PLEASE NOTE : the copyrights to these publications are held by their publishers. The PDF files provided here may be used only for single copies for personal use, as though they were reprints provided by mail. They may not be reposted on other web sites or used for any other purpose without te express permission of the appropriate publishers.

free web site creator

De 2011 à 2016

32 -  A Model of Platelet Production: Stability Analysis and Oscillations, M. Adimy, L. Boullu, F. Crauste, L. Pujo-Menjouet, (in process) 

31 -  Mathematical model of the dynamics of leukemic cells , M. Adimy, M. Helal, A. Lakmeche, L. Pujo-Menjouet (in process)

30 -  Mathematical Modelling of Lymphocyte Division Based on Labelling Data with CFSE, S. Bernard,  P. Mazzocco, L. Pujo-Menjouet (submitted)

29 -  Mathematical models of radiation action on living cells : From target theory to the modern approaches. A historical and critical review , L. Bodgi, A. Canet, L. Pujo-Menjouet, A. Lesne, J-M. Victor, N. Foray, Journal of Theoretical Biology, 394,  93-101, 2016.

28 -   First passage times in homogeneous nucleation : Dependence on the total number of particles, R. Yvinec, S. Bernard, E. Hingant, L. Pujo-Menjouet, The Journal of Chemical Physics 144, 034106; doi: 10.1063/1.4940033, 2016. 

27 - Blood cell dynamics : half of a century of modelling ”, L. Pujo-Menjouet, R. Yvinec (Math. Model. Nat. Phenom. Vol.10, No. 6, 182-204, 2015.

26 - A micellar on-pathway intermediate step explains the kinetic of prion amyloid formation, M.-T. Alvarez-Martinez, P. Fontes, J.-D. Arnaud, E. Hingant, L. Pujo-Menjouet and J.-P. Liautard, PLOS Computational Biology,  vol 10, Issue 8, e1003735, 2014.

25 - Structures de Turing et équations de réaction-diffusion , L. Pujo-Menjouet, (book chapter: Epistémologies et pratiques de la modélisation et de la simulation, tome 2, 2014.

24 - Role of prion protein in Alzheimer disease : a mathematical model, M. Helal, E. Hingant, L. Pujo-Menjouet, G.F. Webb, J. Math. Biol., 69:1207–1235, 2014, DOI 10.1007/s00285-013-0732-0    

23 - Fragmentation and monomers lengthening of rod-like polymers, a relevant model of prion proliferation , I. S. Ciuperca, E. Hingant, L. I. Palade, L. Pujo-Menjouet, DCDS – B, Vol. 17, no. 3,  775 - 799, May 2012.

22 -  Dynamics of polymerization shed light on the mechanisms that lead to multiple amyloid structures of the prion protein, M.-T. Alvarez-Martinez, P. Fontes, V. Zomosa-Signoret, J.-D. Arnaud, E. Hingant, L. Pujo-Menjouet and J.-P. Liautard, Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics, vol. 1814,  1305-1317, 2011.

21 - Multi-Agent Systems and Blood Cell Formation, N. Bessonov, I. Demin, P. Kurbatova, L. Pujo-Menjouet, V. Volpert, Multi-Agent Systems, book chapter  “MULTI AGENT SYSTEMS MODELING, INTERACTIONS, SIMULATIONS AND CASE STUDIES", InTech Publishers,  395-424, 2011.

De 2006 à 2010

20- Modélisation numérique de l’hématopoïèse, M. Adimy, F. Crauste, L. Pujo-Menjouet, chapitre de livre, Hermès Science Publications, Le passage de la culture au numérique : une grande transformation, 2010.

19 - Mathematical Modeling of Hematopoiesis, S. Bernard, C. Colijn, J. Lei, M.C. Mackey, L. Pujo-Menjouet, Encyclopedia of Life Support Systems (EOLSS), UNESCO ENCYCLOPEDIA, 2009.

18 - A mutli-agent model describing self-renewal of differentiation effects on the blood cell population , N. Bessonov, I. Demin, L. Pujo-Menjouet, V. Volpert, Mathematical and Computer Modelling Volume 49, Issues 11–12, June,  2116–2127, 2009.

