Publications
A dynamical proof of Matui's absorption theorem, prépublication (2025) [PDF]
Clopen type semigroups of actions on 0-dimensional spaces, à paraître à Groups, Geometry and Dynamics [PDF].
A topometric Effros theorem, avec I. Ben Yaacov, à paraître au Journal of Symbolic Logic [PDF].
From invariant measures to orbit equivalence, via locally finite groups, avec S. Robert, Annales Henri Lebesgue 6 (2023), 259--295 [PDF].
Il y a une erreur dans un des arguments principaux de cet article. Merci de consulter le corrigendum.
Generic properties of homeomorphisms preserving a given dynamical simplex, Ergodic Theory and Dynamical Systems 43 (2023), no. 2, 646--662 [PDF].
Dense locally finite subgroups of automorphism groups of ultraextensive spaces, avec M. Etedadialiabadi,
S. Gao, et F. Le Maître, Advances in Mathematics 391 (2021), no 107966 [PDF].
Dynamical simplices and Borel complexity of orbit equivalence, Israel Journal of Mathematics 236(2020), 317-344 [PDF].
Homogeneous actions on Urysohn spaces, avec P. Fima ,
F. Le Maître et S. Moon, à paraître à Colloquium Mathematicum
[PDF].
Dynamical simplices and Fraïssé theory, Ergodic Theory and Dynamical Systems 39 (2019), no. 11, 3111-3126 [PDF] .
Metrizable universal minimal flows of Polish groups have a comeagre orbit, travail en commun avec I. Ben Yaacov et T. Tsankov,
Geometric and Functional Analysis 27(2017), no.1, 67--77 [PDF].
From isolated subgroups to generic permutation representations, avec Y. Glasner et D. Kitroser, Journal of the LMS (2)94 (2016), no.3, 688--708 [PDF].
A Polish metric space whose group of isometries induces a universal relation for Polish group actions ,
Fundamenta Mathematicae 239 (2017), no.1, 43--49 [PDF].
Dynamical simplices and minimal homeomorphisms , en collaboration avec T. Ibarlucia, Proceedings of the AMS 145(2017), no.11, 4981--4994 [PDF].
Polish groups and Baire category methods (article reprenant presque intégralement le texte de mon habilitation à diriger des recherches) Confluentes Mathematici 8 (2016), no.1, 89--164
[PDF].
Isometrisable group actions, en collaboration avec I. Ben Yaacov,
Proceedings of the AMS 144 (2016), no.9, 4081-4088 [PDF].
Polish groups with metrizable universal minimal flows, en collaboration avec
Lionel Nguyen Van Thé et
T. Tsankov, International Mathematical Research Notices 2016, no. 5, 1285-1307 [PDF].
Grey subsets of Polish spaces, en collaboration avec I. Ben Yaacov,
Journal of Symbolic Logic 80 (2015), no. 4, 1379-1397 [PDF]
Full groups of minimal homeomorphisms and Baire category methods, en collaboration avec T. Ibarlucia, Ergodic Theory and Dynamical Systems 36 (2016), no. 2, 550-573
[PDF]
Elements of finite order in automorphism groups of homogeneous structures, en collaboration avec D. Bilge,
Contributions to Discrete Mathematics 8 (2013), no. 2 [PDF]
Extensions of generic measure-preserving actions,
Annales de l'Institut Fourier 64 (2014), no.2, 607-623.
[PDF]
Generic representations of abelian groups and extreme amenability, en collaboration avec
T. Tsankov,
Israel Journal of Mathematics 198 (2013), no. 1, 129-167. [PDF]
Polish topometric groups,
en collaboration avec I. Ben Yaacov et
A. Berenstein,
Transactions of the AMS 365 (2013), no.7, 3877-3897. [PDF]
A note on
Hjorth's oscillation theorem , Journal of
Symbolic Logic 75 (2010),
1359-1365. [PDF]
Topology
of the Isometry group of the Urysohn space, Fundamenta
Mathematicae 207 (2010),
no 3, 273-287. [PDF]
Linearly
rigid metric spaces , en collaboration avec F. Petrov et A.M Vershik,
Fundamenta Mathematicae 199 (2008),
no.2, 177-194. [PDF]
L'article
ci-dessus a donné lieu à une
note,
Espaces
métriques linéairement rigides
(avec F. Petrov et A.M Vershik), Comptes
Rendus de l'Académie des Sciences de Paris 344 (2007), 235-240.
Some
geometric and dynamical properties of the Urysohn space ,
Topology and its Applications 155
(2008) no 14, 1531-1560
[PDF]
Computing the complexity of the relation of isometry between separable
Banach spaces , Mathematical Logic
Quarterly 53(2007), 128-131.
[PDF]
On the geometry of Urysohn's universal metric space
, Topology and its Applications154(2007),
384-403. [PDF]
Compact
metrizable groups are isometry groups of compact metric spaces,
Proceedings of the AMS 136 (2008),
no. 4, 1451-1455. [PDF]
Stabilizers of closed sets in the Urysohn space
, Fundamenta Mathematicae 189 (2006),
no. 1, 53-60. [PDF]
|