Accepted and submitted paper, book chapters and books

Fichier binaire publi_perso_ricl.html correspondant
[1] F. Chouly, P. Hild, Y. Renard. Lagrangian and Nitsche methods for frictional contact. book chapter, Numerical modeling in highly nonlinear mechanics, ISTE edition:7--52, 2024. [ DOI | .pdf ]
[2] F. Chouly, P. Hild, Y. Renard. Finite Element Approximation of Contact and Friction in Elasticity. Springer, advances in Continuum Mechanics, vol 48, 2023. [ DOI | http ]
[3] A. Karoui, K. Mansouri, Y. Renard, M. Arfaoui, T. Homolle, P. Bussetta. Numerical homogenization of fiber reinforced layer in large elastic deformation using a decoupled iterative method. to appear in Composite Structures, 2023. [ DOI ]
[4] E. Bretin, J. Chapelat, Y. Renard. Shape sensitivity analysis of an elastic contact problem: convergence of the Nitsche based finite element approximation. to appear in Nonlinear Analysis: Real World Applications, 2023. [ DOI | .pdf ]
[5] F. Chouly, P. Hild, Y. Renard. Méthodes de lagrangien et de Nitsche pour le contact avec frottement. 2023. [ DOI | .pdf ]
[6] E. Bretin, J. Chapelat, Y. Renard. Shape optimization of a linearly elastic rolling structure under unilateral contact using Nitsche's method and cut finite elements. Computational Mechanics, 70:205--224, 2022. [ DOI | .pdf ]
[7] F. Chouly, P. Hild, V. Lleras, Y. Renard. Nitsche method for contact with coulomb friction: existence results for the static and dynamic finite element formulations. Journal of Computational and Applied Mathematics, 416:114557, 2022. [ DOI | http ]
[8] A. Heibig, N. Mannai, A. Petrov, Y. Renard. A thick-point approximation of a small body embedded in an elastic medium: justification with an asymptotic analysis. ZAMM, 101:10, 2021. [ DOI | http ]
[9] M. Fabre, C. Pozzolini, Y. Renard. Nitsche-based models for the unilateral contact of plates. ESAIM: Mathematical Modelling and Numerical Analysis, 55:941--967, 2021. [ DOI | http ]
[10] Y. Renard, K. Poulios. GetFEM: Automated FE modeling of multiphysics problems based on a generic weak form language. Transactions on Mathematical Software, 47:1:1--31, 2020. [ http ]
[11] E. Bretin, Y. Renard. Stable imex schemes for a Nitsche--based approximation of elastodynamic contact problems. selective mass scaling interpretation. SMAI journal of computational mathematics, 6:159--185, 2020. [ http ]
[12] F. Dabaghi, P. Krejci, A. Petrov, J. Pousin, Y. Renard. A weighted finite element mass redistribution method for dynamic contact problems. Journal of Computational and Applied Mathematics, 345:338--356, 2019. [ .pdf ]
[13] A. Karoui, M. Trifa, M. Arfaoui, Y. Renard. A plane strain analysis of the elastostatic fields near the notch-tip of a blatz-ko material. Theoretical and Applied Fracture Mechanics, 103:102309, 2019. [ DOI ]
[14] F. Grine, M. Trifa, M. Arfaoui, Y. Maalej, Y. Renard. The anti-plane shear elasto-static fields near a crack terminating at an isotropic hyperelastic bi-material interface. Mathematics and Mechanics of Solids, 24:9:2914--2930, 2019.
[15] M. Chamekh, M. A. Latrach, Y. Renard. Frictional self-contact problem of elastic rods. Journal of King Saud University - Science, 32:1:828--835, 2019. [ DOI | http ]
[16] F. Chouly, Y. Renard. Explicit verlet time-integration for a Nitsche-based approximation of elastodynamic contact problems. Adv. Model. and Simul. in Eng. Sci., 5:1:31, 2018. [ DOI | .pdf ]
[17] F. Chouly, M. Fabre, P. Hild, J. Pousin, Y. Renard. Residual-based a posteriori error estimation for contact problems approximated by Nitsche's method. IMA. J. Numer. Anal., 38:2:921--954, 2018. [ DOI | .pdf ]
[18] M. Arfaoui, M. Trifa, K. Mansouri, A. Karoui, Y. Renard. Three-dimensional singular elastostatic fields in a cracked neo-hookean hyperelastic solid. International Journal of Engineering Science, 128:1--11, 2018.