17 - Modélisation de la dynamique de l’hématopoïèse normale et pathologique, M. Adimy, S. Bernard, J. Clairambault, F. Crauste, S. Génieys, L. Pujo-Menjouet, Hématologie 2008 ; 14 (1), 1-11, 2008.

16 - Adding Self-Renewal in Committed Erythroid Progenitors Improves the Biological Relevance of a Mathematical Model of Erythropoiesis, F. Crauste, L. Pujo-Menjouet, S. Génieys, C. Molina, O. Gandrillon, Journal of Theoretical Biology 250, 322–338, 2008.

15 - Cell Modelling of Hematopoiesis, N. Bessonov, L. Pujo-Menjouet, V. Volpert, Math. Model. Nat. Phenom.Vol. 2, No. 1,  81-103, 2008.

14 - Diagnostics of the AML with immunophenotypical data, A. Plesa , G. Ciuperca, S. Genieys, V. Louvet, L. Pujo-Menjouet, C. Dumontet, V. Volpert , Math. Model. Nat. Phenom.Vol. 2, No. 1,  104-123, 2008.

13 - Mathematical analysis of the dynamics of the prion proliferation, M. Greer, L. Pujo-Menjouet, G. Webb, Journal of Theoretical Biology , vol. 242, 598-606, 2006.

12 - Analysis of a Model for the Dynamics of Prions, J. Prüss, L. Pujo-Menjouet, G. Webb et R. Zacher, Discrete and Continuous Dynamical Systems – B Vol. 6 No. 1, 215-225, 2006.

11 - Modeling transcriptional feedback loops: The role of Gro/TLE1 in Hes1 oscillations , S. Bernard, B. Cajavec, L. Pujo-Menjouet, M. C. Mackey,H. Herzel, Philosophical Transactions of Royal Society Series A , 364, 1155-1170, 2006.

10 - Periodic Oscillations of Blood Cell Populations in Chronic Myelogenous Leukemia, C. O. Hu, M. C. Mackey, L. Pujo-Menjouet, J. Wu, SIAM J. Math. Anal., 38 (1), 166–187, 2006.

De 1997 à 2005

9 - Long Period Oscillations in a Go Model of Hematopoietic Stem Cells, S. Bernard, L. Pujo-Menjouet, M.C. Mackey, SIAM Journal on Applied Dynamical Systems – vol 4, Number 2,  312 - 332, 2005.

8 - On the stability of a nonlinear maturity structured model of cellular proliferation, M. Adimy, F. Crauste, L. Pujo-Menjouet, Discrete and Continuous Dynamical Systems B, Volume 12, Number 3, March, 501-522, 2005.

7 - Contribution to the study of long period oscillations in Periodic Chronic Myelogenous Leukemia, L. Pujo-Menjouet, M.C. Mackey, Compte rendu de l’Académie des Sciences de Paris, Biologie, 327,  235–244, 2004.

6 - A mathematical model describing cellular division with a proliferating phase duration depending on the maturity of cells, M. Adimy, L. Pujo-Menjouet, Electron. J. Diff. Eqns., Vol. 2003, No. 107, 1-14, 2003.

5 - Asymptotic behavior of a singular transport equation modelling cell division, M. Adimy et L. Pujo-Menjouet, DCDBS – B, Volume 3, Number 3, 439–456, 2003.

4 - Analysis of Cell Kinetics Using a Cell Division Marker : Mathematical Modeling of Experimental Data , S. Bernard, L. Pujo-Menjouet, M.C. Mackey, Biophysical Journal, Vol. 84,   3414-3424, 2003.

3 - A singular transport model describing cellular division , M. Adimy et L. Pujo-Menjouet, Compte rendu de l’Académie des Sciences de Paris, t.332, Série I, 1-6, 2001.

2 - Global stability of Cellular Populations with unequal Division, L. Pujo-Menjouet et R. Rudnicki, Canadian Applied Mathematics Quarterly, Vol. 8, Number 2, 185-202, 2000.

1 - Etude d’une équation de transport semi-linéaire avec retards modélisant une population de cellules sanguines L. Pujo-Menjouet, Actas de las V Jornadas Zaragoza-Pau de Matemática Aplicada y Estadística, 1997.