
J. Differential Equations, 267(4), 2331-2356, 2019.

[J26] F. Dabaghi, P. Krejčí, A. Petrov, J. Pousin, Y. Renard.
A weighted finite element mass redistribution method for dynamic contact problems.
J. Comput. Appl. Math., 345, 338-356, 2019.

[J25] A. Petrov.
Solvability of a pseudodifferential linear complementarity problem related to a viscoelastodynamic contact model.
Appl. Anal., 97(8), 1372-1384, 2018.

[J24] I. S. Ciuperca, E. Feireisl, M. Jai, A. Petrov.
A rigorous derivation of the stationary compressible Reynolds equation via the Navier-Stokes equations.
Math. Models Methods Appl. Sci., 28(4), 697-732, 2018.

[J23] P. Krejčí, A. Petrov.
A mathematical model for the third-body concept.
Math. Mech. Solids, 23(3), 420-432, 2018.

[J22] I. S. Ciuperca, E. Feireisl, M. Jai, A. Petrov.
Transition to thermohydrodynamic lubrication problem.
Quart. Appl. Math., 75(3), 391-414, 2017.

[J21] I. S. Ciuperca, E. Feireisl, M. Jai, A. Petrov.
Transition to thermohydrodynamic lubrication problem.
Quart. Appl. Math., 75(3), 391-414, 2017.

[J20] F. Dabaghi, A. Petrov, J. Pousin, Y. Renard.
A robust finite element redistribution approach for elastodynamic contact problems.
Appl. Numer. Math., 103:48–71, 2016.

[J19] P. Krejčí, A. Petrov.
Elasto–plastic contact problems with heat exchange.
Nonlinear Anal. Real World Appl., 22, 55-567, 2015.

[J18] L. Paoli, A. Petrov.
Global solutions to phase change models with heat transfer for a class of smart materials.
Nonlinear Anal. Real World Appl., 17:47-63, 2014.

[J17] F. Dabaghi, A. Petrov, J Pousin, Y. Renard.
Convergence of mass redistribution method for the one–dimensional wave equation with a unilateral constraint at the boundary.
Model. Numer. Anal., 48(4):1147-1169, 2014.

[J16] P. Krejčí, A. Petrov.
Existence and uniqueness results for a class of dynamic elasto–plastic contact problems.
J. Math. Anal. Appl., 408(1):125–139, 2013.

[J15] L. Paoli, A. Petrov.
Solvability for a class of generalized standard materials with thermomechanical coupling.
Nonlinear Anal. Real World Appl., 14(1):111–130, 2013.

[J14] L. Paoli, A. Petrov.
Thermodynamics of multiphase problems in viscoelasticity.
GAMM-Mitteilungen, 35(1):75–90, 2012.

[J13] L. Paoli, A. Petrov.
Global existence result for thermoviscoelastic problems with hysteresis.
Nonlinear Anal. Real World Appl., 2:524–542, 2012.

[J12] A. Petrov.
Numerical approximation of a viscoelastic equation with unilateral constraints.
Adv. Comp. Meth. Cont. Mech., 205/208:162-168, 2012.

[J11] A. Mielke, L. Paoli, A. Petrov.
On existence and approximation for 3D model of thermally-induced phase transformation in shape-memory alloys.
SIAM J. Math. Anal., 48(5):1625-1646, 2010

[J10] A. Mielke, L. Paoli, A. Petrov, U. Stefanelli.
Error estimates for space-time discretizations of 3D model for shape-memory materials.
SIAM J. Numer. Anal., 48(5):1625–1646, 2010.

[J9] A. Petrov, M. Schatzman.
Mathematical results on existence for viscoelastodynamic problems with unilateral constraints.
SIAM J. Appl. Anal., 40(5):1882-1904, 2009.

[J8] A. Mielke, A. Petrov, J.A.C. Martins.
Convergence of solutions to kinetic variational inequality in the rate-independent quasi-static limit.
J. Math. Anal. Appl., 348:1012-1020, 2008.

[J7] J.A.C. Martins, M.D.P. Monteiro Marques, A. Petrov.
On the stability of elastic-plastic systems with hardening.
J. Math. Anal. Appl., 343:1007-1021, 2008.

[J6] A. Mielke, A. Petrov.
Thermally driven phase transformation in shape-memory alloys.
Adv. Math. Sci. Appl., 17:160-182, 2007.

[J5] A. Petrov, J.A.C. Martins, M.D.P. Monteiro Marques.
Mathematical results on the stability of quasi-static paths of elastic-plastic systems with hardening.
Topics on mathematics for smart systems, 167-182, World Sci. Publ., Hackensack, NJ, 2007.