[19] F. Chouly, M. Fabre, P. Hild, R. Mlika, J. Pousin, Y. Renard. An overview of recent results on Nitsche's method for contact problems. Lecture Notes in Computational Science and Engineering, 121:93--141, 2018. [ .pdf ]
[20] F. Chouly, R. Mlika, Y. Renard. An unbiased Nitsche's approximation of the frictional contact between two elastic structures. Numerische Matematik, 139:3:593--631, 2018. [ DOI | .pdf ]
[21] M. Arfaoui, M.R. Ben Hassine, M. Moakher, Y. Renard, G. Vial. Multi-scale asymptotic expansion for a small inclusion in elastic media. Journal of Elasticity, 131:207--237, 2018. [ DOI | .pdf ]
[22] F. Chouly, R. Mlika, Y. Renard. An unbiased Nitsche's formulation of large deformation frictional contact and self-contact. Comp. Meth. Appl. Mech. Engng., 325:265--288, 2017. [ DOI | .pdf ]
[23] T. Ligursky, Y. Renard. A method of piecewise-smooth numerical branching. Z. Angew. Math. Mech., 97:7:815--827, 2017. [ DOI | .pdf ]
[24] K. Mansouri, M. Arfaoui, M. Trifa, H. Hassis, Y. Renard. Singular elastostatic fields near the notch vertex of a mooney-rivlin hyperelastic body. International Journal of Solids and Structures, 80:532--544, 2016.
[25] F. Dabaghi, A. Petrov, J. Pousin, Y. Renard. A robust finite element redistribution approach for elastodynamic contact problems. Appl. Numer. Math., 103:48--71, 2016. [ .pdf ]
[26] M. Fabre, J. Pousin, Y. Renard. A fictitious domain method for frictionless contact problems in elasticity using Nitsche's method. SMAI J. of Comput. Math., 2:19--50, 2016. [ .pdf ]
[27] C. Pozzolini, Y. Renard, M. Salaün. Energy conservative finite element semi-discretization for vibro-impacts of plates on rigid obstacles. ESAIM Math. Model. Numer. Anal., 50:1585--1613, 2016. [ DOI | .pdf ]
[28] T. Ligursky, Y. Renard. Bifurcations in piecewise-smooth steady-state problems, abstract study and application to plane contact problems with friction. Computational Mechanics, 56:1:39--62, 2015. [ .pdf ]
[29] F. Chouly, P. Hild, Y. Renard. A Nitsche finite element method for dynamic contact: 1. Semi-discrete problem analysis and time-marching schemes. ESAIM Math. Model. Numer. Anal., 49:481--502, 2015. [ .pdf ]
[30] F. Chouly, P. Hild, Y. Renard. A Nitsche finite element method for dynamic contact: 2. Stability of the schemes and numerical experiment. ESAIM Math. Model. Numer. Anal., 49:503--528, 2015. [ .pdf ]
[31] K. Poulios, Y. Renard. An unconstrained integral approximation of large sliding frictional contact between deformable solids. Computers and Structures, 153:75--90, 2015. [ .pdf ]
[32] F. Chouly, P. Hild, Y. Renard. Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments. Math. Comp., 84:1089--1112, 2015. [ .pdf ]
[33] T. Ligursky, Y. Renard. A continuation problem for computing solutions of discretised evolution problems with application to plane quasi-static contact problems with friction. Comp. Meth. Appl. Mech. Engng., 280:222--262, 2014. [ .pdf ]
[34] A. Karoui, K. Mansouri, Y. Renard, M. Arfaoui. The extended Finite Element Method for cracked hyperelastic materials: a convergence study. Int. J. Numer. Meth. Engng., 100:3:222--242, 2014. [ .pdf ]
[35] S. Amdouni, M. Moakher, Y. Renard. A stabilized Lagrange multiplier method for the enriched finite element approximation of Tresca contact problems of cracked elastic bodies. Comp. Meth. Appl. Mech. Engng., 270:178--200, 2014. [ .pdf ]
[36] F. Dabaghi, A. Petrov, J. Pousin, Y. Renard. Convergence of mass redistribution method for the wave equation with a unilateral constraint at the boundary. ESAIM Math. Model. Numer. Anal., 48:4:1147--1169, 2014. [ .pdf ]
[37] S. Amdouni, M. Moakher, Y. Renard. A local projection stabilization of fictitious domain method for elliptic boundary value problems. Appl. Numer. Math., 76:60--75, 2014. [ .pdf ]
