# Todor Tsankov

Bureau : Braconnier 102

Téléphone : 04 72 43 12 52

Institut Camille Jordan

Université Claude Bernard – Lyon 1

43, boulevard du 11 novembre 1918

69622 Villeurbanne cedex

France

tsankov @XXNOQKTJUE@ math point univ-lyon1 point fr

Bureau : Braconnier 102

Téléphone : 04 72 43 12 52

Institut Camille Jordan

Université Claude Bernard – Lyon 1

43, boulevard du 11 novembre 1918

69622 Villeurbanne cedex

France

tsankov @XXNOQKTJUE@ math point univ-lyon1 point fr

Invariant measures on products and on the space of linear orders

*(with C. Jahel)*.

Preprint, 2020.Universal minimal flows of homeomorphism groups of high-dimensional manifolds are not metrizable

*(with Y. Gutman and A. Zucker)*.

*Math. Ann.*, to appear.Bernoulli disjointness

*(with E. Glasner, B. Weiss, and A. Zucker)*.

*Duke Math. J.*, to appear.A model-theoretic approach to rigidity of strongly ergodic, distal actions

*(with T. Ibarlucía)*.

*Ann. Sci. Éc. Norm. Supér. (4)*, to appear.Realizing uniformly recurrent subgroups

*(with N. Matte Bon)*.

*Ergodic Theory Dynam. Systems***40**(2020), 478–489.Metric Scott analysis

*(with I. Ben Yaacov, M. Doucha, and A. Nies)*.

*Adv. Math.***318**(2017), 46–87.Eberlein oligomorphic groups

*(with I. Ben Yaacov and T. Ibarlucía)*.

*Trans. Amer. Math. Soc.***370**(2018), no. 3, 2181–2209.Metrizable universal minimal flows of Polish groups have a comeagre orbit

*(with I. Ben Yaacov and J. Melleray)*.

*Geom. Funct. Anal.***27**(2017), no. 1, 67–77.On the complexity of topological conjugacy of Toeplitz subshifts

*(with M. Sabok)*.

*Israel J. Math.***220**(2017), 583–603.Polish groups with metrizable universal minimal flows

*(with J. Melleray and L. Nguyen Van Thé).*

*Int. Math. Res. Not. IMRN*(2016), no. 5, pp. 1285–1307.Weakly almost periodic functions, model-theoretic stability, and minimality of topological groups

*(with I. Ben Yaacov)*.

*Trans. Amer. Math. Soc.***368**(2016), no. 11, pp. 8267–8294.Free actions of free groups on countable structures and property (T)

*(with D. Evans)*.

*Fund. Math.***232**(2016), pp. 49–63.Decidability of definability

*(with M. Bodirsky and M. Pinsker)*.

*J. Symbolic Logic***78**(2013), no. 4, pp. 1036–1054.

(A preliminary version of this article appeared in the*Proceedings of LICS 2011*, Toronto.)Automatic continuity for the unitary group.

*Proc. Amer. Math. Soc.***141**(2013), no. 10, pp. 3673–3680.Generic representations of abelian groups and extreme amenability

*(with J. Melleray)*.

*Israel J. Math.***198**(2013), no. 1, 129–167.Unitary representations of oligomorphic groups.

*Geom. Funct. Anal.***22**(2012), no. 2, pp. 528–555.The additive group of the rationals is not automatic.

*J. Symbolic Logic***76**(2011), no. 4, pp. 1341–1351.Subequivalence relations and positive-definite functions

*(with A. Ioana and A. S. Kechris)*.

*Groups Geom. Dyn.***3**(2009), no. 4, pp. 579–625.Topological properties of full groups

*(with J. Kittrell)*.

*Ergodic Theory Dynam. Systems***30**(2010), no. 2, pp. 525–545.Modular actions and amenable representations

*(with I. Epstein)*.

*Trans. Amer. Math. Soc.***362**(2010), no. 2, pp. 603–621.Amenable actions and almost invariant sets

*(with A. S. Kechris)*.

*Proc. Amer. Math. Soc.***136**(2008), no. 2, pp. 687–697.Compactifications of

**N**and Polishable subgroups of*S*_{∞}.

*Fund. Math.***189**(2006), no. 3, 269–284.