[J4] J.A.C. Martins, M.D.P. Monteiro Marques, A. Petrov.
On the stability of quasi-static paths for finite dimensional elastic-plastic systems with hardening.
Z. Angew. Math. Mech., 84(4):303-313, 2007.

[J3] J.A.C. Martins, M.D.P. Monteiro Marques, A. Petrov.
Dynamics with friction and persistent contact.
Z. Angew. Math. Mech., 85:531-538, 2005.

[J2] A. Petrov, M. Schatzman.
A pseudodifferential linear complementarity problem related to a one dimensional viscoelastic model with Signorini conditions.
Arch. Ration. Mech. Anal., accepted 2009.

[J1] A. Petrov, M. Schatzman.
Viscoélastodynamique monodimensionnelle avec conditions de Signorini.
C. R. Math. Acad. Sci., 334(11):983-988, 2002.

Submitted Articles

[S1] A. Heibig, N. Mannai, A. Petrov, Y. Renard.
A thick-point approximation of a small body embedded in an elastic medium: justification with an asymptotic analysis. .
Z. Angew. Math. Mech. 2020.

Reports

[Re1] J.A.C. Martins, M.D.P. Monteiro Marques, A. Petrov.
On the stability of quasi-static paths for finite dimensional elastic-plastic systems with hardening.
Report of Instituto Superior Técnico of Lisbon, DTC No 1/07, 2007.

[Re2] A. Mielke, D. Knees, A. Petrov.
Report on the project C18: Analysis and numerics of multidimensional models for elastic phase transformations in shape-memory alloys. 2008.

Proceedings

[P12] P. Krejčí, A. Petrov.
Global existence result for rate-independent processes in viscous solids with heat transfer.
MAMERN13: 5th International Conference on Approximation Methods and Numerical Modelling in Environment and Natural Resources, 2013.

[P11] L. Paoli, A. Petrov.
Global existence result for rate-independent processes in viscous solids with heat transfer.
PAMM, 9(1), 527-528, 2011.

[P10] A. Petrov, M. Schatzman.
On the existence for viscoelastodynamic problems with unilateral boundary conditions.
PAMM, 9(1), 527-528, 2010.

[P9] A. Mielke, L. Paoli, A. Petrov, M. U. Stefanelli.
Error bounds for space–time discretizations of 3D model for shape–memory materials.
Proc. of the IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials, K. Hackl, ed., vol. 21 of IUTAM Bookseries, Springer, 2010: 185-197. 2010.

[P8] A. Mielke, L. Paoli, A. Petrov.
Existence and approximation for a 3D model of thermally-induced phase transformations in shape-memory alloys.
PAMM, 8(1):10395-10396, 2008.

[P7] A. Petrov.
On the convergence for kinetic variational inequality to quasi-static variational inequality with application to elastic-plastic systems with hardening.
PAMM, 7(1):4060003-4060004, 2007.

[P6] A. Petrov.
Thermally driven phase transformation in shape-memory alloys.
MFO Workshop on Analysis and Numerics for Rate-Independent Processes.
Oberwolfach Reports, No 11/2007:605-607, 2007.

[P5] J.A.C. Martins, M.D.P. Monteiro Marques, A. Petrov.
Some results on the stability of quasi-static paths of elastic-plastic systems with hardening.
Journal of Physics: Conference Series, 55, 155-164, 2006.

[P4] J.A.C. Martins, M.D.P. Monteiro Marques, A. Petrov, N.V. Rebrova, V.A. Sobolev, I. Coelho.
(In)stability of quasi-static paths of some finite dimensional smooth or elastic-plastic systems.
Journal of Physics: Conference Series, 22, 124-138, 2005.

[P3] J.A.C. Martins, M.D.P. Monteiro Marques, A. Petrov.
On the formulation of dynamic problem with friction and persistent contact.
Proceeding of ECCOMAS, 2004.

[P2] A. Petrov, M. Schatzman.
Viscoélastodynamique monodimensionnelle avec des conditions de Signorini aux bords.
Proceeding of 35ème Congrès National d'Analyse Numérique, 2003.

[P1] A. Petrov, M. Schatzman.
Simplified viscoelasticity with contact at the boundary.
Proceeding of ESDA 2002, 6th Biennal Conference on Engineering Systems and Analysis, 2002.

Ph.D. Thesis

[PhD] A. Petrov.
Mathematical modelisation of maching process: abrasion and wetting.
Ph.D. Thesis, Université Claude Bernard, Lyon, no 199-2002, 2002.

WARNING: The electronic files included here are the preprint versions and NOT the FINAL PUBLISHED ones.