[38] Y. Renard. Generalized Newton's methods for the approximation and resolution of frictional contact problems in elasticity. Comp. Meth. Appl. Mech. Engng., 256:38--55, 2013. [ .pdf ]
[39] C. Pozzolini, Y. Renard, M. Salaün. Vibro-impact of a plate on rigid obstacles: existence theorem, convergence of a scheme and numerical simulations. IMA. J. Numer. Anal., 33(1):261--294, 2013. [ .pdf ]
[40] Y. Renard. A quasi-optimal a priori error estimate for two-dimensional Signorini problem approximated by linear finite elements. C.R. Math. Acad. Sci. Paris, 350:325--328, 2012. [ .pdf ]
[41] P. Hild, Y. Renard. An improved a priori error analysis for finite element approximations of Signorini's problem. Siam J. on Numer. Anal., 50:5:2400--2419, 2012. [ .pdf ]
[42] S. Amdouni, K. Mansouri, Y. Renard, M. Arfaoui, M. Moakher. Numerical convergence and stability of mixed formulation with x-fem cut-off. Eur. J. Comput. Mech., 21:(3-6):160--173, 2012. [ .pdf ]
[43] S. Amdouni, P. Hild, V. Lleras, M. Moakher, Y. Renard. A stabilized lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies. ESAIM Math. Model. Numer. Anal., 46:813--839, 2012. [ .pdf ]
[44] J. Lasry, Y. Renard, M. Salaün. Stress intensity factors computation for bending plates with Xfem. Int. J. Numer. Meth. Engng., 91:9:909--928, 2012. [ .pdf ]
[45] M. Belhout, J. Pousin, Y. Renard. Singular perturbation with a reduced approximation order in space for the transport equation. International Mathematical Forum, 7(27):1309--1315, 2012. [ .pdf ]
[46] T. Ligursky, Y. Renard. A well-posed semi-discretization of elastodynamic contact problems with friction. Q. J. Mech. Appl. Math., 64:2:215--238, 2011. [ .pdf ]
[47] E. Chahine, P. Laborde, Y. Renard. A non-conformal eXtended Finite Element approach: Integral matching Xfem. Applied Numerical Mathematics, 61:322--343, 2011. [ .pdf ]
[48] S. Nicaise, Y. Renard, E. Chahine. Optimal convergence analysis for the eXtended Finite Element Method. Int. J. Numer. Meth. Engng., 86:528--548, 2011. [ .pdf ]
[49] E. Chahine, P. Laborde, Y. Renard. An improvement within xfem of the bonding between the enrichment area and the classical finite elements. European Journal of Computational Mechanics, 19:1-2-3:177--187, 2010. [ .pdf ]
[50] J. Lasry, Y. Renard, M. Salaün. eXtended Finite Element Method for thin cracked plates with Kirchhoff-Love theory. Int. J. Numer. Meth. Engng., 84(9):1115--1138, 2010. [ .pdf ]
[51] Y. Renard. The singular dynamic method for constrained second order hyperbolic equations. application to dynamic contact problems. J. Comput. Appl. Math., 234(3):906--923, 2010. [ .pdf ]
[52] P. Hild, Y. Renard. Stabilized lagrange multiplier method for the finite element approximation of contact problems in elastostatics. Numer. Math., 15:1:101--129, 2010. [ .pdf ]
[53] A. Sy, Y. Renard. A fictitious domain approach for structural optimization with coupling between shape and topological gradient. Far East Journal of Mathematical Sciences, 47(1):33--50, 2010. [ .pdf ]
[54] E. Chahine, P. Laborde, Y. Renard. A reduced basis enrichment for the extended finite element method. Math. Model. Nat. Phenom., 4(1):88--105, 2009. [ .pdf ]
[55] J. Haslinger, Y. Renard. A new fictitious domain approach inspired by the extended finite element method. Siam J. on Numer. Anal., 47(2):1474--1499, 2009. [ .pdf ]
[56] E. Chahine, P. Laborde, Y. Renard. Spider-Xfem, an extended finite element variant for partially unknown crack-tip displacement. European Journal of Computational Mechanics, 17(5-7):625--636, 2008. [ .pdf ]
[57] H. Khenous, P. Laborde, Y. Renard. Mass redistribution method for finite element contact problems in elastodynamics. Eur. J. Mech., A/Solids, 27(5):918--932, 2008. [ .pdf ]
[58] P. Laborde, Y. Renard. Fixed point strategies for elastostatic frictional contact problems. Math. Meth. Appl. Sci., 31:415--441, 2008. [ .pdf ]
[59] E. Chahine, P. Laborde, Y. Renard. Crack-tip enrichment in the Xfem method using a cut-off function. Int. J. Numer. Meth. Engng., 75(6):629--646, 2008. [ .pdf ]
[60] E. Chahine, P. Laborde, J. Pommier, Y. Renard, M. Salaun. Study of some optimal XFEM type methods. in Advances in Meshfree Techniques, Computational Methods in Applied Sciences, vol. 5:27--40, 2007. [ .pdf ]
[61] P. Hild, Y. Renard. An error estimate for the Signorini problem with Coulomb friction approximated by finite elements. Siam J. Numer. Anal., 45(5):2012--2031, 2007. [ .pdf ]
[62] P. Laborde, J. Pommier, Y. Renard, M. Salaün. Une méthode xfem d'ordre supérieur optimale. Revue Européenne de Mécanique Numérique, 15:1-2-3:233--244, 2006.
[63] Y. Renard. A uniqueness criterion for the Signorini problem with Coulomb friction. Siam J. Math. Anal., 38, no. 2:452--467, 2006. [ .pdf ]
[64] H.B. Khenous, P. Laborde, Y. Renard. A comparison of two approaches for the discretization of elastodynamic contact problems. C.R. Math. Acad. Sci. Paris, 342:791--796, 2006. [ .pdf ]
[65] E. Chahine, P. Laborde, Y. Renard. A quasi-optimal convergence result for fracture mechanics with xfem. C.R. Math. Acad. Sci. Paris, 342:527--532, 2006. [ .pdf ]
[66] H. Khenous, J. Pommier, Y. Renard. Hybrid discretization of the Signorini problem with Coulomb friction, theoretical aspects and comparison of some numerical solvers. Applied Numerical Mathematics, 56/2:163--192, 2006. [ .pdf ]
[67] P. Hild, Y. Renard. Local uniqueness and continuation of solutions for the discrete Coulomb friction problem in elastostatics. Quart. Appl. Math., 63:553--573, 2005. [ .pdf ]
[68] P. Laborde, J. Pommier, Y. Renard, M. Salaün. High order extended finite element method for cracked domains. Int. J. Numer. Meth. Engng., 64:354--381, 2005. [ .pdf ]
[69] F. Ben Belgacem, Y. Renard, L. Slimane. A mixed formulation for the Signorini problem in nearly incompressible elasticity. Applied Numerical Mathematics, 54/1:1--22, 2005. [ .pdf ]
[70] Y. Renard, L. Slimane. The treatment of the locking phenomenon for a general class of variational inequalities. J. comp. appl. math., 170:121--143, 2004. [ .pdf ]
[71] F. Ben Belgacem, Y. Renard. Hybrid finite element methods for Signorini's problem. Math. Comp., 72:1117--1145, 2003. [ .pdf ]
[72] J.-C. Paumier, Y. Renard. Surface perturbation of an elastodynamic contact problem with friction. European Journal of Applied Mathematics, 14:465--483, 2003. [ .pdf ]
[73] Y. Renard. Numerical analysis of a one-dimensional elastodynamic model of dry friction and unilateral contact. Comp. Meth. Appl. Mech. Engng., 190:2031--2050, 2001. [ .pdf ]
[74] Y. Renard. Singular perturbation approach to an elastic dry friction problem with a non-monotone friction coefficient. Quarterly of Applied Mathematics, LVIII, No 2:303--324, 2000. [ .pdf ]
[75] J.-C. Paumier, Y. Renard. Existence et unicité pour le frottement élastodynamique avec perturbation par “inertie de surface”. C.R. Acad. Sci. Paris, 330, Série I:1--4, 2000. [ .pdf ]
[76] K.L. Kuttler, Y. Renard, M. Shillor. Models and simulations of dynamic frictional contact of a thermoelastic beam. Comp. Meth. Appl. Mech. Engng., 177:259--272, 1999. [ .pdf ]
[77] Y. Renard. Perturbation singulière d'un problème de frottement sec non monotone. C.R. Acad. Sci. Paris, 326, Série I:131--136, 1998. [ .pdf ]
[78] M. Campillo, I.R. Ionescu, J.-C. Paumier, Y. Renard. On the dynamic sliding with friction of a rigid block and of an infinite elastic slab. Physics of the Earth and Planetary Interiors, 96:15--23, 1996. [ .pdf ]

Conference proceedings

[1] C. Pozzolini, Y. Renard, M. Pignol, B. Souloumiac. Approximation of frictional contact using nitsche's methods in elasto-plastic problems. Proceedings of CSMA, Giens, 2024.
[2] A. Gamra, K. Mansouri, Y. Renard, M. Arfaoui, Ch. Douanla-Lontsi, T. Homolle. Méthodologie d'homogénéisation découplée des matériaux composites hyperélastiques anisotropes en grandes déformations. Proceedings of CSMA, Giens, 2024.
[3] S. Karoui, K. Mansouri, Y. Renard, M. Arfaoui, P. Bussetta. Homogénéisation découplée d'une nappe fibrée à matrice caoutchouteuse en grandes déformations. Proceedings of CSMA, Giens, 2022.
[4] M. Fabre, C. Pozzolini and Y. Renard. Approximation of frictional contact for plates using nitsche's method. Proceedings of CSMA, Giens, 2019. [ .pdf ]
[5] F. Chouly, P. Hild, V. Lleras and Y. Renard. Nitsche-based finite element method for contact with coulomb friction. Proceedings of Enumath, Voss, Norway, 2017, 2017. [ .pdf ]
[6] F. Dabaghi, A. Petrov, J. Pousin and Y. Renard. Numerical study of convergence of the mass redistribution method for elastodynamic contact problems. Proceedings of WCCM XI, Barcelona:1070--1081, 2014. [ .pdf ]
[7] C. Pozzolini, Y. Renard, M. Salaün. The singular dynamic method for dynamic contact of thin elastic structures. ESAIM: Proc. 42:20--33, 2013. [ .pdf ]
[8] S. Amdouni, P. Hild, V. Lleras, M. Moakher, Y. Renard. A stabilized lagrange multiplier method for the enriched finite-element approximation of cracked elastostatic contact problems. Proceeding of XFEM 2011, Cardiff, 2011.
[9] E. Chahine, P. Laborde, Y. Renard. On the mathematical analysis of xfem and some of its variants. Proceeding of XFEM2011, Cardiff, 2011.
[10] H. Hassis, K. Mansouri, Y. Renard. Two xfem methods and two constitutive laws for convergence analysis within a nonlinear incompressible elasticity framework. Proceeding of XFEM2011, Cardiff, 2011.
[11] C. Pozzolini, Y. Renard, M. Salaün. Schémas numériques conservatifs pour des problèmes de vibro-impacts de poutres et de plaques. Actes du 10ème colloque national en calcul des structures, Giens, 2011. [ .pdf ]
[12] S. Amdouni, K. Mansouri, Y. Renard, M. Arfaoui, M. Moakher. Numerical convergence and stability of mixed formulation with xfem cut-off. Actes du 10ème colloque national en calcul des structures, Giens, 2011. [ .pdf ]
[13] V. Lleras, P. Hild, Y. Renard. A posteriori error analysis for poisson equation approximated by xfem. Esaim Proceedings, Vol. 27:107--121, 2009. [ .pdf ]
[14] J. Lasry, Y. Renard, M. Salaün. A numerical methodology for modelling thin cracked plates with xfem. Esaim Proceedings, 2008. [ .pdf ]
[15] V. Lleras, P. Hild, Y. Renard. Estimateurs d'erreur pour la méthode xfem. Actes du 8ème colloque national en calcul des structures, Giens, 2007.
[16] J. Lasry, J. Pommier, Y. Renard, M. Salaün. Application de la méthode xfem aux plaques fissurées en flexion. Actes du 8ème colloque national en calcul des structures, Giens, 2007.
[17] E. Chahine, P. Laborde, J. Pommier, Y. Renard. Couplage des méthodes xfem et de la base réduite pour la modélisation des fissures interfaciales. Actes du 8ème colloque national en calcul des structures, Giens, 2007.
[18] E. Chahine, P. Laborde, J. Pommier, Y. Renard, M. Salaün. Some improvements of xfem for cracked domains. Proceedings of IUTAM Seminar, Discretisation Methods for evolving discontinuities, Lyon, France, 4-7 Sept, 2006.
[19] H.B. Khenous, P. Laborde, Y. Renard. An energy conserving approximation for elastodynamic contact problems. Proceedings of the III European Conference on Computational Mechanics, Lisbon, Portugal, 5-8 June, 2006.
[20] E. Chahine, P. Laborde, J. Pommier, Y. Renard, M. Salaün. Study of some optimal xfem type methods. Proceedings of ECCOMAS Thematic Conference on Meshless and Meshfree Methods, Lisbon, Portugal, July 11-14, 2005. [ .pdf ]
[21] Y. Renard. A uniqueness criterion for the Signorini problem with Coulomb friction. Lecture Note in applied and Computational Mechanics, vol 27, Analysis and simulation of Contact Problems:161--170, 2006.
[22] H.B. Khenous, P. Laborde, Y. Renard. On the discretization of contact problems in elastodynamics. Lecture Note in applied and Computational Mechanics, vol 27, Analysis and simulation of Contact Problems:31--38, 2006.
[23] P. Hild, Y. Renard. Local uniqueness results for the discrete Coulomb friction problem. Lecture Note in applied and Computational Mechanics, vol 27, Analysis and simulation of Contact Problems:129--136, 2006.
[24] P. Laborde, J. Pommier, Y. Renard, M. Salaün. Sur la précision des méthodes xfem en mécanique de la rupture. Actes du 17ème congrès Français de Mécanique, Troyes, 2005.
[25] P. Laborde, J. Pommier, Y. Renard, M. Salaün. Improvement of the accuracy in xfem methods. Proceedings of the ECCOMAS Thematic Conference on Meshless Methods, Lisboa, 2005.
[26] P. Laborde, J. Pommier, Y. Renard, M. Salaün. Une méthode d'éléments finis étendue d'ordre supérieur optimale. Actes du 7ème colloque national en calcul des structures, Giens. Revue européenne de mécanique numérique, vol 15, 1-2-3:233--244, 2006.
[27] H. Khenous, P. Laborde, Y. Renard. On the hybrid discretization of contact and friction in elastodynamics. Proceedings of the VIII International Conference on Coputational Plasticity, COMPLAS VIII:541--544, 2005.
[28] F. Ben Belgacem, Y. Renard, L. Slimane. On mixed methods for Signorini problems. An. Univ. Craiova Ser. Mat. Inform.(30 (1)):45--52, 2003.
[29] J.-C. Paumier, Y. Renard. Elastodynamic friction problem with a “surface inertia” perturbation. Proceedings of the 3rd Contact Mechanics International Symposium, Peniche, 2001.
[30] Y. Renard. Dynamic dry friction with a slip velocity dependent coefficient. Proceedings of the 3rd Summer Conference on Numerical Modelling in Continuum Mechanics, Prague, Part II:426--433, 1997.

Pre-publications and Reports

[1] P. Hild, V. Lleras, Y. Renard. A residual error estimator for the Xfem approximation of the elasticity problem. pre-publication, 2010. [ .pdf ]
[2] G. Tanoh, Y. Renard, D. Noll. Computational experience with an interior point algorithm for large scale contact problems. Optimization Online, 2004. [ .pdf ]

Phd thesis

[1] Y. Renard. Modélisation des instabilités liées au frottement sec des solides élastiques, aspects théoriques et numériques. Thèse de doctorat, LMC-IMAG Grenoble, 1998. [ .pdf ]

This file was generated by bibtex2html 1.99.